โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

นิวเคลียสของอะตอมและบิกแบง

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง นิวเคลียสของอะตอมและบิกแบง

นิวเคลียสของอะตอม vs. บิกแบง

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'. ตาม'''ทฤษฎีบิกแบง''' จักรวาลมีจุดกำเนิดมาจากสภาพที่มีความหนาแน่นสูงและร้อน และจักรวาลมีการขยายตัวอยู่ตลอดเวลา บิกแบง (Big Bang, "การระเบิดครั้งใหญ่") เป็นแบบจำลองของการกำเนิดและวิวัฒนาการของเอกภพในจักรวาลวิทยาซึ่งได้รับการสนับสนุนจากหลักฐานทางวิทยาศาสตร์และจากการสังเกตการณ์ที่แตกต่างกันจำนวนมาก นักวิทยาศาสตร์โดยทั่วไปใช้คำนี้กล่าวถึงแนวคิดการขยายตัวของเอกภพหลังจากสภาวะแรกเริ่มที่ทั้งร้อนและหนาแน่นอย่างมากในช่วงเวลาจำกัดระยะหนึ่งในอดีต และยังคงดำเนินการขยายตัวอยู่จนถึงในปัจจุบัน ฌอร์ฌ เลอแม็ทร์ นักวิทยาศาสตร์และพระโรมันคาทอลิก เป็นผู้เสนอแนวคิดการกำเนิดของเอกภพ ซึ่งต่อมารู้จักกันในชื่อ ทฤษฎีบิกแบง ในเบื้องแรกเขาเรียกทฤษฎีนี้ว่า สมมติฐานเกี่ยวกับอะตอมแรกเริ่ม (hypothesis of the primeval atom) อเล็กซานเดอร์ ฟรีดแมน ทำการคำนวณแบบจำลองโดยมีกรอบการพิจารณาอยู่บนพื้นฐานของทฤษฎีสัมพัทธภาพทั่วไปของอัลเบิร์ต ไอน์สไตน์ ต่อมาในปี..

ความคล้ายคลึงกันระหว่าง นิวเคลียสของอะตอมและบิกแบง

นิวเคลียสของอะตอมและบิกแบง มี 8 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟิสิกส์ของอนุภาคกลศาสตร์ควอนตัมดิวเทอเรียมควาร์กนิวตรอนแบบจำลองมาตรฐานแบริออนโปรตอน

ฟิสิกส์ของอนุภาค

ฟิสิกส์ของอนุภาค (particle physics) เป็นสาขาหนึ่งของฟิสิกส์ที่ศึกษาธรรมชาติของอนุภาคทั้งหลายที่รวมตัวกันขึ้นเป็นสสาร (อนุภาคที่มีมวล) และ การฉายรังสี (อนุภาคที่ไม่มีมวล) แม้ว่าคำว่า "อนุภาค" สามารถหมายถึงวัตถุที่มีขนาดเล็กมากหลากหลายชนิด (เช่นโปรตอน อนุภาคก๊าซ หรือแม้กระทั่งฝุ่นในครัวเรือน), "ฟิสิกส์ของอนุภาค" มักจะสำรวจตรวจหาอนุภาคที่มีขนาดเล็กที่สุด สามารถตรวจพบได้ ไม่สามารถลดขนาดลงได้อีก และมีสนามฟิสิกส์ที่มีแรงขนาดพื้นฐานที่ลดขนาดลงไม่ได้ที่จำเป็นต้องใช้ในการที่จะอธิบายตัวมันเองได้ ตามความเข้าใจของเราในปัจจุบัน อนุภาคมูลฐานเหล่านี้เป็นการกระตุ้นของสนามควอนตัมที่ควบคุมการปฏิสัมพันธ์ของพวกมันอีกด้วย ทฤษฎีที่โดดเด่นในปัจจุบันที่ใช้อธิบายอนุภาคมูลฐานและสนามเหล่านี้ พร้อมกับการเปลี่ยนแปลง (ไดนามิกส์) ของพวกมัน จะถูกเรียกว่าแบบจำลองมาตรฐาน ดังนั้นฟิสิกส์ของอนุภาคที่ทันสมัยโดย​​ทั่วไปจะสำรวจแบบจำลองมาตรฐานและส่วนขยายที่เป็นไปได้ต่าง ๆ ของพวกมัน เช่น ส่วนขยายไปที่อนุภาคใหม่ล่าสุด "เท่าที่รู้จักกัน" ที่เรียกว่า Higgs boson หรือแม้กระทั่งไปที่สนามของแรงที่เก่าแก่ที่สุดเท่าที่รู้จักกัน คือแรงโน้มถ่วง.

นิวเคลียสของอะตอมและฟิสิกส์ของอนุภาค · บิกแบงและฟิสิกส์ของอนุภาค · ดูเพิ่มเติม »

กลศาสตร์ควอนตัม

'''ฟังชันคลื่น''' (Wavefunction) ของอิเล็กตรอนในอะตอมของไฮโดรเจนที่ทรงพลังงานกำหนดแน่ (ที่เพิ่มลงล่าง ''n''.

กลศาสตร์ควอนตัมและนิวเคลียสของอะตอม · กลศาสตร์ควอนตัมและบิกแบง · ดูเพิ่มเติม »

ดิวเทอเรียม

วเทอเรียม (Deuterium) สัญญลักษณ์ 2H ถูกเรียกอีกชื่อหนึ่งว่าไฮโดรเจนหนัก เป็นหนึ่งในสองของไอโซโทปของไฮโดรเจนที่เสถียร โดยที่นิวเคลียสของอะตอมมีโปรตอน 1 ตัวและนิวตรอน 1 ตัว ในขณะที่ไอโซโทปของไฮโดรเจนที่รู้จักกันทั่วไปมากกว่าที่เรียกอีกอย่างหนึ่งว่า โปรเทียม (protium) มีเพียงโปรตอนเดียวเท่านั้น ไม่มีนิวตรอน ดิวเทอเรียมมี'ความอุดมในธรรมชาติ' โดยพบในมหาสมุทรทั่วไปประมาณหนึ่งอะตอมใน 6420 อะตอมของไฮโดรเจน ทำให้ดิวเทอเรียมมีสัดส่วนที่ประมาณ 0.0156% (หรือ 0.0312% ถ้าคิดตามมวล) ของไฮโดรเจนที่เกิดในธรรมชาติทั้งหมดในมหาสมุทร ในขณะที่โปรเทียมมีสัดส่วนมากกว่า 99.98% ความอุดมของดิวเทอเรียมเปลี่ยนแปงเล็กน้อยตามชนิดของน้ำตามธรรมชาติ (ดู ค่าเฉลี่ยของน้ำในมหาสมุทรตามมาตรฐานเวียนนา) นิวเคลียสของดิวเทอเรียมเรียกว่าดิวเทอรอน เราใช้สัญลักษณ์ 2H แทนดิวเทอเรียม อย่างไรก็ตาม บ่อยครั้งที่เราใช้ D แทนดิวเทอเรียม เช่นเมื่อเราต้องการจะเขียนสัญลักษณ์แทนโมเลกุลก๊าซดิวเทอเรียม จะสามารถเขียนแทนได้ว่า 2H2 หรือ D2 ก็ได้ หากแทนที่ดิวเทอเรียมในโมเลกุลของน้ำ จะทำให้เกิดสารดิวเทอเรียมออกไซด์หรือที่เรียกว่าน้ำมวลหนักขึ้น ถึงแม้น้ำชนิดหนักจะไม่เป็นสารพิษที่ร้ายแรงมากนัก แต่ก็ไม่เคยถูกนำมาใช้ในการอุปโภคบริโภค การมีอยู่ของดิวเทอเรียมในดาวฤกษ์เป็นข้อมูลสำคัญในวิชาจักรวาลวิทยา โดยปฏิกิริยานิวเคลียร์ฟิวชันในดาวฤกษ์จะทำลายดิวเทอเรียม ยังไม่พบกระบวนการในธรรมชาติใดๆที่ทำให้เกิดดิวเทอเรียมนอกจากปรากฏการณ์บิ๊กแบง ดิวเทอเรียมไม่มีอะไรต่างจากไฮโดรเจนมากนักในเชิงเคมีฟิสิกส์ นอกเสียจากว่ามีมวลที่หนักกว่า ซึ่งมวลที่หนักกว่านี้เองที่ทำให้ดิวเทอเรียมเปรียบเสมือนกับไฮโดรเจนที่เชื่องช้า เนื่องจากการที่มีมวลมากกว่า จะทำให้มีอัตราการเกิดปฏิกิริยาน้อยกว.

ดิวเทอเรียมและนิวเคลียสของอะตอม · ดิวเทอเรียมและบิกแบง · ดูเพิ่มเติม »

ควาร์ก

วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..

ควาร์กและนิวเคลียสของอะตอม · ควาร์กและบิกแบง · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

นิวตรอนและนิวเคลียสของอะตอม · นิวตรอนและบิกแบง · ดูเพิ่มเติม »

แบบจำลองมาตรฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ที่มีรุ่นตระกูลของสสารสามรุ่นโดยมี เกจโบซอน อยู่ในแถวที่สี่ และฮิกส์โบซอนอยู่ในแถวที่ห้า แบบจำลองมาตรฐาน (Standard Model) ของ ฟิสิกส์ของอนุภาค เป็นทฤษฎีหนึ่งที่เกี่ยวข้องกับปฏิสัมพันธ์ของนิวเคลียสที่เป็นแบบแม่เหล็กไฟฟ้า, ที่อ่อนแอ, และที่แข็งแกร่ง เช่นเดียวกับการแยกประเภทของอนุภาคย่อยของอะตอมที่เรารู้จักแล้วทั้งหมด มันถูกพัฒนาขึ้นในช่วงครึ่งหลังของศตวรรษที่ 20 ในฐานะที่เป็นความพยายามในความร่วมมือของนักวิทยาศาสตร์ทั่วโลก รูปแบบปัจจุบันได้รับการสรุปขั้นตอนสุดท้ายในช่วงกลางของทศวรรษที่ 1970 ภายใต้การยืนยันด้วยการทดลองของการดำรงอยุ่ของควาร์ก ตั้งแต่นั้นมา การค้นพบทอปควาร์ก (1995), เทานิวทริโน (2000), และเร็ว ๆ นี้ ฮิกส์โบซอน (2012), ได้เพิ่มเครดิตให้กับแบบจำลองพื้นฐาน เนื่องจากความสำเร็จของมันในการอธิบายความหลากหลายอย่างกว้างขวางของผลลัพธ์จากการทดลอง แบบจำลองพื้นฐานบางครั้งถูกพิจารณาว่าเป็น "ทฤษฏีของเกือบทุกสิ่ง" แม้ว่าแบบจำลองมาตรฐานจะถูกเชื่อว่าจะเป็นความสม่ำเสมอในทางทฤษฎีด้วยตัวมันเองก็ตาม และได้แสดงให้เห็นถึงความสำเร็จอย่างใหญ่หลวงและต่อเนื่องในการให้การคาดการณ์จากการทดลองที่ดี มันทิ้งปรากฏการณ์ที่อธิบายไม่ได้บางอย่างไว้ให้และมันให้ผลงานต่ำกว่าที่ประมาณการไว้ของการเป็นทฤษฎีที่สมบูรณ์แบบของการปฏิสัมพันธ์พื้นฐาน มันไม่ได้รวบรวมทฤษฎีที่สมบูรณ์ของแรงโน้มถ่วงSean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct.

นิวเคลียสของอะตอมและแบบจำลองมาตรฐาน · บิกแบงและแบบจำลองมาตรฐาน · ดูเพิ่มเติม »

แบริออน

แบริออน (Baryon) เป็นตระกูลหนึ่งของอนุภาคย่อยของอะตอมแบบผสมที่เกิดจากควาร์ก 3 ตัว (ซึ่งแตกต่างจาก มีซอน ซึ่งประกอบด้วยควาร์ก 1 ตัวและปฏิควาร์ก 1 ตัว) พวกแบริออนและมีซอนต่างก็เป็นส่วนหนึ่งของตระกูลอนุภาคที่เรียกว่า แฮดรอน ซึ่งเป็นตระกูลอนุภาคที่เกิดจากควาร์ก คำว่า แบริออน มาจากภาษากรีกโบราณว่า βαρύς (แบรีส) มีความหมายว่า "หนัก" เนื่องจากเมื่อครั้งที่ตั้งชื่อนี้นั้น พวกอนุภาคมูลฐานที่รู้จักกันแล้วส่วนใหญ่มีมวลน้อยกว่าพวกแบริออน เนื่องจากแบริออนประกอบด้วยควาร์ก มันจึงประสพกับอันตรกิริยาอย่างเข้ม ในขณะที่พวกเลปตอน ซึ่งไม่มีส่วนประกอบของควาร์ก ไม่ต้องประสพ พวกแบริออนที่คุ้นเคยมากที่สุดคือ โปรตอน และ นิวตรอน ซึ่งประกอบขึ้นเป็นมวลส่วนใหญ่ของสสารที่มองเห็นได้ในจักรวาล ขณะที่อิเล็กตรอน (ส่วนประกอบหลักอีกอย่างหนึ่งของอะตอม) เป็นเลปตอน แบริออนแต่ละตัวจะมีคู่ปฏิยานุภาคที่เรียกว่า ปฏิแบริออน ซึ่งควาร์กจะถูกแทนที่ด้วยคู่ตรงข้ามของมันคือ ปฏิควาร์ก ตัวอย่างเช่น โปรตอนประกอบด้วย 2 อัพควาร์ก และ 1 ดาวน์ควาร์ก คู่ปฏิยานุภาคของมันคือ ปฏิโปรตอน ประกอบด้วย 2 อัพปฏิควาร์ก และ 1 ดาวน์ปฏิควาร์ก จนถึงเร็ว ๆ นี้ ยังคิดกันว่ามีการทดลองบางอย่างที่สามารถแสดงถึงการมีอยู่ของ เพนตาควาร์ก หรือแบริออนประหลาดที่ประกอบด้วยควาร์ก 4 ตัวกับแอนติควาร์ก 1 ตัว ชุมชนนักฟิสิกส์อนุภาคทั้งหมดไม่เคยมองการมีอยู่ของอนุภาคในลักษณะนี้มาก่อนจนกระทั่ง..

นิวเคลียสของอะตอมและแบริออน · บิกแบงและแบริออน · ดูเพิ่มเติม »

โปรตอน

| magnetic_moment.

นิวเคลียสของอะตอมและโปรตอน · บิกแบงและโปรตอน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง นิวเคลียสของอะตอมและบิกแบง

นิวเคลียสของอะตอม มี 35 ความสัมพันธ์ขณะที่ บิกแบง มี 134 ขณะที่พวกเขามีเหมือนกัน 8, ดัชนี Jaccard คือ 4.73% = 8 / (35 + 134)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง นิวเคลียสของอะตอมและบิกแบง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »