เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ทรงคล้ายทรงกลมและระบบพิกัด

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ทรงคล้ายทรงกลมและระบบพิกัด

ทรงคล้ายทรงกลม vs. ระบบพิกัด

ทรงคล้ายทรงกลม หรือ สเฟียรอยด์ (spheroid) ในทางคณิตศาสตร์ หมายถึง ผิวกำลังสอง ใน 3 มิติ ที่ได้จากการหมุนวงรีรอบแกนมุขสำคัญ หากรูปวงรีนั้นหมุนรอบแกนเอก ผิวที่ได้เรียกว่า ทรงคล้ายทรงกลมแบนข้าง (prolate spheroid) ซึ่งมีรูปคล้ายลูกรักบี้ หรือ เมล็ดข้าว หากรูปวงรีนั้นหมุนรอบแกนโท ผิวที่ได้เรียกว่า ทรงคล้ายทรงกลมแบนขั้ว (oblate spheroid) ซึ่งมีรูปเหมือนลูกโลก ทรงคล้ายทรงกลม คือ ทรงรีที่มีแกน(ในภาษาอังกฤษเรียก semi-axis เพื่อแสดงความแตกต่างจาก axis ซึ่งหมายถึงแกน)ของรูปสองแกนยาวเท่ากัน ดังแสดงในสมการ ทรงคล้ายทรงกลมแบนข้าง มี แกนโทสองแกน สั้นกว่า แกนเอกหนึ่งแกน (b. ระบบพิกัดคาร์ทีเซียนสองมิติ ระบบพิกัดคาร์ทีเซียนสามมิติ พิกัด หมายถึง ค่าของตัวเลขที่ใช้อธิบายตำแหน่งของจุดบนระนาบหรือปริภูมิ ตัวอย่างเช่น ระดับความสูงจากน้ำทะเลก็เป็นพิกัดอย่างหนึ่งที่อธิบายตำแหน่งของจุดเหนือระดับพื้นผิวโลก ส่วนระบบพิกัดคือวิธีการอย่างเป็นระบบที่มีการให้ค่าคู่อันดับหรือสามสิ่งอันดับแทนตำแหน่งของแต่ละจุดบนระนาบหรือปริภูมิ ซึ่งคู่อันดับหรือสามสิ่งอันดับหนึ่งชุดจะหมายถึงตำแหน่งเพียงตำแหน่งเดียวเท่านั้น ดังตัวอย่าง สามสิ่งอันดับที่ประกอบด้วย ละติจูด ลองจิจูด และอัลติจูด (ระดับความสูง) เป็นระบบพิกัดที่ใช้ระบุตำแหน่งของจุดเหนือพื้นผิวโลก พิกัดอาจนิยามได้ในบริบททั่วไป เช่น ถ้าหากเราไม่สนใจความสูง ดังนั้นละติจูดและลองจิจูดจึงสามารถเป็นระบบพิกัดเหนือพื้นผิวโลกก็ได้ โดยสมมติให้โลกมีรูปร่างใกล้เคียงทรงกลม พิกัดเช่นนี้เป็นสิ่งสำคัญในดาราศาสตร์ ซึ่งใช้สำหรับอธิบายตำแหน่งของเทหวัตถุบนท้องฟ้าโดยไม่สนใจระยะทาง (ดูเพิ่มที่ระบบพิกัดทรงกลมฟ้า) อย่างไรก็ตาม บทความนี้จะมุ่งประเด็นไปที่ระบบพิกัดบนระนาบและปริภูมิสามมิติเท่านั้น เพื่อให้ง่ายต่อความเข้าใจในขอบเขตของคณิตศาสตร์มูลฐาน.

ความคล้ายคลึงกันระหว่าง ทรงคล้ายทรงกลมและระบบพิกัด

ทรงคล้ายทรงกลมและระบบพิกัด มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ทรงกลม

ทรงกลม

รูปทรงกลม ในทางเรขาคณิต ทรงกลม (อังกฤษ: sphere) เป็นกราฟสามมิติ ทรงกลมที่มีจุดศูนย์กลางที่ (x0, y0, z0) จะมีสมการเป็น จุดบนทรงกลมที่มีรัศมี r จะผ่าน พื้นที่ผิวของทรงกลมที่มีรัศมี r คือ และปริมาตรคือ ทรงกลมเป็นรูปทรงที่มีพื้นที่ผิวน้อยที่สุดในบรรดารูปทรงที่มีปริมาตรเท่ากัน และมีปริมาตรมากที่สุดในบรรดารูปทรงที่มีพื้นที่ผิวเท่ากัน หมวดหมู่:เรขาคณิตเชิงอนุพันธ์ หมวดหมู่:เรขาคณิตมูลฐาน หมวดหมู่:พื้นผิว หมวดหมู่:ทอพอโลยี.

ทรงกลมและทรงคล้ายทรงกลม · ทรงกลมและระบบพิกัด · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ทรงคล้ายทรงกลมและระบบพิกัด

ทรงคล้ายทรงกลม มี 4 ความสัมพันธ์ขณะที่ ระบบพิกัด มี 30 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 2.94% = 1 / (4 + 30)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ทรงคล้ายทรงกลมและระบบพิกัด หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: