เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ฟีลด์และเมทริกซ์สลับเปลี่ยน

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ฟีลด์และเมทริกซ์สลับเปลี่ยน

ฟีลด์ vs. เมทริกซ์สลับเปลี่ยน

ในคณิตศาสตร์ ฟีลด์คือเซตที่สามารถนิยามการบวก ลบ คูณ และหารได้ และสามารถดำเนินการเหล่านั้นได้เหมือนกับจำนวนตรรกยะและจำนวนจริง ฟีลด์จึงมักถือว่าเป็นโครงสร้างเชิงพีชคณิตพื้นฐาน ซึ่งมักจะถูกใช้ในพีชคณิต, ทฤษฎีจำนวน และคณิตศาสตร์สาขาอื่น ๆ ฟีลด์ที่รู้จักกันดีที่สุดคือ ฟีลด์จำนวนตรรกยะและฟีลด์จำนวนจริง ฟีลด์จำนวนเชิงซ้อนก็ใช้กันมากเช่นกัน ไม่เฉพาะแค่ในคณิตศาสตร์ แต่ในวิทยาศาสตร์และวิศวกรรมหลายสาขาเช่นกัน ฟีลด์อื่น ๆ มากมาย เช่น ฟีลด์ของฟังก์ชันตรรกยะ ฟีลด์ฟังก์ชันพีชคณิต ฟีลด์ตัวเลขพีชคณิต ก็มักจะถูกใช้และศึกษาในคณิตศาสตร์ โดยเฉพาะอย่างยิ่งในทฤษฎีจำนวนและเรขาคณิตเชิงพีชคณิต. ในพีชคณิตเชิงเส้น เมทริกซ์สลับเปลี่ยน (ทับศัพท์ว่า ทรานสโพส) คือเมทริกซ์ที่ได้จากการสลับสมาชิก จากแถวเป็นหลัก และจากหลักเป็นแถว ของเมทริกซ์ต้นแบบ เมทริกซ์สลับเปลี่ยนของ A ที่มีมิติ m×n จะเขียนแทนด้วย AT (บางครั้งอาจพบในรูปแบบ At, Atr, tA หรือ A′) ซึ่งจะมีมิติเป็น n×m (สลับกัน) นิยามโดย สำหรับทุกค่าของ i และ j ที่ 1 ≤ i ≤ n และ 1 ≤ j ≤ m ตัวอย่างเช่น 1 & 2 \\ 3 & 4 \end^ \!\! \;\!.

ความคล้ายคลึงกันระหว่าง ฟีลด์และเมทริกซ์สลับเปลี่ยน

ฟีลด์และเมทริกซ์สลับเปลี่ยน มี 0 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย)

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ฟีลด์และเมทริกซ์สลับเปลี่ยน

ฟีลด์ มี 13 ความสัมพันธ์ขณะที่ เมทริกซ์สลับเปลี่ยน มี 6 ขณะที่พวกเขามีเหมือนกัน 0, ดัชนี Jaccard คือ 0.00% = 0 / (13 + 6)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ฟีลด์และเมทริกซ์สลับเปลี่ยน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: