โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

รังสีก่อไอออนและเลขอะตอม

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง รังสีก่อไอออนและเลขอะตอม

รังสีก่อไอออน vs. เลขอะตอม

รังสีก่อไอออน (ionizing radiation) เกิดจากการแผ่รังสีที่มีพลังงานพอที่จะปลดปล่อยอิเล็กตรอนให้เป็นอิสระจากอะตอมหรือโมเลกุล หรือเป็นการแผ่รังสีจากการแตกตัวเป็นไอออน (Ionization) การแผ่รังสีดังกล่าว (หรือสั้น ๆ ว่ารังสี) ถูกสร้างขึ้นจากอนุภาคย่อย, ไอออนหรืออะตอมที่มีพลัง, เคลื่อนที่ด้วยความเร็วสูง (ปกติเร็วกว่าความเร็วแสง 1%) และเป็นคลื่นแม่เหล็กไฟฟ้าที่ปลายสเปคตรัมของคลื่นแม่เหล็กไฟฟ้าพลังงานสูง รังสีแกมมา, รังสีเอกซ์, และส่วนที่เป็นอัลตราไวโอเลตที่สูงกว่าของสเปกตรัมแม่เหล็กไฟฟ้าเป็นพวกแตกตัวเป็นไอออน ในขณะที่ส่วนที่เป็นอัลตราไวโอเลตที่ต่ำกว่าของสเปกตรัมแม่เหล็กไฟฟ้าอีกทั้งส่วนล่างของสเปคตรัมที่ต่ำกว่ายูวีที่รวมทั้งแสงที่มองเห็นได้ (รวมเกือบทุกประเภทของแสงเลเซอร์), อินฟาเรด, ไมโครเวฟ และคลื่นวิทยุ ทั้งหมดนี้ถูกพิจารณาว่าเป็นรังสีที่ไม่มีการแตกตัวเป็นไอออน เขตแดนระหว่างรังสีแม่เหล็กไฟฟ้าแบบแตกตัวเป็นไอออนและที่ไม่ใช่แบบแตกตัวเป็นไอออนที่เกิดขึ้นในรังสีอัลตราไวโอเลตไม่ได้ถูกกำหนดไว้อย่างชัดเจน เนื่องจากโมเลกุลและอะตอมที่แตกต่างกันจะแตกตัวเป็นไอออนที่พลังงานแตกต่างกัน นิยามที่ตกลงกันกำหนดเขตแดนไว้ที่พลังงานของโฟตอนระหว่าง 10 eV ถึง 33 eV ในรังสีอัลตราไวโอเลต อนุภาคย่อยของอะตอมทั่วไปที่แตกตัวเป็นไอออนจากกัมมันตภาพรังสีรวมถึงอนุภาคแอลฟา, อนุภาคบีตา, และนิวตรอน เกือบทั้งหมดของผลิตภัณฑ์จากการสลายให้กัมมันตรังสีจะเป็นพวกที่แตกตัวเป็นไอออนเพราะพลังงานจากการสลายได้กัมมันตรังสีโดยทั่วไปจะสูงกว่าอย่างมากจากที่จำเป็นต้องใช้ในการแตกตัว อนุภาคย่อยของอะตอมที่มีการแตกตัวอื่น ๆที่เกิดขึ้นตามธรรมชาติก็มี มิวออน, มีซอน, โพสิตรอน, นิวตรอนและอนุภาคอื่น ๆ ที่ประกอบขึ้นเป็นรังสีคอสมิกขั้นที่สอง ที่มีการผลิตหลังจากรังสีคอสมิกขั้นที่นึ่งมีปฏิสัมพันธ์กับชั้นบรรยากาศของโลก รังสีคอสมิกยังอาจผลิตไอโซโทปรังสีในโลกอีกด้วย (ตัวอย่างเช่นคาร์บอน-14) ซึ่งเป็นผลให้เกิดการเสื่อมสลายและผลิตรังสีที่เกิดจากการแตกตัวเป็นไอออน รังสีคอสมิกและการเสื่อมสลายของไอโซโทปกัมมันตรังสีเป็นแหล่งที่มาหลักของรังสีที่เกิดจากการแตกตัวเป็นไอออนตามธรรมชาติบนโลกที่เรียกว่ารังสีพื้นหลัง ในอวกาศ การปล่อยรังสีความร้อนตามธรรมชาติจากสสารที่อุณหภูมิสูงมาก (เช่นการปล่อยพลาสมาหรือโคโรนาของดวงอาทิตย์) อาจเป็นการแตกตัวเป็นไอออน รังสีจากการเป็นไอออนอาจถูกผลิตขึ้นตามธรรมชาติโดยการเร่งความเร็วของอนุภาคที่มีประจุโดยสนามแม่เหล็กไฟฟ้าในธรรมชาติ (เช่นฟ้าผ่า), แม้ว่าจะหายากบนโลก การระเบิดแบบซูเปอร์โนวาตามธรรมชาติในอวกาศจะผลิตปริมาณมากของรังสีจากการแตกตัวเป็นไอออนใกล้กับการระเบิด ซึ่งจะเห็นได้จากผลกระทบของมันในเนบิวล่าที่แวววาวที่เกี่ยวข้องกับพวกมัน รังสีจากการแตกตัวยังสามารถสร้างแบบเทียมขึ้นมาได้โดยใช้หลอดรังสีเอกซ์, เครื่องเร่งอนุภาค และวิธีการต่างๆที่ผลิตไอโซโทปรังสีแบบเทียม รังสีจากการแตกตัวจะมองไม่เห็นและจะไม่สามารถตรวจพบได้โดยตรงจากความรู้สึกของมนุษย์, ดังนั้นเครื่องมือตรวจจับรังสีเช่นเครื่องไกเกอร์เคาน์เตอร์จึงจำเป็น อย่างไรก็ตามรังสีจากการแตกตัวอาจนำไปสู่​​การปล่อยครั้งที่สองของแสงที่มองเห็นได้หลังจากการมีปฏิสัมพันธ์กับสสาร เช่นในการฉายรังสีแบบ Cherenkov และการเรืองแสงรังสี (radioluminescence) รังสีจากการแตกตัวถูกนำไปใช้อย่างสร้างสรรค์ในหลากหลายสาขาเช่นยา, การวิจัย, การผลิต, การก่อสร้างและพื้นที่อื่น ๆ แต่ก็ทำให้เกิดอันตรายต่อสุขภาพถ้าไม่ปฏิบัติตามมาตรการที่เหมาะสมที่ต่อต้านกับการสัมผัสที่ไม่พึงประสงค์ การสัมผัสกับรังสีจากการแตกตัวจะทำให้เกิดความเสียหายให้กับเนื้อเยื่อที่มีชีวิตและสามารถส่งผลให้เกิดการกลายพันธุ์, การเจ็บป่วยเนื่องจากรังสี, มะเร็งและการเสียชีวิต. เลขอะตอม (atomic number) หมายถึงจำนวนโปรตอนในนิวเคลียสของธาตุนั้นๆ หรือหมายถึงจำนวนอิเล็กตรอนที่วิ่งวนรอบนิวเคลียสของอะตอมที่เป็นกลาง เช่น ไฮโดรเจน (H) มีเลขอะตอมเท่ากับ 1 เลขอะตอม เดิมใช้หมายถึงลำดับของธาตุในตารางธาตุ เมื่อ ดมิทรี อีวาโนวิช เมนเดลีเยฟ (Dmitry Ivanovich Mendeleev) ทำการจัดกลุ่มของธาตุตามคุณสมบัติร่วมทางเคมีนั้น เขาได้สังเกตเห็นว่าเมื่อเรียงตามเลขมวลนั้น จะเกิดความไม่ลงรอยกันของคุณสมบัติ เช่น ไอโอดีน (Iodine) และเทลลูเรียม (Tellurium) นั้น เมื่อเรียกตามเลขมวล จะดูเหมือนอยู่ผิดตำแหน่งกัน ซึ่งเมื่อสลับที่กันจะดูเหมาะสมกว่า ดังนั้นเมื่อเรียงธาตุในตารางธาตุตามเลขอะตอม ตารางจะเรียงตามคุณสมบัติทางเคมีของธาตุ เลขอะตอมนี้ถึงแม้โดยประมาณ แล้วจะแปรผันตรงกับมวลของอะตอม แต่ในรายละเอียดแล้วเลขอะตอมนี้จะสะท้อนถึงคุณสมบัติของธาตุ เฮนรี โมสลีย์ (Henry Moseley) ได้ค้นพบความสัมพันธ์ระหว่างการกระเจิงของ สเปกตรัมของรังสีเอ็กซ์ (x-ray) ของธาตุ และตำแหน่งที่ถูกต้องบนตารางธาตุ ในปี ค.ศ. 1913 ซึ่งต่อมาได้ถูกอธิบายด้วยเลขอะตอม ซึ่งอธิบายถึงปริมาณประจุในนิวเคลียส หรือ จำนวนโปรตอนนั่นเอง ซึ่งจำนวนของโปรตอนนี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ หมวดหมู่:อะตอม ลเขอะตอม ลเขอะตอม.

ความคล้ายคลึงกันระหว่าง รังสีก่อไอออนและเลขอะตอม

รังสีก่อไอออนและเลขอะตอม มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รังสีเอกซ์

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

รังสีก่อไอออนและรังสีเอกซ์ · รังสีเอกซ์และเลขอะตอม · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง รังสีก่อไอออนและเลขอะตอม

รังสีก่อไอออน มี 15 ความสัมพันธ์ขณะที่ เลขอะตอม มี 12 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 3.70% = 1 / (15 + 12)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง รังสีก่อไอออนและเลขอะตอม หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »