เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์)

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์)

ผลคูณคาร์ทีเซียน vs. เซต (คณิตศาสตร์)

ผลคูณคาร์ทีเซียน \scriptstyle A \times B ของเซต \scriptstyle A. อินเตอร์เซกชันของเซตสองเซต คือเซตที่ประกอบด้วยสมาชิกที่อยู่ในเซตทั้งสองเซต ดังแสดงในแผนภาพเวนน์ เซต ในทางคณิตศาสตร์นั้น อาจมองได้ว่าเป็นการรวบรวมกลุ่มวัตถุต่างๆ ไว้รวมกันทั้งชุด แม้ว่าความคิดนี้จะดูง่ายๆ แต่เซตเป็นแนวคิดที่เป็นรากฐานสำคัญที่สุดอย่างหนึ่งของคณิตศาสตร์สมัยใหม่ การศึกษาโครงสร้างเซตที่เป็นไปได้ ทฤษฎีเซตมีความสำคัญและได้รับความสนใจอย่างมากและกำลังดำเนินไปอย่างต่อเนื่อง มันถูกสร้างขึ้นมาตอนปลายคริสต์ศตวรรษที่ 19 ตอนนี้ทฤษฎีเซตเป็นส่วนที่ขาดไม่ได้ในการศึกษาคณิตศาสตร์ และถูกจัดไว้ในระบบการศึกษาตั้งแต่ระดับประถมศึกษาในหลายประเทศ ทฤษฎีเซตเป็นรากฐานของคณิตศาสตร์เกือบทุกแขนงซึ่งสามารถนำไปประยุกต์ใช้ได้.

ความคล้ายคลึงกันระหว่าง ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์)

ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์) มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ทฤษฎีเซตคู่อันดับคณิตศาสตร์เซตกำลังเซตย่อยเซตว่าง

ทฤษฎีเซต

ทฤษฎีเซต คือทฤษฎีทางคณิตศาสตร์ที่เกี่ยวกับเรื่องเซต ซึ่งใช้นำเสนอการรวบรวมวัตถุนามธรรม ทฤษฎีเซตเป็นแนวความคิดของการรวบรวมวัตถุในชีวิตประจำวัน และใช้สอนในโรงเรียนประถมศึกษาซึ่งบ่อยครั้งใช้แผนภาพเวนน์เป็นสื่อช่วยสอน ทฤษฎีเซตใช้ภาษาในการอธิบายวัตถุทางคณิตศาสตร์เป็นธรรมเนียมการสอนคณิตศาสตร์สมัยใหม่ ทฤษฎีเซตเป็นหนึ่งในรากฐานทางคณิตศาสตร์ที่ยอมรับกันโดยทั่วไป เหมือนเช่นตรรกศาสตร์และแคลคูลัสภาคแสดง ซึ่งทำให้สามารถสร้างวัตถุทางคณิตศาสตร์ขึ้นมาใหม่โดยใช้ "เซต" และ "ความเป็นสมาชิกของเซต" เป็นตัวนิยาม ทฤษฎีเซตเองนั้นก็เป็นสาขาหนึ่งของคณิตศาสตร์ และยังคงเป็นสาขาที่สำคัญอยู่สำหรับการวิจั.

ทฤษฎีเซตและผลคูณคาร์ทีเซียน · ทฤษฎีเซตและเซต (คณิตศาสตร์) · ดูเพิ่มเติม »

คู่อันดับ

ในคณิตศาสตร์ คู่อันดับ (a, b) เป็นคู่ของวัตถุทางคณิตศาสตร์ โดย a เรียกว่า สมาชิกตัวหน้า และ b เรียกว่า สมาชิกตัวหลัง คู่อันดับอาจจะมองเป็นพิกัดก็ได้ สำหรับคู่อันดับนั้น อันดับมีความสำคัญ นั่นคือคู่อันดับ (a, b) แตกต่างจากคู่อันดับ (b, a) ยกเว้นกรณีที่ a.

คู่อันดับและผลคูณคาร์ทีเซียน · คู่อันดับและเซต (คณิตศาสตร์) · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

คณิตศาสตร์และผลคูณคาร์ทีเซียน · คณิตศาสตร์และเซต (คณิตศาสตร์) · ดูเพิ่มเติม »

เซตกำลัง

การมีสมาชิกในอีกเซตหนึ่งทั้งหมด ตามหลักวิชาคณิตศาสตร์ เซตกำลัง หรือ เพาเวอร์เซต (power set) ของเซต S ใดๆ เขียนแสดงด้วยสัญลักษณ์ \mathcal(S), P(S), ℙ(S), ℘(S) หรือ 2''S'' เป็นเซตของเซตย่อยทั้งหมดของ S รวมทั้งเซตว่าง และเซต S เอง ตามหลักทฤษฎีเซตเชิงสัจพจน์ (เช่นสัจพจน์ ZFC) สัจพจน์แห่งเซตกำลังรองรับการมีอยู่ของเซตกำลังสำหรับเซตใดๆ เซตย่อยใดๆ ของ\mathcal(S) เรียกว่า ครอบครัวของเซต บน S.

ผลคูณคาร์ทีเซียนและเซตกำลัง · เซต (คณิตศาสตร์)และเซตกำลัง · ดูเพิ่มเติม »

เซตย่อย

ในคณิตศาสตร์โดยเฉพาะสาขาทฤษฎีเซต เซต A เป็นเซตย่อยของเซต B หรืออาจจะบอกว่าเซต B เป็นซูเปอร์เซตของเซต A ถ้า A เป็นส่วนหนึ่งของ B นั่นก็คือสมาชิกทั้งหมดของเซต A จะต้องเป็นสมาชิกของเซต B ด้วย ทั้งนี้ A กับ B อาจเท่ากันก็ได้.

ผลคูณคาร์ทีเซียนและเซตย่อย · เซต (คณิตศาสตร์)และเซตย่อย · ดูเพิ่มเติม »

เซตว่าง

ัญลักษณ์แทนเซตว่าง เซตว่าง (empty set) ในทางคณิตศาสตร์ และที่เจาะจงกว่าคือทฤษฎีเซตหมายถึง เซตเพียงหนึ่งเดียวที่ไม่มีสมาชิก หรือเรียกได้ว่ามีสมาชิก 0 ตัว เซตว่างสามารถเขียนแทนได้ด้วยสัญลักษณ์ "∅" หรือ "\emptyset" ซึ่งมีต้นกำเนิดมาจากอักษร Ø ในภาษาเดนมาร์กและภาษานอร์เวย์ เสนอโดยกลุ่มของ Nicolas Bourbaki (โดยเฉพาะ André Weil) ในปี ค.ศ. 1939 สัญกรณ์แบบอื่นที่นิยมใช้ตัวอย่างเช่น "", "Λ" และ "0" ทฤษฎีเซตเชิงสัจพจน์ (axiomatic set theory) ได้ตั้งสมมติฐานไว้ว่า เซตว่างจำเป็นต้องมีขึ้นเนื่องจากสัจพจน์ของเซตว่าง (axiom of empty set) บางครั้งเซตว่างก็ถูกเรียกว่าเป็น เซตนัลล์ (null set) แต่เซตนัลล์มีความหมายอื่นในเรื่องของทฤษฎีเมเชอร์ ดังนั้นจึงควรหลีกเลี่ยงในการใช้คำนี้.

ผลคูณคาร์ทีเซียนและเซตว่าง · เซต (คณิตศาสตร์)และเซตว่าง · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์)

ผลคูณคาร์ทีเซียน มี 24 ความสัมพันธ์ขณะที่ เซต (คณิตศาสตร์) มี 20 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 13.64% = 6 / (24 + 20)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ผลคูณคาร์ทีเซียนและเซต (คณิตศาสตร์) หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: