พื้นที่และเส้นตรง
ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง
ความแตกต่างระหว่าง พื้นที่และเส้นตรง
พื้นที่ vs. เส้นตรง
ื้นที่โดยรวมของรูปร่างทั้งสามรูปเท่ากับประมาณ 15.56 ตารางหน่วย พื้นที่ คือ ปริมาณของพื้นผิวหรือรูปร่างสองมิติ ที่แสดงถึงขอบเขตเนื้อที่ในแนวแผ่นระนาบ พื้นที่สามารถเข้าใจได้ว่าเป็นจำนวนวัสดุที่หนาขนาดหนึ่งเท่าที่จำเป็นที่จะประกอบขึ้นเป็นรูปร่าง หรือปริมาณสีทาเท่าที่จำเป็นที่จะทาผิวหน้าในครั้งเดียว พื้นที่เป็นมโนทัศน์ในสองมิติที่คล้ายคลึงกับความยาวของเส้นโค้งในหนึ่งมิติ หรือปริมาตรของทรงตันในสามมิติ พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับรูปสี่เหลี่ยมจัตุรัสที่มีขนาดตายตัวขนาดหนึ่ง หน่วยมาตรฐานของพื้นที่ในหน่วยเอสไอคือ ตารางเมตร (m2) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่งเมตร Bureau International des Poids et Mesures, retrieved 15 July 2012 รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทางคณิตศาสตร์ หน่วยตารางหน่วยถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็นจำนวนจริงไร้มิติจำนวนหนึ่ง สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น รูปสามเหลี่ยม รูปสี่เหลี่ยมมุมฉาก รูปวงกลม เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของรูปหลายเหลี่ยมใด ๆ สามารถหาได้จากการแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วยแคลคูลัส (calculus) สำหรับรูปร่างทรงตันอย่างเช่นทรงกลม ทรงกรวย หรือทรงกระบอก พื้นที่บนผิวรอบนอกของรูปทรงเหล่านี้เรียกว่า พื้นที่ผิว สูตรคำนวณพื้นที่ผิวของรูปทรงพื้นฐานต่าง ๆ สามารถหาได้ตั้งแต่ยุคกรีกโบราณ แต่การหาพื้นที่ผิวของรูปทรงที่ซับซ้อนยิ่งขึ้นต้องใช้แคลคูลัสหลายตัวแปร (multivariable calculus). ้นตรงในระนาบสองมิติ เส้นตรง (อังกฤษ: line) คือเส้นโค้งในแนวตรงโดยสมบูรณ์ (ในทางคณิตศาสตร์ เส้นโค้งมีความหมายรวมถึงเส้นตรงด้วย) ที่มีความยาวเป็นอนันต์ ความกว้างเป็นศูนย์ (ในทางทฤษฎี) และมีจำนวนจุดบนเส้นตรงเป็นอนันต์เช่นกัน ในเรขาคณิตแบบยุคลิด จะมีเส้นตรงเพียงหนึ่งเส้นเท่านั้นที่ผ่านจุดสองจุดใด ๆ และเป็นระยะทางที่สั้นที่สุด การวาดเส้นตรงสามารถทำได้โดยใช้เครื่องมือที่มีสันตรง เช่นไม้บรรทัด และอาจเติมลูกศรลงไปที่ปลายทั้งสองข้างเพื่อแสดงว่ามันมีความยาวเป็นอนันต์ เส้นตรงสองเส้นที่แตกต่างกันในสองมิติสามารถขนานกันได้ ซึ่งหมายความว่าเส้นตรงทั้งสองเส้นนั้นจะไม่ตัดกันที่ตำแหน่งใด ๆ ถึงแม้ต่อความยาวออกไปอีกก็ตาม ส่วนในสามมิติหรือมากกว่านั้น เส้นตรงสองเส้นอาจจะไขว้ข้ามกัน (skew) คือไม่ตัดกันแต่ก็อาจจะไม่ขนานกันด้วย และระนาบสองระนาบที่แตกต่างกันมาตัดกันจะทำให้เกิดเป็นเส้นตรงเพียงหนึ่งเส้น เรียกระนาบเหล่านั้นว่า ระนาบร่วมเส้นตรง (collinear planes) สำหรับจุดสามจุดหรือมากกว่าที่อยู่บนเส้นตรงเดียวกันจะเรียกว่า จุดร่วมเส้นตรง (collinear points).
ความคล้ายคลึงกันระหว่าง พื้นที่และเส้นตรง
พื้นที่และเส้นตรง มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): คณิตศาสตร์เส้นโค้ง
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.
คณิตศาสตร์และพื้นที่ · คณิตศาสตร์และเส้นตรง · ดูเพิ่มเติม »
เส้นโค้งเปิด เส้นโค้งปิด เส้นโค้ง (curve) หมายถึงจุดทุกจุดที่ต่อเนื่องกันเป็นเส้นโดยไม่มีการขาดตอน เป็นวัตถุหนึ่งมิติ มีรูปร่างอย่างไรก็ได้ บางชนิดอาจนำเสนอได้ในรูปแบบของฟังก์ชันทางคณิตศาสตร์หรือกราฟของฟังก์ชัน ซึ่งอยู่บนระนาบสองมิติหรือไม่ก็ได้ เส้นโค้งแบ่งได้เป็นสองประเภทได้แก่ เส้นโค้งเปิด คือเส้นโค้งที่ไม่มีจุดจบหรือไม่บรรจบกัน เช่น คลื่นรูปไซน์ พาราโบลา และ เส้นโค้งปิด คือเส้นโค้งที่บรรจบกันเป็นรูปปิดหรือลากทับรอยเดิมเป็นวงวน เช่น รูปวงกลม ไฮโพโทรคอยด์ ชนิดของเส้นโค้งจำนวนมากมีการศึกษาในเรขาคณิต ทุกวันนี้เราให้ความหมายว่า "เส้นตรง" ไม่ได้เป็นเส้นโค้ง แต่ในทางคณิตศาสตร์ ทั้งเส้นตรงและส่วนของเส้นตรงก็คือเส้นโค้งที่ไม่มีความโค้งนั่นเอง สำหรับส่วนโค้งอาจเรียกได้ว่าเป็น "ส่วนของเส้นโค้ง" หมายถึงส่วนหนึ่งของเส้นโค้งที่สามารถหาอนุพันธ์ได้ หมวดหมู่:เรขาคณิต หมวดหมู่:ทอพอโลยี.
พื้นที่และเส้นโค้ง · เส้นตรงและเส้นโค้ง · ดูเพิ่มเติม »
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ พื้นที่และเส้นตรง มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง พื้นที่และเส้นตรง
การเปรียบเทียบระหว่าง พื้นที่และเส้นตรง
พื้นที่ มี 20 ความสัมพันธ์ขณะที่ เส้นตรง มี 17 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 5.41% = 2 / (20 + 17)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง พื้นที่และเส้นตรง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: