โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์

นาโนอิเล็กทรอนิกส์ vs. ไมโครอิเล็กทรอนิกส์

นาโนอิเล็กทรอนิกส์ (nanoelectronics) คือสาขาหนึ่งของวิชาอิเล็กทรอนิกส์ที่มีขอบเขตความรู้ในระดับนาโน ถูกพัฒนาขึ้นเนื่องจากการสร้างวงจรโดยใช้แนวทางอิเล็กทรอนิกส์เดิมกำลังถึงทางตัน ด้วยเหตุผลที่ว. มโครอิเล็กทรอนิกส์ เป็นสาขาย่อยของอิเล็กทรอนิกส์ ไมโครอิเล็กทรอนิกส์นั้นมีความสัมพันธ์กับการศึกษาและการผลิตอุปกรณ์อิเล็กทรอนิกส์ซึ่งมีขนาดเล็กมาก อุปกรณ์เหล่านี้วัสดุจากสารกึ่งตัวนำ โดยการใช้กระบวนการที่เรียกว่า โฟโตไลโทกราฟี (photolithography) อุปกรณ์อิเล็กทรอนิกส์แบบปกตินั้น ยังอาจมีลักษณะร่วมในเชิงไมโครอิเล็กทรอนิกส์ด้วย เช่น ทรานซิสเตอร์, ตัวเก็บประจุ, ตัวเหนี่ยวนำ, ตัวต้านทาน, ไดโอด และยังรวมถึงฉนวน และตัวนำ ซึ่งทั้งหมดนี้สามารถพบได้ในอุปกรณ์ไมโครอิเล็กทรอนิกส์ด้วย วงจรรวมแบบดิจิตอลนั้นส่วนใหญ่ประกอบด้วยทรานซิสเตอร์ ส่วนวงจรแอนะลอกนั้นปกติประกอบด้วยตัวต้านทานและตัวเก็บประจุ ส่วนตัวเหนี่ยวนำนั้นใช้ในวงจรแอนะลอกความถี่สูงบางแบบ แต่มักจะใช้พื้นที่ของชิปขนาดใหญ่ หากใช้ที่ความถี่ค่ำ โดยอาจใช้ gyrator แทน เมื่อเทคนิคต่างๆ เพิ่มึ้น ขนาดของอุปกรณ์ไมโครอิเล็กทรอนิกส์ก็มีขนาดลดลงตามลำดับ และที่ขนาดเล็กนั้น ผลของส่วนประกอบย่อย เช่น สายเชื่อมต่อ อาจมีความสำคัญมากกว่าเดิม เหล่านี้เรยกว่า parasitic effects และเป้าหมายของวิศวกรผู้ออกแบบไมโครอิเล็กทรอนิกส์ ก็เพื่อหาทางชดเชย หรือลดผลกระทบเหล่านี้ให้เหลือน้อยที่สุด ขณะเดียวกันก็ ทำให้อุปกรณ์มีขนาดเล็กลง ทำงานเร็วขึ้น และราคาถูกลง.

ความคล้ายคลึงกันระหว่าง นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์

นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์ มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): สารกึ่งตัวนำอิเล็กทรอนิกส์

สารกึ่งตัวนำ

รกึ่งตัวนำ (semiconductor) คือ วัสดุที่มีคุณสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวน เป็นวัสดุที่ใช้ทำอุปกรณ์อิเล็คทรอนิกส์ มักมีตัวประกอบของ germanium, selenium, silicon วัสดุเนื้อแข็งผลึกพวกหนึ่งที่มีสมบัติเป็นตัวนำ หรือสื่อไฟฟ้าก้ำกึ่งระหว่างโลหะกับอโลหะหรือฉนวน ความเป็นตัวนำไฟฟ้าขึ้นอยู่กับอุณหภูมิ และสิ่งไม่บริสุทธิ์ที่มีเจือปนอยู่ในวัสดุพวกนี้ ซึ่งอาจเป็นธาตุหรือสารประกอบก็มี เช่น ธาตุเจอร์เมเนียม ซิลิคอน ซีลีเนียม และตะกั่วเทลลูไรด์ เป็นต้น วัสดุกึ่งตัวนำพวกนี้มีความต้านทานไฟฟ้าลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งเป็นลักษณะตรงข้ามกับโลหะทั้งปวง ที่อุณหภูมิ ศูนย์ เคลวิน วัสดุพวกนี้จะไม่ยอมให้ไฟฟ้าไหลผ่านเลย เพราะเนื้อวัสดุเป็นผลึกโควาเลนต์ ซึ่งอิเล็กตรอนทั้งหลายจะถูกตรึงอยู่ในพันธะโควาเลนต์หมด (พันธะที่หยึดเหนี่ยวระหว่างอะตอม) แต่ในอุณหภูมิธรรมดา อิเล็กตรอนบางส่วนมีพลังงาน เนื่องจากความร้อนมากพอที่จะหลุดไปจากพันธะ ทำให้เกิดที่ว่างขึ้น อิเล็กตรอนที่หลุดออกมาเป็นสาเหตุให้สารกึ่งตัวนำ นำไฟฟ้าได้เมื่อมีมีสนามไฟฟ้ามาต่อเข้ากับสารนี้ สารกึ่งตัวนำไม่บริสุทธิ์ เป็นสารที่เกิดขึ้นจากการเติมสารเจือปนลงไปในสารกึ่งตัวนำแท้ เช่น ซิลิกอน หรือเยอรมันเนียม เพื่อให้ได้สารกึ่งตัวนำที่มีสภาพการนำไฟฟ้าที่ดีขึ้น สารกึ่งตัวนำไม่บริสุทธิ์นี้แบ่งออกเป็น 2 ประเภทคือ สารกึ่งตัวนำประเภทเอ็น (N-Type) และสารกึ่งตัวนำประเภทพี (P-Type).

นาโนอิเล็กทรอนิกส์และสารกึ่งตัวนำ · สารกึ่งตัวนำและไมโครอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

อิเล็กทรอนิกส์

อิเล็กทรอนิกส์ (Electronics) เป็นเทคโนโลยีที่เกี่ยวข้องกับวงจรไฟฟ้าที่ประกอบด้วยอุปกรณ์ไฟฟ้าที่เป็น active component เช่นหลอดสูญญากาศ, ทรานซิสเตอร์, ไดโอด และ Integrated Circuit และ ชิ้นส่วน พาสซีฟ (passive component) เช่น ตัวนำไฟฟ้า, ตัวต้านทานไฟฟ้า, ตัวเก็บประจุ และคอยล์ พฤติกรรมไม่เชิงเส้นของ active component และความสามารถในการควบคุมการไหลของอิเล็กตรอนทำให้สามารถขยายสัญญาณอ่อนๆให้แรงขึ้นเพื่อการสื่อสารทางภาพและเสียงเช่นโทรเลข, โทรศัพท์, วิทยุ, โทรทัศน์ เป็นต้น อิเล็กทรอนิกส์ถูกใช้กันอย่างแพร่หลายในการสื่อสารข้อมูลโทรคมนาคม ความสามารถของอุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิทช์ปิดเปิดวงจรถูกนำไปใช้ในวงจร ลอจิกเกต ซึ่งเป็นส่วนสำคัญหลักในระบบคอมพิวเตอร์ นอกจากนั้น วงจรอิเล็กทรอนิกส์ยังถูกนำไปใช้ผลิตเครื่องใช้ไฟฟ้าในครัวเรือน ในการส่งพลังงานไฟฟ้าเป็นระยะทางไกลๆ การผลิตพลังงานทดแทน และอุตสาหกรรมต่างๆอีกมาก อิเล็กทรอนิกส์แตกต่างจากวิทยาศาสตร์ไฟฟ้าและเทคโนโลยีเครื่องกลไฟฟ้า โดยจะเกี่ยวข้องกับการสร้าง, การกระจาย, การสวิทช์, การจัดเก็บและการแปลงพลังงานไฟฟ้าไปและมาจากพลังงานรูปแบบอื่น ๆ โดยใช้สายไฟ, มอเตอร์, เครื่องกำเนิดไฟฟ้า, แบตเตอรี่, สวิตช์, รีเลย์, หม้อแปลงไฟฟ้า ตัวต้านทานและส่วนประกอบที่เป็นพาสซีพอื่นๆ ความแตกต่างนี้เริ่มราวปี 1906 เป็นผลจากการประดิษฐ์ไตรโอดโดยลี เดอ ฟอเรสท์ ซึ่งใช้ขยายสัญญาณวิทยุที่อ่อนๆได้ ทำให้เกิดการออกแบบและพัฒนาระบบการรับส่งสัญญาณเสียงและหลอดสูญญากาศ จึงเรียกสาขานี้ว่า "เทคโนโลยีวิทยุ" จนถึงปี 1950 ปัจจุบัน อุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ ใช้ชิ้นส่วนสารกึ่งตัวนำเพื่อควบคุมการทำงานของอิเล็กตรอน การศึกษาเกี่ยวกับอุปกรณ์สารกึ่งตัวนำและเทคโนโลยีโซลิดสเตต ในขณะที่การออกแบบและการสร้างวงจรอิเล็กทรอนิกส์ในการแก้ปัญหาในทางปฏิบัติอยู่ภายใต้สาขาวิศวกรรมอิเล็กทรอนิกส์ บทความนี้มุ่งเน้นด้านวิศวกรรมของ.

นาโนอิเล็กทรอนิกส์และอิเล็กทรอนิกส์ · อิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์

นาโนอิเล็กทรอนิกส์ มี 13 ความสัมพันธ์ขณะที่ ไมโครอิเล็กทรอนิกส์ มี 11 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 8.33% = 2 / (13 + 11)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง นาโนอิเล็กทรอนิกส์และไมโครอิเล็กทรอนิกส์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »