ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์
ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง
ความแตกต่างระหว่าง ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์
ฟังก์ชันต่อเนื่อง vs. เกออร์ก คันทอร์
ในทางคณิตศาสตร์ ฟังก์ชันต่อเนื่อง (continuous function) คือฟังก์ชันที่ถ้าตัวแปรต้นมีค่าเปลี่ยนแปลงไปเพียงเล็กน้อย ผลลัพธ์ก็จะมีค่าเปลี่ยนแปลงไปเพียงเล็กน้อยด้วยเช่นกัน เราเรียกฟังก์ชันที่การเปลี่ยนแปลงไปเพียงเล็กน้อยของค่าของตัวแปรต้นทำให้เกิดการก้าวกระโดดของผลลัพธ์ของฟังก์ชันว่า ฟังก์ชันไม่ต่อเนื่อง (discontinuous function) ตัวอย่างเช่น ให้ฟังก์ชัน h (t) เป็นฟังก์ชันที่ส่งเวลา t ไปยังความสูงของต้นไม้ที่เวลานั้น เราได้ว่าฟังก์ชันนี้เป็นฟังก์ชันต่อเนื่อง อีกตัวอย่างของฟังก์ชันต่อเนื่องคือ ฟังก์ชัน T (x) ที่ส่งความสูง x ไปยังอุณหภูมิ ณ จุดที่มีความสูง x เหนือจุดพิกัดทางภูมิศาสตร์จุดหนึ่ง ในทางกลับกัน ถ้า M (t) เป็นฟังก์ชันที่ส่งเวลา t ไปยังจำนวนเงินที่อยู่ในบัญชีธนาคาร เราได้ว่า M ไม่ใช่ฟังก์ชันต่อเนื่องเนื่องจากผลลัพธ์ของฟังก์ชันมีการเปลี่ยนแปลงแบบก้าวกระโดดเมื่อมีการฝากเงินหรือถอนเงินเข้าหรือออกจากบัญชี ในคณิตศาสตร์แขนงต่างๆ นั้นแนวคิดของความต่อเนื่องถูกดัดแปลงให้มีความเหมาะสมกับคณิตศาสตร์แขนงนั้นๆ การดัดแปลงที่พบได้บ่อยที่สุดมีอยู่ในวิชาทอพอโลยี ซึ่งท่านสามารถหาข้อมูลเพิ่งเติมได้ในบทความเรื่อง ความต่อเนื่อง (ทอพอโลยี) อนึ่ง ในทฤษฎีลำดับโดยเฉพาะในทฤษฏีโดเมน นิยามของความต่อเนื่องที่ใช้คือความต่อเนื่องของสก็อตซึ่งเป็นนิยามที่สร้างขึ้นจากความต่อเนื่องที่ถูกอธิบายในบทความนี้อีกทีหนึ่ง. กออร์ก แฟร์ดินันด์ ลุดวิก ฟิลิพพ์ คันทอร์ (Georg Ferdinand Ludwig Philipp Cantor, 3 มีนาคม ค.ศ. 1845 เซนต์ปีเตอร์สเบิร์ก จักรวรรดิรัสเซีย – 6 มกราคม ค.ศ. 1918) เป็นนักคณิตศาสตร์ เกิดในประเทศรัสเซีย แต่ใช้ชีวิตอยู่ในเยอรมนี มีชื่อเสียงเป็นที่รู้จักในนามของผู้บัญญัติทฤษฎีเซตยุคใหม่ โดยได้ขยายขอบเขตของทฤษฎีเซตให้ครอบคลุมแนวคิดของจำนวนเชิงอนันต์ (transfinite or infinite numbers) ทั้งจำนวนเชิงการนับและจำนวนเชิงอันดับที่ นอกจากนี้ คันทอร์ยังเป็นที่รู้จักจากผลงานในเรื่อง การแทนฟังก์ชันด้วยอนุกรมตรีโกณมิติ ที่เป็นเอกลักษณ์ (unique representation of functions by means of trigonometric series) ซึ่งเป็นภาคขยายของอนุกรมฟูรี.
ความคล้ายคลึงกันระหว่าง ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์
ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์ มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟังก์ชันนักคณิตศาสตร์
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์
การเปรียบเทียบระหว่าง ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์
ฟังก์ชันต่อเนื่อง มี 12 ความสัมพันธ์ขณะที่ เกออร์ก คันทอร์ มี 30 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 4.76% = 2 / (12 + 30)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง ฟังก์ชันต่อเนื่องและเกออร์ก คันทอร์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: