เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ทรงสิบสองหน้าและทรงสี่หน้า

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ทรงสิบสองหน้าและทรงสี่หน้า

ทรงสิบสองหน้า vs. ทรงสี่หน้า

ทรงสิบสองหน้าปรกติ ทรงสิบสองหน้า (dodecahedron, พหูพจน์: -dra) เป็นคำทั่วไปที่ใช้เรียกทรงหลายหน้า (polyhedron) ที่มี 12 หน้า ทรงสิบสองหน้าอาจเป็นรูปทรงที่สมมาตรหรือไม่สมมาตรก็ได้ ทรงสิบสองหน้าปรกติ (regular dodecahedron) เป็นทรงหลายหน้าที่ประกอบด้วยหน้ารูปห้าเหลี่ยมด้านเท่า 12 หน้า มี 20 จุดยอด 30 ขอบ ทรงสิบสองหน้าปรกติ เป็นหนึ่งในทรงตันเพลโต (Platonic solid). ทรงสี่หน้าปรกติ ทรงสี่หน้า (tetrahedron, พหูพจน์: -dra) เป็นคำทั่วไปที่ใช้เรียกทรงหลายหน้า (polyhedron) ที่มี 4 หน้า ทรงสี่หน้าอาจเป็นรูปทรงที่สมมาตรหรือไม่สมมาตรก็ได้ ทรงสี่หน้าปรกติ (regular tetrahedron) เป็นทรงหลายหน้าที่ประกอบด้วยหน้ารูปสามเหลี่ยมด้านเท่า 4 หน้า มี 4 จุดยอด 6 ขอบ ทรงสี่หน้าปรกติ เป็นหนึ่งในทรงตันเพลโต (Platonic solid) หรืออาจเรียกได้ว่าเป็น พีระมิดสามเหลี่ยม (triangular pyramid).

ความคล้ายคลึงกันระหว่าง ทรงสิบสองหน้าและทรงสี่หน้า

ทรงสิบสองหน้าและทรงสี่หน้า มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ระบบพิกัดคาร์ทีเซียนรูปสามเหลี่ยมสมมาตรทรงหลายหน้าทรงตันเพลโตปริมาตร

ระบบพิกัดคาร์ทีเซียน

ตัวอย่างระบบพิกัดคาร์ทีเซียนที่มีจุด (2,3) สีเขียว, จุด (-3,1) สีแดง, จุด (-1.5,-2.5) สีน้ำเงิน, และจุด (0,0) สีม่วงซึ่งเป็นจุดกำเนิด ในทางคณิตศาสตร์ ระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) เป็นระบบที่ใช้กำหนดตำแหน่งของจุดแต่ละจุดบนระนาบโดยอ้างถึงตัวเลข 2 จำนวน ซึ่งแต่ละจำนวนเรียกว่า พิกัดเอกซ์ และ พิกัดวาย ของจุดนั้น และเพื่อที่จะกำหนดพิกัดของจุด จะต้องมีเส้นแกนสองเส้นตัดกันเป็นมุมฉากที่จุดกำเนิด ได้แก่ แกนเอกซ์ และ แกนวาย ซึ่งเส้นแกนดังกล่าวจะมีหน่วยบ่งบอกความยาวเป็นระยะ ระบบพิกัดคาร์ทีเซียนยังสามารถใช้ได้ในปริภูมิสามมิติ (ซึ่งจะมี แกนแซด และ พิกัดแซด เพิ่มเข้ามา) หรือในมิติที่สูงกว่าอีกด้ว.

ทรงสิบสองหน้าและระบบพิกัดคาร์ทีเซียน · ทรงสี่หน้าและระบบพิกัดคาร์ทีเซียน · ดูเพิ่มเติม »

รูปสามเหลี่ยม

รูปสามเหลี่ยม (อังกฤษ: triangle) เป็นหนึ่งในร่างพื้นฐานในเรขาคณิต คือรูปหลายเหลี่ยมซึ่งมี หรือจุดยอด และมี 3 ด้านหรือขอบที่เป็นส่วนของเส้นตรง รูปสามเหลี่ยมที่มีจุดยอด A, B, และ C เขียนแทนด้วย ในเรขาคณิตแบบยุคลิด จุด 3 จุดใดๆ ที่ไม่อยู่ในเส้นตรงเดียวกัน จะสามารถสร้างรูปสามเหลี่ยมได้เพียงรูปเดียว และเป็นรูปที่อยู่บนระนาบเดียว (เช่นระนาบสองมิติ).

ทรงสิบสองหน้าและรูปสามเหลี่ยม · ทรงสี่หน้าและรูปสามเหลี่ยม · ดูเพิ่มเติม »

สมมาตร

'''ซ้าย''' แสดงวัตถุที่เป็นสมมาตร และ '''ขวา''' แสดงวัตถุที่ไม่เป็นสมมาตร กลุ่มสมมาตรทรงกลม o สมมาตร (Symmetry) ทั่วไปจะหมายถึงสองความหมาย ความหมายแรกคือการรับรู้ถึงการเข้ากันได้ หรือความงามได้สัดส่วน และความสมดุลอริสโตเติลลงความเห็นรูปทรงทรงกลม มีทรงที่เยี่ยมยอด มีคุณลักษณะขนาดทางเรขาคณิตนิยามตามรูปแบบของสมมาตรเป็นไปตามลำดับโดยธรรมชาติและความสมบูรณ์แบบของจักรวาล ดังความสวยงามหรือความสมบูรณ์แบบที่สะท้อนออกมา ในความหมายที่สองคือความเที่ยงตรงและความคิดที่ชัดเจนของความสมดุลหรือ"รูปแบบความคล้ายคลึงในตัวเอง" ที่สามารถพิสูจน์หรือตรวจสอบได้ตามกฎของระบบในเชิงรูปนัย โดยใช้เรขาคณิต, จนถึงฟิสิกส์ หรืออื่นๆ ถึงแม้ว่าความหมายจะต่างกันในบางบริบท แต่ทั้งคู่เกี่ยวข้องกันและถูกอภิปรายโต้แย้งกันในการเปรียบเทียบ แนวความคิดเรื่องความเที่ยงตรงถูกต้องของสมมาตรมีหลากหลายวิธีตัดสินและนิยาม เช่น สมมาตรอาจจะใช้:ในประเด็นของเวลาที่ผ่านไป ตามความสัมพันธ์ของตำแหน่ง ตามการแปลงทางเรขาคณิต เช่น ขนาด, การสะท้อน, และการหมุน ตลอดจนการแปลงฟังก์ชันชนิดอื่นๆ และตามมุมมองของวัตถุนามธรรม, แบบจำลองตามทฤษฎี, ภาษา, ดนตรี และความรู้See e.g., สมมาตรสามารถมีคำนิยามที่แตกต่างกันได้ เช่น.

ทรงสิบสองหน้าและสมมาตร · ทรงสี่หน้าและสมมาตร · ดูเพิ่มเติม »

ทรงหลายหน้า

ทรงหลายหน้า (polyhedron, พหูพจน์: polyhedra) หมายถึง วัตถุทางเรขาคณิตที่ประกอบด้วยหน้าเรียบและขอบตรง ทรงหลายหน้าเป็นที่น่าหลงใหลของมนุษยชาติมาตั้งแต่ยุคก่อนประวัติศาสตร์ ซึ่งได้ศึกษาอย่างเป็นกิจลักษณะโดยชาวกรีกโบราณ ต่อเนื่องมาจนถึงนักเรียน นักคณิตศาสตร์ และศิลปินทุกวันนี้ คำว่า polyhedron มาจากภาษากรีก πολυεδρον โดยที่ poly- มาจาก πολυς แปลว่า "มากมาย" และ -edron มาจาก εδρον แปลว่า "ฐาน, ที่นั่ง, หน้า".

ทรงสิบสองหน้าและทรงหลายหน้า · ทรงสี่หน้าและทรงหลายหน้า · ดูเพิ่มเติม »

ทรงตันเพลโต

ทรงตันเพลโต (Platonic solid) หมายถึงทรงหลายหน้าปรกติ (regular polyhedron) ที่เป็นทรงนูน (convex) โดยจุดยอดจุดหนึ่งจะประกอบด้วยหน้ารูปหลายเหลี่ยมปรกติ (regular polygon) ชนิดเดียวกันทุกจุด โดยได้ตั้งชื่อตามชื่อของเพลโต นักปรัชญาชาวกรีก ทรงตันเพลโตมีทั้งหมด 5 ชนิด ได้แก.

ทรงตันเพลโตและทรงสิบสองหน้า · ทรงตันเพลโตและทรงสี่หน้า · ดูเพิ่มเติม »

ปริมาตร

ออนซ์ และมิลลิลิตร ปริมาตร หมายถึง ปริมาณของปริภูมิหรือรูปทรงสามมิติ ซึ่งยึดถือหรือบรรจุอยู่ในภาชนะไม่ว่าจะสถานะใดๆก็ตาม บ่อยครั้งที่ปริมาตรระบุปริมาณเป็นตัวเลขโดยใช้หน่วยกำกับ เช่นลูกบาศก์เมตรซึ่งเป็นหน่วยอนุพันธ์เอสไอ นอกจากนี้ยังเป็นที่เข้าใจกันโดยทั่วไปว่า ปริมาตรของภาชนะคือ ความจุ ของภาชนะ เช่นปริมาณของของไหล (ของเหลวหรือแก๊ส) ที่ภาชนะนั้นสามารถบรรจุได้ มากกว่าจะหมายถึงปริมาณเนื้อวัสดุของภาชนะ รูปทรงสามมิติทางคณิตศาสตร์มักถูกกำหนดปริมาตรขึ้นด้วยพร้อมกัน ปริมาตรของรูปทรงอย่างง่ายบางชนิด เช่นมีด้านยาวเท่ากัน สันขอบตรง และรูปร่างกลมเป็นต้น สามารถคำนวณได้ง่ายโดยใช้สูตรต่าง ๆ ทางเรขาคณิต ส่วนปริมาตรของรูปทรงที่ซับซ้อนยิ่งขึ้นสามารถคำนวณได้ด้วยแคลคูลัสเชิงปริพันธ์ถ้าทราบสูตรสำหรับขอบเขตของรูปทรงนั้น รูปร่างหนึ่งมิติ (เช่นเส้นตรง) และรูปร่างสองมิติ (เช่นรูปสี่เหลี่ยมจัตุรัส) ถูกกำหนดให้มีปริมาตรเป็นศูนย์ในปริภูมิสามมิติ ปริมาตรของของแข็ง (ไม่ว่าจะมีรูปทรงปกติหรือไม่ปกติ) สามารถตรวจวัดได้ด้วยการแทนที่ของไหล และการแทนที่ของเหลวสามารถใช้ตรวจวัดปริมาตรของแก๊สได้อีกด้วย ปริมาตรรวมของวัสดุสองชนิดโดยปกติจะมากกว่าปริมาตรของวัสดุอย่างใดอย่างหนึ่ง เว้นแต่เมื่อวัสดุหนึ่งละลายในอีกวัสดุหนึ่งแล้ว ปริมาตรรวมจะไม่เป็นไปตามหลักการบวก ในเรขาคณิตเชิงอนุพันธ์ ปริมาตรถูกอธิบายด้วยความหมายของรูปแบบปริมาตร (volume form) และเป็นตัวยืนยงแบบไรมันน์ (Riemann invariant) ที่สำคัญโดยรวม ในอุณหพลศาสตร์ ปริมาตรคือตัวแปรเสริม (parameter) ชนิดพื้นฐาน และเป็นตัวแปรควบคู่ (conjugate variable) กับความดัน.

ทรงสิบสองหน้าและปริมาตร · ทรงสี่หน้าและปริมาตร · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ทรงสิบสองหน้าและทรงสี่หน้า

ทรงสิบสองหน้า มี 20 ความสัมพันธ์ขณะที่ ทรงสี่หน้า มี 6 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 23.08% = 6 / (20 + 6)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ทรงสิบสองหน้าและทรงสี่หน้า หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: