ภาษาซีและเลขคณิตมอดุลาร์
ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง
ความแตกต่างระหว่าง ภาษาซีและเลขคณิตมอดุลาร์
ภาษาซี vs. เลขคณิตมอดุลาร์
ษาซี (C) เป็นภาษาโปรแกรมสำหรับวัตถุประสงค์ทั่วไป เริ่มพัฒนาขึ้นระหว่าง พ.ศ. 2512-2516 (ค.ศ. 1969-1973) โดยเดนนิส ริชชี่ (Denis Retchie) ที่เอทีแอนด์ทีเบลล์แล็บส์ (AT&T Bell Labs) ภาษาซีเป็นภาษาที่มีความยืดหยุ่นในการเขียนโปรแกรมและมีเครื่องมืออำนวยความสะดวกสำหรับการเขียนโปรแกรมเชิงโครงสร้างและอนุญาตให้มีขอบข่ายตัวแปร (scope) และการเรียกซ้ำ (recursion) ในขณะที่ระบบชนิดตัวแปรอพลวัตก็ช่วยป้องกันการดำเนินการที่ไม่ตั้งใจหลายอย่าง เหมือนกับภาษาโปรแกรมเชิงคำสั่งส่วนใหญ่ในแบบแผนของภาษาอัลกอล การออกแบบของภาษาซีมีคอนสตรักต์ (construct) ที่โยงกับชุดคำสั่งเครื่องทั่วไปได้อย่างพอเพียง จึงทำให้ยังมีการใช้ในโปรแกรมประยุกต์ซึ่งแต่ก่อนลงรหัสเป็นภาษาแอสเซมบลี คือซอฟต์แวร์ระบบอันโดดเด่นอย่างระบบปฏิบัติการคอมพิวเตอร์ ยูนิกซ์ ภาษาซีเป็นภาษาโปรแกรมหนึ่งที่ใช้กันอย่างแพร่หลายมากที่สุดตลอดกาล และตัวแปลโปรแกรมของภาษาซีมีให้ใช้งานได้สำหรับสถาปัตยกรรมคอมพิวเตอร์และระบบปฏิบัติการต่าง ๆ เป็นส่วนมาก ภาษาหลายภาษาในยุคหลังได้หยิบยืมภาษาซีไปใช้ทั้งทางตรงและทางอ้อม ตัวอย่างเช่น ภาษาดี ภาษาโก ภาษารัสต์ ภาษาจาวา จาวาสคริปต์ ภาษาลิมโบ ภาษาแอลพีซี ภาษาซีชาร์ป ภาษาอ็อบเจกทีฟ-ซี ภาษาเพิร์ล ภาษาพีเอชพี ภาษาไพทอน ภาษาเวอริล็อก (ภาษาพรรณนาฮาร์ดแวร์) และซีเชลล์ของยูนิกซ์ ภาษาเหล่านี้ได้ดึงโครงสร้างการควบคุมและคุณลักษณะพื้นฐานอื่น ๆ มาจากภาษาซี ส่วนใหญ่มีวากยสัมพันธ์คล้ายคลึงกับภาษาซีเป็นอย่างมากโดยรวม (ยกเว้นภาษาไพทอนที่ต่างออกไปอย่างสิ้นเชิง) และตั้งใจที่จะผสานนิพจน์และข้อความสั่งที่จำแนกได้ของวากยสัมพันธ์ของภาษาซี ด้วยระบบชนิดตัวแปร ตัวแบบข้อมูล และอรรถศาสตร์ที่อาจแตกต่างกันโดยมูลฐาน ภาษาซีพลัสพลัสและภาษาอ็อบเจกทีฟ-ซีเดิมเกิดขึ้นในฐานะตัวแปลโปรแกรมที่สร้างรหัสภาษาซี ปัจจุบันภาษาซีพลัสพลัสแทบจะเป็นเซตใหญ่ของภาษาซี ในขณะที่ภาษาอ็อบเจกทีฟ-ซีก็เป็นเซตใหญ่อันเคร่งครัดของภาษาซี ก่อนที่จะมีมาตรฐานภาษาซีอย่างเป็นทางการ ผู้ใช้และผู้พัฒนาต่างก็เชื่อถือในข้อกำหนดอย่างไม่เป็นทางการในหนังสือที่เขียนโดยเดนนิส ริตชี และไบรอัน เคอร์นิกัน (Brian Kernighan) ภาษาซีรุ่นนั้นจึงเรียกกันโดยทั่วไปว่า ภาษาเคแอนด์อาร์ซี (K&R C) ต่อม.. ลขคณิตมอดุลาร์ (Modular arithmetic) เป็นระบบเลขคณิตที่มีรากฐานมาจากระบบจำนวนเต็มทั่วไป แต่จำนวนในระบบนี้จะมีการหมุนกลับในลักษณะเดียวกันกับเข็มนาฬิกาเมื่อมีค่าถึงค่าบางค่าที่กำหนดไว้ ซึ่งค่านี้จะเรียกว่า มอดุลัส กล่าวคือ, ตัวเลขที่มีค่าเกินค่าของมอดุลัส จะถูกปรับค่าให้เป็นเศษของจำนวนนั้นเมื่อหารด้วยมอดุลัส ยกตัวอย่างเช่น ภายใต้มอดุลัสที่เป็น 9 เลข 13 จะถูกปรับให้เหลือ 4 หรือ ผลบวกของ 4 กับ 7 ก็คือ 2.
ความคล้ายคลึงกันระหว่าง ภาษาซีและเลขคณิตมอดุลาร์
ภาษาซีและเลขคณิตมอดุลาร์ มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนเต็ม
ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.
จำนวนเต็มและภาษาซี · จำนวนเต็มและเลขคณิตมอดุลาร์ · ดูเพิ่มเติม »
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ ภาษาซีและเลขคณิตมอดุลาร์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง ภาษาซีและเลขคณิตมอดุลาร์
การเปรียบเทียบระหว่าง ภาษาซีและเลขคณิตมอดุลาร์
ภาษาซี มี 93 ความสัมพันธ์ขณะที่ เลขคณิตมอดุลาร์ มี 4 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 1.03% = 1 / (93 + 4)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง ภาษาซีและเลขคณิตมอดุลาร์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: