เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ปริภูมิสามมิติและผลคูณจุด

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ปริภูมิสามมิติและผลคูณจุด

ปริภูมิสามมิติ vs. ผลคูณจุด

ระบบพิกัดคาร์ทีเซียน 3 มิติ แบบมือขวา ปริภูมิสามมิติ (3D space) หรือเรียกโดยย่อว่า สามมิติ (3D) เป็นแบบจำลองทางเรขาคณิตของจักรวาลที่เราอยู่ โดยปกติในแต่ละมิติจะประกอบด้วย ความกว้าง ความยาว และความสูงหรือความลึก แม้ว่าในความเป็นจริงทิศทางสามทิศทางใดๆที่ตั้งฉากซึ่งกันและกันก็สามารถถูกเรียกได้ว่าเป็นสามมิติ ในฟิสิกส์ อวกาศสามมิติสามารถมองขยายให้เป็นสี่มิติ ได้โดยการรวมมิติที่สี่ คือ เวลา เข้าไปด้วย เรียกว่า กาล-อวกาศ (space-time) หรือ Minkowski space (ดู ทฤษฎีสัมพัทธภาพทั่วไป) หมวดหมู่:เรขาคณิตหลายมิติ หมวดหมู่:เรขาคณิตทรงตันแบบยุคลิด. ผลคูณจุด หรือ ผลคูณเชิงสเกลาร์ ในทางคณิตศาสตร์ คือ การดำเนินการทวิภาคบนเวกเตอร์สองอันในปริภูมิแบบยุคลิด ซึ่งให้ผลลัพธ์เป็นปริมาณสเกลาร์ที่เป็นจำนวนจริง ต่างกับผลคูณไขว้ซึ่งให้ผลลัพธ์เป็นเวกเตอร์อีกอันหนึ่ง.

ความคล้ายคลึงกันระหว่าง ปริภูมิสามมิติและผลคูณจุด

ปริภูมิสามมิติและผลคูณจุด มี 0 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย)

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ปริภูมิสามมิติและผลคูณจุด

ปริภูมิสามมิติ มี 2 ความสัมพันธ์ขณะที่ ผลคูณจุด มี 12 ขณะที่พวกเขามีเหมือนกัน 0, ดัชนี Jaccard คือ 0.00% = 0 / (2 + 12)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ปริภูมิสามมิติและผลคูณจุด หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: