เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ผลคูณจุดและอนุกรมฟูรีเย

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ผลคูณจุดและอนุกรมฟูรีเย

ผลคูณจุด vs. อนุกรมฟูรีเย

ผลคูณจุด หรือ ผลคูณเชิงสเกลาร์ ในทางคณิตศาสตร์ คือ การดำเนินการทวิภาคบนเวกเตอร์สองอันในปริภูมิแบบยุคลิด ซึ่งให้ผลลัพธ์เป็นปริมาณสเกลาร์ที่เป็นจำนวนจริง ต่างกับผลคูณไขว้ซึ่งให้ผลลัพธ์เป็นเวกเตอร์อีกอันหนึ่ง. อนุกรมฟูรีเย ตั้งชื่อตามโฌแซ็ฟ ฟูรีเย อนุกรมฟูรีเยเป็นเทคนิคทางคณิตศาสตร์ที่มีประโยชน์ เช่นใช้ในการแยกปัญหาออกเป็นส่วนย่อยๆ ที่ง่ายกว่าปัญหาดั้งเดิม โดยอนุกรมฟูรีเย นั้นเป็นการกระจายฟังก์ชันคาบ ที่มีคาบ 2π ให้อยู่ในรูปผลบวกของ ฟังก์ชันคาบในรูป ซึ่งเป็น ฮาร์โมนิก ของ ei x หรือ อาจเขียนในรูปของฟังก์ชัน ไซน์ และ โคไซน์ ดูประวัติที่บทความหลัก การแปลงฟูรี.

ความคล้ายคลึงกันระหว่าง ผลคูณจุดและอนุกรมฟูรีเย

ผลคูณจุดและอนุกรมฟูรีเย มี 0 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย)

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ผลคูณจุดและอนุกรมฟูรีเย

ผลคูณจุด มี 12 ความสัมพันธ์ขณะที่ อนุกรมฟูรีเย มี 5 ขณะที่พวกเขามีเหมือนกัน 0, ดัชนี Jaccard คือ 0.00% = 0 / (12 + 5)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ผลคูณจุดและอนุกรมฟูรีเย หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: