ความคล้ายคลึงกันระหว่าง นิวตรอนและเลปตอน
นิวตรอนและเลปตอน มี 10 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): การสลายให้อนุภาคบีตาอันตรกิริยาอย่างอ่อนอันตรกิริยาอย่างเข้มอิเล็กตรอนความโน้มถ่วงควาร์กประจุไฟฟ้าแรงแม่เหล็กไฟฟ้าโปรตอนเนเจอร์ (วารสาร)
การสลายให้อนุภาคบีตา
ในฟิสิกส์นิวเคลียร์, การสลายให้อนุภาคบีตา (beta decay) เป็นรูปแบบหนึ่งของการสลายตัวของสารกัมมันตรังสีที่อนุภาคบีตา (อิเล็กตรอนหรือโพซิตรอน) ถูกปลดปล่อยออกมา ในกรณีปลดปล่อยอิเล็กตรอน จะเป็น บีตาลบ (^-) ขณะที่ในกรณีปลดปล่อยโพซิตรอนจะเป็น บีตาบวก (^+) พลังงานจลน์ของอนุภาคบีตามีพิสัยสเปกตรัมต่อเนื่องจาก 0 ถึงค่าสูงสุดที่จะเป็นไป (Q) ซึ่งขึ้นกับสภาวะนิวเคลียร์ของต้นกำเนิดและลูกที่เกี่ยวข้องกับการสลาย โดยทั่วไป Q มีค่าประมาณ 1 MeV แต่สามารถมีพิสัยจากสองสาม keV ไปจนถึง สิบ MeV อนุภาคบีตากระตุ้นส่วนใหญ่มีความเร็วสูงมากเป็นซึ่งมีความเร็วใกล้เคียงอัตราเร็วของแสง.
การสลายให้อนุภาคบีตาและนิวตรอน · การสลายให้อนุภาคบีตาและเลปตอน ·
อันตรกิริยาอย่างอ่อน
อิเล็กตรอนปฏินิวทรืโนอย่างละหนึ่งตัว ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อน (weak interaction) หรือบางครั้งเรียกกันทั่วไปว่า แรงนิวเคลียร์อย่างอ่อน (weak nuclear force) เป็นกลไกที่รับผิดชอบแรงอ่อนหรือแรงนิวเคลียร์อ่อน แรงนี้เป็นหนึ่งในสี่แรงพื้นฐาน่ของธรรมชาติที่รู้จักกันดีในการปฏิสัมพันธ์, แรงที่เหลือได้แก่อันตรกิริยาอย่างเข้ม, แรงแม่เหล็กไฟฟ้าและแรงโน้มถ่วง อันตรกิริยาอย่างอ่อนเป็นผู้รับผิดชอบต่อการสลายให้กัมมันตรังสีของอนุภาคย่อยของอะตอม และมันมีบทบาทสำคัญในปฏิกิริยานิวเคลียร์ฟิชชัน ทฤษฎีของอันตรกิริยาอย่างอ่อนบางครั้งเรียกว่าควอนตัม flavordynamics (QFD), คล้ายกับ QCD และ QED, แต่คำนี้ที่ไม่ค่อยได้ใช้เพราะแรงอ่อนเป็นที่เข้าใจกันดีที่สุดในแง่ของทฤษฎีไฟฟ้าอ่อน (electro-weak theory (EWT)) ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อนเกิดจากการปล่อยหรือการดูดซึมของ W และ Z โบซอน อนุภาคทุกตัวในตระกูลเฟอร์มิออนที่รู้จักกันแล้วมีปฏิสัมพันธ์ต่อกันผ่านทางอันตรกิริยาอย่างอ่อน อนุภาคเหล่านั้นมีสปินครึ่งจำนวนเต็ม (หนึ่งในคุณสมบัติพื้นฐานของอนุภาค) พวกมันสามารถเป็นอนุภาคมูลฐานเช่นอิเล็กตรอนหรืออาจจะเป็นอนุภาคผสมเช่นโปรตอน มวลของ W+ W- และ Z โบซอน แต่ละตัวจะมีขนาดใหญ่กว่ามวลของโปรตอนหรือของนิวตรอนอย่างมาก สอดคล้องกับช่วงระยะทำการที่สั้นของแรงที่อ่อน แรงถูกเรียกว่าอ่อนเพราะความแรงของสนามในระยะทางที่กำหนดโดยทั่วไปจะมีขนาดเป็นเลขยกกำลังที่น้อยกว่าแรงนิวเคลียร์อย่างเข้มและแรงแม่เหล็กไฟฟ้ามาก ๆ ในช่วงยุคของควาร์ก แรงไฟฟ้าอ่อน (electroweak force) แยกออกเป็นแรงแม่เหล็กไฟฟ้าและแรงอ่อน ตัวอย่างที่สำคัญของอันตรกิริยาอย่างอ่อนได้แก่การสลายให้อนุภาคบีตา และการผลิตดิวเทอเรียมจากไฮโดรเจนที่จำเป็นเพื่อให้พลังงานในกระบวนการเทอร์โมนิวเคลียร์ของดวงอาทิตย์ เฟอร์มิออนส่วนใหญ่จะสลายตัวโดยอันตรกิริยาอย่างอ่อนไปตามเวลา การสลายตัวดังกล่าวยังทำให้การหาอายุด้วยวืธีเรดิโอคาร์บอน (radiocabon dating) มีความเป็นไปได้เมื่อคาร์บอน-14 สูญสลายผ่านอันตรกิริยาอย่างอ่อนกลายเป็นไนโตรเจน-14 นอกจากนี้มันยังสามารถสร้างสารเรืองแสงรังสี (radioluminescence) ที่ใช้กันทั่วไปในการส่องสว่างทริเทียม (tritium illumination) และในสาขาที่เกี่ยวข้องกับ betavoltaics ควาร์กเป็นผู้สร้างอนุภาคผสมเช่นนิวตรอนและโปรตอน ควาร์กมีหกชนิดที่เรียกว่า "ฟเลเวอร์" (flavour) ได้แก่ อัพ, ดาวน์, สเตรนจ์, ชาร์ม, ทอปและบอตทอม - ซึ่งเป็นคุณสมบัติของอนุภาคผสมเหล่านั้น อันตรกิริยาอย่างอ่อนเป็นหนึ่งเดียวในแง่ที่ว่ามันจะยอมให้ควาร์กสามารถที่จะสลับฟเลเวอร์ของพวกมันไปเป็นอย่างอื่นได้ ตัวอย่างเช่นในระหว่างการสลายตัวในอนุภาคบีตาลบ ดาวน์ควาร์กตัวหนึ่งสลายตัวกลายเป็นอัพควาร์ก เป็นการแปลงนิวตรอนให้เป็นโปรตอน นอกจากนี้อันตรกิริยาอย่างอ่อนยังเป็นปฏิสัมพันธ์พื้นฐานอย่างเดียวเท่านั้นที่ทำลายการสมมาตรแบบเท่าเทียมกัน และในทำนองเดียวกัน มันเป็นอย่างเดียวเท่านั้นที่ทำลาย CP-สมมาตร.
นิวตรอนและอันตรกิริยาอย่างอ่อน · อันตรกิริยาอย่างอ่อนและเลปตอน ·
อันตรกิริยาอย่างเข้ม
นืวเคลียสของอะตอมฮีเลียม โปรตอนสองตัวมีประจุเท่ากัน แต่ยังคงติดอยู่ด้วยกันเนื่องจากแรงของนิวเคลียสที่เหลือค้างอยู่ ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างเข้ม เป็นกลไกที่รับผิดชอบต่อแรงนิวเคลียสอย่างเข้ม (หรือบางครั้งเรียกกันทั่วไปว่า แรงอย่างเข้ม, แรงนิวเคลียร์อย่างเข้ม, หรือ แรงสี) ที่ดึงดูดอนุภาคควาร์กมากกว่าหนึ่งตัว ให้รวมกันอยู่ในรูปของโปรตอนและนิวตรอน ซึ่งเป็นส่วนประกอบสำคัญของอะตอมได้ อันตรกิริยาอย่างเข้มเป็นหนึ่งในสี่ของแรงพื้นฐานจากธรรมชาติที่รู้จักกันดี แรงที่เหลือได้แก่ อันตรกิริยาอย่างอ่อน, แรงแม่เหล็กไฟฟ้า และ แรงโน้มถ่วง ทั้ง ๆ ที่มันจะทำงานที่ระยะห่างเพียงหนึ่งเฟมโตเมตร (10-15 เมตร) มันก็เป็นแรงที่เข้มที่สุด คือประมาณ 100 เท่าของแรงแม่เหล็กไฟฟ้า, หนึ่งล้านเท่าของอันตรกิริยาอย่างอ่อน และ 1038 ของแรงโน้มถ่วง มันสร้างความมั่นใจในความเสถียรของสสารทั่วไป โดยการควบคุมพวกควาร์กให้รวมตัวกันเป็นอนุภาคแฮดรอน เช่นเป็นโปรตอนและนิวตรอน ซึ่งเป็นองค์ประกอบที่ใหญ่ที่สุดของมวลของสสารทั่วไป ยิ่งไปกว่านั้น ส่วนใหญ่ของมวล-พลังงานของโปรตอนหรือนิวตรอนที่พบทั่วไปจะอยู่ในรูปแบบของพลังงานสนามแรงอย่างเข้ม นั่นคือควาร์กแต่ละตัวจะมีส่วนประมาณ 1% ของมวล-พลังงานของโปรตอนเพียงหนึ่งตัวเท่านั้น.
นิวตรอนและอันตรกิริยาอย่างเข้ม · อันตรกิริยาอย่างเข้มและเลปตอน ·
อิเล็กตรอน
page.
นิวตรอนและอิเล็กตรอน · อิเล็กตรอนและเลปตอน ·
ความโน้มถ่วง
หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.
ความโน้มถ่วงและนิวตรอน · ความโน้มถ่วงและเลปตอน ·
ควาร์ก
วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..
ควาร์กและนิวตรอน · ควาร์กและเลปตอน ·
ประจุไฟฟ้า
นามไฟฟ้า ของประจุไฟฟ้าบวกและลบหนึ่งจุด ประจุไฟฟ้า เป็น คุณสมบัติทางฟิสิกส์ ของ สสาร ที่เป็นสาเหตุให้มันต้องประสบกับ แรง หนึ่งเมื่อมันถูกวางอยู่ใน สนามแม่เหล็กไฟฟ้า ประจุไฟฟ้าแบ่งออกเป็นสองประเภท: บวก และ ลบ ประจุเหมือนกันจะผลักกัน ประจุต่างกันจะดึงดูดกัน วัตถุจะมีประจุลบถ้ามันมี อิเล็กตรอน เกิน, มิฉะนั้นจะมีประจุบวกหรือไม่มีประจุ มีหน่วย SI เป็น คูลอมบ์ (C) ในสาขาวิศวกรรมไฟฟ้า, มันเป็นธรรมดาที่จะใช้ แอมแปร์-ชั่วโมง (Ah) และใน สาขาเคมี มันเป็นธรรมดาที่จะใช้ ประจุมูลฐาน (e) เป็นหน่วย สัญลักษณ์ Q มักจะหมายถึงประจุ ความรู้ช่วงต้นว่าสสารมีปฏิสัมพันธ์กันอย่างไรในขณะนี้ถูกเรียกว่า ไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) และยังคงถูกต้องสำหรับปัญหาที่ไม่จำเป็นต้องมีการพิจารณาถึง ผลกระทบควอนตัม ประจุไฟฟ้า เป็น คุณสมบัติแบบอนุรักษ์ พื้นฐานของ อนุภาคย่อยของอะตอม บางตัวที่กำหนด ปฏิสัมพันธ์ทางแม่เหล็กไฟฟ้า ของพวกมัน สสารที่มีประจุไฟฟ้าจะได้รับอิทธิพลจาก สนามแม่เหล็กไฟฟ้า และก็ผลิตสนามแม่เหล็กไฟฟ้าขึ้นเองได้ ปฏิสัมพันธ์ระหว่างประจุไฟฟ้าที่เคลื่อนที่ได้กับสนามแม่เหล็กไฟฟ้าจะเป็นแหล่งที่มาของ แรงแม่เหล็กไฟฟ้า ซึ่งเป็นหนึ่งในสี่ แรงพื้นฐาน (อ่านเพิ่มเติมที่: สนามแม่เหล็ก) การทดลองเรื่องหยดน้ำมัน ในศตวรรษที่ยี่สิบได้แสดงให้เห็นว่า ประจุจะถูก quantized; นั่นคือ ประจุของวัตถุใด ๆ จะมีค่าเป็นผลคูณที่เป็นจำนวนเต็มของหน่วยเล็ก ๆ แต่ละตัวที่เรียกว่า ประจุมูลฐาน หรือค่า e (เช่น 0e, 1e, 2e แต่ไม่ใช่ 1/2e หรือ 1/3e) e มีค่าประมาณเท่ากับ (ยกเว้นสำหรับอนุภาคที่เรียกว่า ควาร์ก ซึ่งมีประจุที่มีผลคูณที่เป็นจำนวนเต็มของ e/3) โปรตอน มีประจุเท่ากับ +e และ อิเล็กตรอน มีประจุเท่ากับ -e การศึกษาเกี่ยวกับอนุภาคที่มีประจุและการปฏิสัมพันธ์ของพวกมันจะถูกไกล่เกลี่ยโดย โฟตอน ได้อย่างไรจะเรียกว่า ไฟฟ้าพลศาสตร์ควอนตัม.
นิวตรอนและประจุไฟฟ้า · ประจุไฟฟ้าและเลปตอน ·
แรงแม่เหล็กไฟฟ้า
ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.
นิวตรอนและแรงแม่เหล็กไฟฟ้า · เลปตอนและแรงแม่เหล็กไฟฟ้า ·
โปรตอน
| magnetic_moment.
นิวตรอนและโปรตอน · เลปตอนและโปรตอน ·
เนเจอร์ (วารสาร)
วารสาร''เนเจอร์''ฉบับแรก วันที่ 4 พฤศจิกายน ค.ศ. 1869 เนเจอร์ เป็นวารสารวิชาการทางวิทยาศาสตร์ ตีพิมพ์ครั้งแรกเมื่อวันที่ 4 พฤศจิกายน..
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ นิวตรอนและเลปตอน มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง นิวตรอนและเลปตอน
การเปรียบเทียบระหว่าง นิวตรอนและเลปตอน
นิวตรอน มี 55 ความสัมพันธ์ขณะที่ เลปตอน มี 27 ขณะที่พวกเขามีเหมือนกัน 10, ดัชนี Jaccard คือ 12.20% = 10 / (55 + 27)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง นิวตรอนและเลปตอน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: