เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด

ทรงยี่สิบหน้าปลายตัด vs. ทรงแปดหน้าปลายตัด

ทรงยี่สิบหน้าปลายตัด ทรงยี่สิบหน้าปลายตัด (truncated icosahedron, พหูพจน์: -dra) เป็นทรงหลายหน้า (polyhedron) ที่ประกอบด้วยหน้ารูปห้าเหลี่ยมด้านเท่า 12 หน้า และหน้ารูปหกเหลี่ยมด้านเท่า 20 หน้า รวม 32 หน้า รูปทรงนี้เกิดจากการนำทรงยี่สิบหน้าปรกติ (regular icosahedron) ไปตัดปลายออกทั้ง 12 มุม ให้หน้ารูปสามเหลี่ยมด้านเท่ากลายเป็นรูปหกเหลี่ยมด้านเท่า รูปทรงนี้มี 60 จุดยอด 90 ขอบ และเป็นทรงตันอาร์คิมิดีส (Archimedean solid). ทรงแปดหน้าปลายตัด ทรงแปดหน้าปลายตัด (truncated octahedron) เป็นทรงหลายหน้า (polyhedron) ที่ประกอบด้วยหน้ารูปหกเหลี่ยมด้านเท่ามุมเท่า 8 หน้า และหน้ารูปสี่เหลี่ยมจัตุรัส 6 หน้า รวม 14 หน้า โดยหน้ารูปสี่เหลี่ยมทุกหน้าจะล้อมรอบด้วยหน้าหกเหลี่ยม 4 หน้า มี 24 จุดยอด 36 ขอบ และเป็นหนึ่งในทรงตันอาร์คิมิดีส (Archimedean solid) รูปทรงนี้เกิดจากการนำทรงแปดหน้าปรกติ (regular octahedron) มาตัดปลายที่จุดยอดทั้ง 6 จุด เพื่อทำให้หน้ารูปสามเหลี่ยมด้านเท่ากลายเป็นรูปหกเหลี่ยม และมุมที่ตัดนั้นก็จะกลายเป็นรูปสี่เหลี่ยมจัตุรั.

ความคล้ายคลึงกันระหว่าง ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด

ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด มี 5 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): รูปสามเหลี่ยมด้านเท่ารูปหกเหลี่ยมทรงหลายหน้าทรงตันอาร์คิมิดีสปริมาตร

รูปสามเหลี่ยมด้านเท่า

รูปสามเหลี่ยมด้านเท่า คือรูปสามเหลี่ยมชนิดหนึ่งที่ด้านทั้งสามมีความยาวเท่ากัน ในเรขาคณิตแบบยุคลิด รูปสามเหลี่ยมด้านเท่าจัดเป็นรูปหลายเหลี่ยมมุมเท่า (equiangular polygon) กล่าวคือ มุมภายในแต่ละมุมของรูปสามเหลี่ยมมีขนาดเท่ากันคือ 60° ด้วยคุณสมบัติทั้งสอง รูปสามเหลี่ยมด้านเท่าจึงจัดเป็นรูปหลายเหลี่ยมปรกติ (regular polygon) และเรียกอีกชื่อหนึ่งได้ว่าเป็น รูปสามเหลี่ยมปรกติ รูปสามเหลี่ยมด้านเท่าที่ยาวด้านละ a\,\! หน่วย จะมีส่วนสูง (altitude) เท่ากับ \fraca หน่วย และมีพื้นที่เท่ากับ \fraca^2 ตารางหน่วย รูปสามเหลี่ยมด้านเท่าเป็นรูปสามเหลี่ยมที่มีความสมมาตรมากที่สุด คือมีสมมาตรแบบสะท้อนสามเส้น และสมมาตรแบบหมุนที่อันดับสามรอบศูนย์กลาง กรุปสมมาตรของรูปสามเหลี่ยมนี้จัดว่าเป็นกรุปการหมุนรูปของอันดับหก (dihedral group of order 6) หรือ D3 ทรงสี่หน้าปรกติ สร้างขึ้นจากรูปสามเหลี่ยมด้านเท่าสี่รูป รูปสามเหลี่ยมด้านเท่าสามารถพบได้ในโครงสร้างทางเรขาคณิตอื่นๆ หลายอย่าง เช่น รูปวงกลมที่มีรัศมีเท่ากันสองวงตัดกัน โดยมีจุดศูนย์กลางอยู่บนเส้นรอบวงของอีกวงหนึ่ง ทำให้เกิดส่วนโค้งขนาดเท่ากัน และสามารถแสดงได้ด้วยรูปสามเหลี่ยมด้านเท่า รูปสามเหลี่ยมนี้ยังเป็นส่วนหนึ่งของการสร้างทรงหลายหน้า ทรงตันเพลโตสามในห้าชิ้นประกอบขึ้นจากรูปสามเหลี่ยมด้านเท่า หนึ่งในนั้นคือทรงสี่หน้าปรกติ ซึ่งประกอบด้วยหน้ารูปสามเหลี่ยมด้านเท่าทั้งสี่หน้า นอกจากนั้นรูปสามเหลี่ยมด้านเท่าสามารถนำมาเรียงติดต่อกันบนระนาบ จนเกิดเป็นรูปแบนราบสามเหลี่ยม (triangular tiling) การหารูปสามเหลี่ยมด้านเท่าที่เกี่ยวข้องกับรูปสามเหลี่ยมใดๆ สามารถหาได้จากทฤษฎีบทสามส่วนของมอร์ลีย์ (Morley's trisector theorem) Triangle Construction Animation.

ทรงยี่สิบหน้าปลายตัดและรูปสามเหลี่ยมด้านเท่า · ทรงแปดหน้าปลายตัดและรูปสามเหลี่ยมด้านเท่า · ดูเพิ่มเติม »

รูปหกเหลี่ยม

ในทางเรขาคณิต รูปหกเหลี่ยม หมายถึงเป็นรูปหลายเหลี่ยมแบบหนึ่ง ที่มีด้าน 6 ด้าน และจุดยอด 6 จุด สัญลักษณ์ชเลฟลี (Schläfli symbol) คือ มุมภายในของหกเหลี่ยมปกติ หรือหกเหลี่ยมด้านเท่า (มีความยาวด้านเท่ากันทุกด้าน และขนาดมุมเท่ากันทุกมุม) เท่ากับ 120 ° รูปหกเหลี่ยมด้านเท่าก็เหมือนกับรูปสี่เหลี่ยมจัตุรัส และสามเหลี่ยมด้านเท่า ที่สามารถวางเรียงในแนวระนาบต่อกันไปโดยไม่มีช่องว่าง (รูปหกเหลี่ยม 3 รูปจะบรรจบกัน (หกเหลี่ยม 3 รูปสามบรรจบกัน 3 มุมยอด) และมีประโยชน์มากสำหรับการสร้าง เทสเซลเลชัน (การวางรูปซ้ำๆ ต่อกันจนเต็มพื้นที่ โดยไม่ซ้อนทับ หรือมีช่องว่าง) ช่องรังผึ้งช่องหนึ่งเป็นรูปหกเหลี่ยมด้วยเหตุผลดังกล่าวนี้ และเนื่องจากรูปทรงนี้ทำให้สามารถใช้วัสดุการสร้างและพื้นที่ได้อย่างมีประสิทธิภาพ สำหรับ Voronoi diagram ของตาข่ายสามเหลี่ยมด้านเท่า เป็นเทสเซลเลชั่นรังผึ้งของหกเหลี่ยมนั่นเอง พื้นที่ของหกเหลี่ยมด้านเท่า ที่มีความยาวด้าน a\,\! มีค่า A.

ทรงยี่สิบหน้าปลายตัดและรูปหกเหลี่ยม · ทรงแปดหน้าปลายตัดและรูปหกเหลี่ยม · ดูเพิ่มเติม »

ทรงหลายหน้า

ทรงหลายหน้า (polyhedron, พหูพจน์: polyhedra) หมายถึง วัตถุทางเรขาคณิตที่ประกอบด้วยหน้าเรียบและขอบตรง ทรงหลายหน้าเป็นที่น่าหลงใหลของมนุษยชาติมาตั้งแต่ยุคก่อนประวัติศาสตร์ ซึ่งได้ศึกษาอย่างเป็นกิจลักษณะโดยชาวกรีกโบราณ ต่อเนื่องมาจนถึงนักเรียน นักคณิตศาสตร์ และศิลปินทุกวันนี้ คำว่า polyhedron มาจากภาษากรีก πολυεδρον โดยที่ poly- มาจาก πολυς แปลว่า "มากมาย" และ -edron มาจาก εδρον แปลว่า "ฐาน, ที่นั่ง, หน้า".

ทรงยี่สิบหน้าปลายตัดและทรงหลายหน้า · ทรงหลายหน้าและทรงแปดหน้าปลายตัด · ดูเพิ่มเติม »

ทรงตันอาร์คิมิดีส

ทรงตันอาร์คิมิดีส (Archimedean solid) หมายถึงทรงหลายหน้า (polyhedron) ที่เป็นทรงนูน (convex) โดยจุดยอดจุดหนึ่งจะประกอบด้วยหน้ารูปหลายเหลี่ยมปรกติ (regular polygon) ตั้งแต่สองชนิดขึ้นไป และเป็นชุดเดียวกันทุกจุด แตกต่างจากทรงตันเพลโต (Platonic solid) ตรงที่มีรูปหลายเหลี่ยมปรกติเพียงชนิดเดียว และแตกต่างจากทรงตันจอห์นสัน (Johnson solid) ตรงที่ไม่ได้มีรูปหลายเหลี่ยมบรรจบกันเป็นชุดเหมือนกันทุก.

ทรงตันอาร์คิมิดีสและทรงยี่สิบหน้าปลายตัด · ทรงตันอาร์คิมิดีสและทรงแปดหน้าปลายตัด · ดูเพิ่มเติม »

ปริมาตร

ออนซ์ และมิลลิลิตร ปริมาตร หมายถึง ปริมาณของปริภูมิหรือรูปทรงสามมิติ ซึ่งยึดถือหรือบรรจุอยู่ในภาชนะไม่ว่าจะสถานะใดๆก็ตาม บ่อยครั้งที่ปริมาตรระบุปริมาณเป็นตัวเลขโดยใช้หน่วยกำกับ เช่นลูกบาศก์เมตรซึ่งเป็นหน่วยอนุพันธ์เอสไอ นอกจากนี้ยังเป็นที่เข้าใจกันโดยทั่วไปว่า ปริมาตรของภาชนะคือ ความจุ ของภาชนะ เช่นปริมาณของของไหล (ของเหลวหรือแก๊ส) ที่ภาชนะนั้นสามารถบรรจุได้ มากกว่าจะหมายถึงปริมาณเนื้อวัสดุของภาชนะ รูปทรงสามมิติทางคณิตศาสตร์มักถูกกำหนดปริมาตรขึ้นด้วยพร้อมกัน ปริมาตรของรูปทรงอย่างง่ายบางชนิด เช่นมีด้านยาวเท่ากัน สันขอบตรง และรูปร่างกลมเป็นต้น สามารถคำนวณได้ง่ายโดยใช้สูตรต่าง ๆ ทางเรขาคณิต ส่วนปริมาตรของรูปทรงที่ซับซ้อนยิ่งขึ้นสามารถคำนวณได้ด้วยแคลคูลัสเชิงปริพันธ์ถ้าทราบสูตรสำหรับขอบเขตของรูปทรงนั้น รูปร่างหนึ่งมิติ (เช่นเส้นตรง) และรูปร่างสองมิติ (เช่นรูปสี่เหลี่ยมจัตุรัส) ถูกกำหนดให้มีปริมาตรเป็นศูนย์ในปริภูมิสามมิติ ปริมาตรของของแข็ง (ไม่ว่าจะมีรูปทรงปกติหรือไม่ปกติ) สามารถตรวจวัดได้ด้วยการแทนที่ของไหล และการแทนที่ของเหลวสามารถใช้ตรวจวัดปริมาตรของแก๊สได้อีกด้วย ปริมาตรรวมของวัสดุสองชนิดโดยปกติจะมากกว่าปริมาตรของวัสดุอย่างใดอย่างหนึ่ง เว้นแต่เมื่อวัสดุหนึ่งละลายในอีกวัสดุหนึ่งแล้ว ปริมาตรรวมจะไม่เป็นไปตามหลักการบวก ในเรขาคณิตเชิงอนุพันธ์ ปริมาตรถูกอธิบายด้วยความหมายของรูปแบบปริมาตร (volume form) และเป็นตัวยืนยงแบบไรมันน์ (Riemann invariant) ที่สำคัญโดยรวม ในอุณหพลศาสตร์ ปริมาตรคือตัวแปรเสริม (parameter) ชนิดพื้นฐาน และเป็นตัวแปรควบคู่ (conjugate variable) กับความดัน.

ทรงยี่สิบหน้าปลายตัดและปริมาตร · ทรงแปดหน้าปลายตัดและปริมาตร · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด

ทรงยี่สิบหน้าปลายตัด มี 15 ความสัมพันธ์ขณะที่ ทรงแปดหน้าปลายตัด มี 7 ขณะที่พวกเขามีเหมือนกัน 5, ดัชนี Jaccard คือ 22.73% = 5 / (15 + 7)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ทรงยี่สิบหน้าปลายตัดและทรงแปดหน้าปลายตัด หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: