โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

ปฏิสสารและรังสีคอสมิก

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ปฏิสสารและรังสีคอสมิก

ปฏิสสาร vs. รังสีคอสมิก

ปฏิสสาร: ภาพถ่ายจากห้องถ่ายภาพเมฆของโพสิตรอนที่สังเกตได้เป็นครั้งแรก ในวิชาฟิสิกส์อนุภาค ปฏิสสาร (Antimatter) คือ ส่วนประกอบของแนวคิดเกี่ยวกับปฏิยานุภาคของสสาร โดยที่ปฏิสสารประกอบด้วยปฏิยานุภาคในทำนองเดียวกับที่อนุภาคประกอบขึ้นเป็นสสารปรกติ ตัวอย่างเช่น แอนติอิเล็กตรอน (ปฏิยานุภาคของอิเล็กตรอน หรือ e+) 1 ตัว และแอนติโปรตอน (โปรตอนที่มีขั้วเป็นลบ) 1 ตัว สามารถรวมตัวกันเกิดเป็นอะตอมแอนติไฮโดรเจนได้ ในทำนองเดียวกันกับที่อิเล็กตรอน 1 ตัวกับโปรตอน 1 ตัวสามารถรวมกันเป็นอะตอมไฮโดรเจนที่เป็น "สสารปกติ" หากนำสสารและปฏิสสารมารวมกัน จะเกิดการทำลายล้างกันในทำนองเดียวกับการรวมอนุภาคและปฏิยานุภาค ซึ่งจะได้โฟตอนพลังงานสูง (หรือรังสีแกมมา) หรือคู่อนุภาค-ปฏิยานุภาคอื่น เมื่อปฏิยานุภาคเจอกับอนุภาคจะเกิดการประลัย ผลลัพธ์ที่ได้จากการพบกันของสสารและปฏิสสารคือการถูกปลดปล่อยของพลังงานซึ่งเป็นสัดส่วนกับมวลตามที่ปรากฏในสมการความสมมูลระหว่างมวล-พลังงาน, E. ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค รังสีคอสมิก (cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556) ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์ ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่ รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง ที่ 50 จูล รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้ ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J) ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟ.

ความคล้ายคลึงกันระหว่าง ปฏิสสารและรังสีคอสมิก

ปฏิสสารและรังสีคอสมิก มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ระบบสุริยะรังสีแกมมาแอนติโปรตอนโฟตอนโพซิตรอนโปรตอน

ระบบสุริยะ

ระบบสุริยะ (Solar System) ประกอบด้วยดวงอาทิตย์และวัตถุอื่น ๆ ที่โคจรรอบดวงอาทิตย์เนื่องจากแรงโน้มถ่วง ได้แก่ ดาวเคราะห์ 8 ดวงกับดวงจันทร์บริวารที่ค้นพบแล้ว 166 ดวง ดาวเคราะห์แคระ 5 ดวงกับดวงจันทร์บริวารที่ค้นพบแล้ว 4 ดวง กับวัตถุขนาดเล็กอื่น ๆ อีกนับล้านชิ้น ซึ่งรวมถึง ดาวเคราะห์น้อย วัตถุในแถบไคเปอร์ ดาวหาง สะเก็ดดาว และฝุ่นระหว่างดาวเคราะห์ โดยทั่วไปแล้วจะแบ่งย่านต่าง ๆ ของระบบสุริยะ นับจากดวงอาทิตย์ออกมาดังนี้คือ ดาวเคราะห์ชั้นในจำนวน 4 ดวง แถบดาวเคราะห์น้อย ดาวเคราะห์ขนาดใหญ่รอบนอกจำนวน 4 ดวง และแถบไคเปอร์ซึ่งประกอบด้วยวัตถุที่เย็นจัดเป็นน้ำแข็ง พ้นจากแถบไคเปอร์ออกไปเป็นเขตแถบจานกระจาย ขอบเขตเฮลิโอพอส (เขตแดนตามทฤษฎีที่ซึ่งลมสุริยะสิ้นกำลังลงเนื่องจากมวลสารระหว่างดวงดาว) และพ้นไปจากนั้นคือย่านของเมฆออร์ต กระแสพลาสมาที่ไหลออกจากดวงอาทิตย์ (หรือลมสุริยะ) จะแผ่ตัวไปทั่วระบบสุริยะ สร้างโพรงขนาดใหญ่ขึ้นในสสารระหว่างดาวเรียกกันว่า เฮลิโอสเฟียร์ ซึ่งขยายออกไปจากใจกลางของแถบจานกระจาย ดาวเคราะห์ชั้นเอกทั้ง 8 ดวงในระบบสุริยะ เรียงลำดับจากใกล้ดวงอาทิตย์ที่สุดออกไป มีดังนี้คือ ดาวพุธ ดาวศุกร์ โลก ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส และดาวเนปจูน นับถึงกลางปี ค.ศ. 2008 วัตถุขนาดย่อมกว่าดาวเคราะห์จำนวน 5 ดวง ได้รับการจัดระดับให้เป็นดาวเคราะห์แคระ ได้แก่ ซีรีสในแถบดาวเคราะห์น้อย กับวัตถุอีก 4 ดวงที่โคจรรอบดวงอาทิตย์อยู่ในย่านพ้นดาวเนปจูน คือ ดาวพลูโต (ซึ่งเดิมเคยถูกจัดระดับไว้เป็นดาวเคราะห์) เฮาเมอา มาคีมาคี และ อีรีส มีดาวเคราะห์ 6 ดวงและดาวเคราะห์แคระ 3 ดวงที่มีดาวบริวารโคจรอยู่รอบ ๆ เราเรียกดาวบริวารเหล่านี้ว่า "ดวงจันทร์" ตามอย่างดวงจันทร์ของโลก นอกจากนี้ดาวเคราะห์ชั้นนอกยังมีวงแหวนดาวเคราะห์อยู่รอบตัวอันประกอบด้วยเศษฝุ่นและอนุภาคขนาดเล็ก สำหรับคำว่า ระบบดาวเคราะห์ ใช้เมื่อกล่าวถึงระบบดาวโดยทั่วไปที่มีวัตถุต่าง ๆ โคจรรอบดาวฤกษ์ คำว่า "ระบบสุริยะ" ควรใช้เฉพาะกับระบบดาวเคราะห์ที่มีโลกเป็นสมาชิก และไม่ควรเรียกว่า "ระบบสุริยจักรวาล" อย่างที่เรียกกันติดปาก เนื่องจากไม่เกี่ยวข้องกับคำว่า "จักรวาล" ตามนัยที่ใช้ในปัจจุบัน.

ปฏิสสารและระบบสุริยะ · ระบบสุริยะและรังสีคอสมิก · ดูเพิ่มเติม »

รังสีแกมมา

รังสีแกมมา (Gamma radiation หรือ Gamma ray) มีสัญลักษณ์เป็นตัวอักษรกรีกว่า γ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่ง ที่มีช่วงความยาวคลื่นสั้นกว่ารังสีเอกซ์ (X-ray) โดยมีความยาวคลื่นอยู่ในช่วง 10-13 ถึง 10-17 หรือคลื่นที่มีความยาวคลื่นน้อยกว่า 10-13 นั่นเอง รังสีแกมมามีความถี่สูงมาก ดังนั้นมันจึงประกอบด้วยโฟตอนพลังงานสูงหลายตัว รังสีแกมมาเป็นการแผ่รังสีแบบ ionization มันจึงมีอันตรายต่อชีวภาพ รังสีแกมมาถือเป็นคลื่นแม่เหล็กไฟฟ้าที่มีพลังงานสูงที่สุดในบรรดาคลื่นแม่เหล็กไฟฟ้าชนิดต่าง ๆ ที่เหลือทั้งหมด การสลายให้รังสีแกมมาเป็นการสลายของนิวเคลียสของอะตอมในขณะที่มีการเปลี่ยนสถานะจากสถานะพลังงานสูงไปเป็นสถานะที่ต่ำกว่า แต่ก็อาจเกิดจากกระบวนการอื่น.

ปฏิสสารและรังสีแกมมา · รังสีคอสมิกและรังสีแกมมา · ดูเพิ่มเติม »

แอนติโปรตอน

แอนติโปรตอน (antiproton) หรือชื่อที่รู้จักกันน้อยกว่าคือ เนกาตรอน (negatron) หรือ (อ่านว่า พีบาร์) เป็นปฏิยานุภาคของโปรตอน แอนติโปรตอนนั้นเสถียร แต่โดยทั่วไปมีอายุสั้น เพราะการชนกับโปรตอนจะทำให้อนุภาคทั้งสองประลัยในการระเบิดของพลังงาน พอล ดิแรกทำนายการมีอยู่ของแอนติโปรตอนซึ่งมีประจุไฟฟ้า -1 ตรงข้ามกับประจุไฟฟ้า +1 ของโปรตอน ในการบรรยายรางวัลโนเบลปี 1933 ดิแรกได้รับรางวัลโนเบลสำหรับการตีพิมพ์สมการดิแรกของเขาซึ่งทำนายการมีผลเฉลยบวกและลบของสมการพลังงาน (E.

ปฏิสสารและแอนติโปรตอน · รังสีคอสมิกและแอนติโปรตอน · ดูเพิ่มเติม »

โฟตอน

ฟตอน (Photon) หรือ อนุภาคของแสง เป็นการพิจารณาแสงในลักษณะของอนุภาค เนื่องจากในทางฟิสิกส์นั้น คลื่นสามารถประพฤติตัวเหมือนอนุภาคเมื่ออยู่ในสภาวะใดสภาวะหนึ่ง ซึ่งในทางตรงกันข้ามอนุภาคก็แสดงสมบัติของคลื่นได้เช่นกัน เรียกว่าเป็นคุณสมบัติทวิภาคของคลื่น-อนุภาค (wave–particle duality) ดังนั้นเมื่อพิจารณาแสงหรือคลื่นแม่เหล็กไฟฟ้าในลักษณะอนุภาค อนุภาคนั้นถูกเรียกว่า โฟตอน ทั้งนี้การพิจารณาดังกล่าวเกิดจากการศึกษาปรากฏการณ์โฟโตอิเล็กทริก ซึ่งเป็นปรากฏการณ์ที่โลหะปลดปล่อยอิเล็กตรอนออกมาเมื่อถูกฉายด้วยคลื่นแม่เหล็กไฟฟ้า อย่างเช่น รังสีเอกซ์ (X-ray) อิเล็กตรอนที่ถูกปล่อยออกมาถูกเรียกว่า โฟโตอิเล็กตรอน (photoelectron) ปรากฏการณ์ดังกล่าวถูกเรียกอีกอย่างหนึ่งว่า Hertz Effect ตามชื่อของผู้ค้นพบ คือ นาย ไฮน์ริช เฮิร์ตซ์ โฟตอนมีปฏิยานุภาค คือ ปฏิโฟตอน (Anti-Photon) ซึ่งมีสปินเหมือนอนุภาคต้นแบบทุกประการ โฟตอนจึงเป็นปฏิยานุภาคของตัวมันเอง.

ปฏิสสารและโฟตอน · รังสีคอสมิกและโฟตอน · ดูเพิ่มเติม »

โพซิตรอน

ซิตรอน (positron) หรือ แอนติอิเล็กตรอน (antielectron) เป็นปฏิยานุภาคหรือปฏิสสารของอิเล็กตรอน โพซิตรอนมีประจุไฟฟ้าเป็น +1 มีสปินเป็น 1/2 และมีมวลเท่ากับอิเล็กตรอน ถ้าโพซิตรอนพลังงานต่ำชนกับอิเล็กตรอนพลังงานต่ำจะเกิดการประลัย (annihilation) คือมีการเกิดโฟตอนรังสีแกมมา 2 โฟตอนหรือมากกว่า โพซิตรอนอาจจะเกิดจากการสลายตัวของการปลดปล่อยโพซิตรอนกัมมันตรังสี (ผ่านอันตรกิริยาอย่างอ่อน) หรือโดยการผลิตคู่จากโฟตอนที่มีพลังงานเพียงพอ.

ปฏิสสารและโพซิตรอน · รังสีคอสมิกและโพซิตรอน · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

ปฏิสสารและโปรตอน · รังสีคอสมิกและโปรตอน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ปฏิสสารและรังสีคอสมิก

ปฏิสสาร มี 33 ความสัมพันธ์ขณะที่ รังสีคอสมิก มี 21 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 11.11% = 6 / (33 + 21)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ปฏิสสารและรังสีคอสมิก หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »