ผิวกำลังสองและพื้นที่
ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง
ความแตกต่างระหว่าง ผิวกำลังสองและพื้นที่
ผิวกำลังสอง vs. พื้นที่
ผิวกำลังสอง หรือ ควอดริก (quadric surface) ในทางคณิตศาสตร์ หมายถึง ผิว (hypersurface) ใน D มิติ ซึ่งกำหนดโดยคำตอบหรือทางเดินรากของสมการพหุนามกำลังสอง (quadratic polynomial) ถ้าเราพิจารณาพิกัด \ ผิวกำลังสองถูกกำหนดด้วยสมการพีชคณิตดังต่อไปนี้ \sum_^D Q_ x_i x_j + \sum_^D P_i x_i + R. ื้นที่โดยรวมของรูปร่างทั้งสามรูปเท่ากับประมาณ 15.56 ตารางหน่วย พื้นที่ คือ ปริมาณของพื้นผิวหรือรูปร่างสองมิติ ที่แสดงถึงขอบเขตเนื้อที่ในแนวแผ่นระนาบ พื้นที่สามารถเข้าใจได้ว่าเป็นจำนวนวัสดุที่หนาขนาดหนึ่งเท่าที่จำเป็นที่จะประกอบขึ้นเป็นรูปร่าง หรือปริมาณสีทาเท่าที่จำเป็นที่จะทาผิวหน้าในครั้งเดียว พื้นที่เป็นมโนทัศน์ในสองมิติที่คล้ายคลึงกับความยาวของเส้นโค้งในหนึ่งมิติ หรือปริมาตรของทรงตันในสามมิติ พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับรูปสี่เหลี่ยมจัตุรัสที่มีขนาดตายตัวขนาดหนึ่ง หน่วยมาตรฐานของพื้นที่ในหน่วยเอสไอคือ ตารางเมตร (m2) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่งเมตร Bureau International des Poids et Mesures, retrieved 15 July 2012 รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทางคณิตศาสตร์ หน่วยตารางหน่วยถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็นจำนวนจริงไร้มิติจำนวนหนึ่ง สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น รูปสามเหลี่ยม รูปสี่เหลี่ยมมุมฉาก รูปวงกลม เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของรูปหลายเหลี่ยมใด ๆ สามารถหาได้จากการแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วยแคลคูลัส (calculus) สำหรับรูปร่างทรงตันอย่างเช่นทรงกลม ทรงกรวย หรือทรงกระบอก พื้นที่บนผิวรอบนอกของรูปทรงเหล่านี้เรียกว่า พื้นที่ผิว สูตรคำนวณพื้นที่ผิวของรูปทรงพื้นฐานต่าง ๆ สามารถหาได้ตั้งแต่ยุคกรีกโบราณ แต่การหาพื้นที่ผิวของรูปทรงที่ซับซ้อนยิ่งขึ้นต้องใช้แคลคูลัสหลายตัวแปร (multivariable calculus).
ความคล้ายคลึงกันระหว่าง ผิวกำลังสองและพื้นที่
ผิวกำลังสองและพื้นที่ มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนจริงทรงกรวยทรงกระบอกทรงกลม
ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).
จำนวนจริงและผิวกำลังสอง · จำนวนจริงและพื้นที่ · ดูเพิ่มเติม »
กรวย (cone) คือรูปทรงในเรขาคณิตที่มีรูปร่างเป็นกรวย ส่วนปลายด้านหนึ่งจะแหลม ที่อยู่ต่อกันระหว่างจุดยอดและจุดใด ๆ บนขอบฐานเป็นส่วนเส้นตรงที่เรียกว่า สูงเอียง.
ทรงกรวยและผิวกำลังสอง · ทรงกรวยและพื้นที่ · ดูเพิ่มเติม »
รูปทรงกระบอก ในทางเรขาคณิต ทรงกระบอก (cylinder) เป็นกราฟสามมิติที่เกิดจากสมการ ทรงกระบอกที่มีรัศมี r และความสูง h จะสามารถหาปริมาตรของทรงกระบอกหาได้จากสูตร และพื้นที่ผิวของทรงกระบอกหาได้จากสูตร.
ทรงกระบอกและผิวกำลังสอง · ทรงกระบอกและพื้นที่ · ดูเพิ่มเติม »
รูปทรงกลม ในทางเรขาคณิต ทรงกลม (อังกฤษ: sphere) เป็นกราฟสามมิติ ทรงกลมที่มีจุดศูนย์กลางที่ (x0, y0, z0) จะมีสมการเป็น จุดบนทรงกลมที่มีรัศมี r จะผ่าน พื้นที่ผิวของทรงกลมที่มีรัศมี r คือ และปริมาตรคือ ทรงกลมเป็นรูปทรงที่มีพื้นที่ผิวน้อยที่สุดในบรรดารูปทรงที่มีปริมาตรเท่ากัน และมีปริมาตรมากที่สุดในบรรดารูปทรงที่มีพื้นที่ผิวเท่ากัน หมวดหมู่:เรขาคณิตเชิงอนุพันธ์ หมวดหมู่:เรขาคณิตมูลฐาน หมวดหมู่:พื้นผิว หมวดหมู่:ทอพอโลยี.
ทรงกลมและผิวกำลังสอง · ทรงกลมและพื้นที่ · ดูเพิ่มเติม »
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ ผิวกำลังสองและพื้นที่ มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง ผิวกำลังสองและพื้นที่
การเปรียบเทียบระหว่าง ผิวกำลังสองและพื้นที่
ผิวกำลังสอง มี 12 ความสัมพันธ์ขณะที่ พื้นที่ มี 20 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 12.50% = 4 / (12 + 20)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง ผิวกำลังสองและพื้นที่ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: