เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง

ภาวะเชิงการนับ vs. สมมติฐานความต่อเนื่อง

ในทางคณิตศาสตร์ ภาวะเชิงการนับ ของเซต (cardinality) คือการวัดปริมาณว่ามีสมาชิกจำนวนเท่าไรในเซต ตัวอย่างเช่น เซต A. มมติฐานความต่อเนื่อง (continuum hypothesis) คือ สมมติฐานเกี่ยวกับขนาดของเซตอนันต.

ความคล้ายคลึงกันระหว่าง ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง

ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): อนันต์จำนวนอะเลฟจำนวนจริงจำนวนเต็มเกออร์ก คันทอร์เซต (แก้ความกำกวม)

อนันต์

ัญลักษณ์อนันต์ในรูปแบบต่าง ๆ อนันต์ (infinity; ใช้สัญลักษณ์ ∞) เป็นแนวคิดในทางคณิตศาสตร์และปรัชญาที่อ้างถึงจำนวนที่ไม่มีขอบเขตหรือไม่มีที่สิ้นสุด ในประวัติศาสตร์ ผู้คนต่างพัฒนาแนวคิดต่าง ๆ เกี่ยวกับธรรมชาติของอนันต์ ในทางคณิตศาสตร์ มีการจำกัดความของคำว่าอนันต์ในทฤษฎีเซต ภาษาอังกฤษของอนันต์ที่ว่า Infinity มาจากคำในภาษาละติน infinitas ซึ่งแปลว่า "ไม่มีที่สิ้นสุด" ในทางคณิตศาสตร์ เนื้อหาที่เกี่ยวกับอนันต์จะถือว่าอนันต์เป็นตัวเลข เช่น ใช้ในการนับปริมาณ เป็นต้นว่า "จำนวนพจน์เป็นอนันต์" แต่อนันต์ไม่ใช่ตัวเลขชนิดเดียวกับจำนวนจริง เกออร์ก คันทอร์ นักคณิตศาสตร์ชาวเยอรมันได้จัดระเบียบแนวคิดที่เกี่ยวกับอนันต์และเซตอนันต์ในช่วงปลายศตวรรษที่ 19 ถึงต้นศตวรรษที่ 20 เขายังได้ค้นพบว่าอนันต์มีการนับปริมาณแตกต่างกัน แนวคิดดังกล่าวถูกเรียกว่าภาวะเชิงการนับ เช่น เซตของจำนวนเต็มเป็นเซตอนันต์ที่นับได้ แต่เซตของจำนวนจริงเป็นเซตอนันต์ที่นับไม่ได้.

ภาวะเชิงการนับและอนันต์ · สมมติฐานความต่อเนื่องและอนันต์ · ดูเพิ่มเติม »

จำนวนอะเลฟ

จำนวนอะเลฟ (aleph number) ในทางคณิตศาสตร์ ใช้บ่งบอกถึงขนาดของอนันต์ โดยเขียนแทนด้วยตัวอะลิฟ (ℵ) ซึ่งยืมมาจากอักษรฮีบรู หมวดหมู่:อนันต์.

จำนวนอะเลฟและภาวะเชิงการนับ · จำนวนอะเลฟและสมมติฐานความต่อเนื่อง · ดูเพิ่มเติม »

จำนวนจริง

ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).

จำนวนจริงและภาวะเชิงการนับ · จำนวนจริงและสมมติฐานความต่อเนื่อง · ดูเพิ่มเติม »

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

จำนวนเต็มและภาวะเชิงการนับ · จำนวนเต็มและสมมติฐานความต่อเนื่อง · ดูเพิ่มเติม »

เกออร์ก คันทอร์

กออร์ก แฟร์ดินันด์ ลุดวิก ฟิลิพพ์ คันทอร์ (Georg Ferdinand Ludwig Philipp Cantor, 3 มีนาคม ค.ศ. 1845 เซนต์ปีเตอร์สเบิร์ก จักรวรรดิรัสเซีย – 6 มกราคม ค.ศ. 1918) เป็นนักคณิตศาสตร์ เกิดในประเทศรัสเซีย แต่ใช้ชีวิตอยู่ในเยอรมนี มีชื่อเสียงเป็นที่รู้จักในนามของผู้บัญญัติทฤษฎีเซตยุคใหม่ โดยได้ขยายขอบเขตของทฤษฎีเซตให้ครอบคลุมแนวคิดของจำนวนเชิงอนันต์ (transfinite or infinite numbers) ทั้งจำนวนเชิงการนับและจำนวนเชิงอันดับที่ นอกจากนี้ คันทอร์ยังเป็นที่รู้จักจากผลงานในเรื่อง การแทนฟังก์ชันด้วยอนุกรมตรีโกณมิติ ที่เป็นเอกลักษณ์ (unique representation of functions by means of trigonometric series) ซึ่งเป็นภาคขยายของอนุกรมฟูรี.

ภาวะเชิงการนับและเกออร์ก คันทอร์ · สมมติฐานความต่อเนื่องและเกออร์ก คันทอร์ · ดูเพิ่มเติม »

เซต (แก้ความกำกวม)

ซต สามารถหมายถึง.

ภาวะเชิงการนับและเซต (แก้ความกำกวม) · สมมติฐานความต่อเนื่องและเซต (แก้ความกำกวม) · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง

ภาวะเชิงการนับ มี 30 ความสัมพันธ์ขณะที่ สมมติฐานความต่อเนื่อง มี 7 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 16.22% = 6 / (30 + 7)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ภาวะเชิงการนับและสมมติฐานความต่อเนื่อง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: