เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ดีเทอร์มิแนนต์และรอยเมทริกซ์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ดีเทอร์มิแนนต์และรอยเมทริกซ์

ดีเทอร์มิแนนต์ vs. รอยเมทริกซ์

ในสาขาพีชคณิต ดีเทอร์มิแนนต์ (determinant) คือฟังก์ชันหนึ่งที่ให้ผลลัพธ์เป็นปริมาณสเกลาร์ ซึ่งขึ้นอยู่กับค่าของ n ในมิติ n×n ของเมทริกซ์จัตุรัส A ส่วนความหมายทางเรขาคณิตเบื้องต้น ดีเทอร์มิแนนต์คือตัวประกอบมาตราส่วน (scale factor) ของปริมาตร เมื่อ A ถูกใช้เป็นการแปลงเชิงเส้น ดีเทอร์มิแนนต์ถูกใช้ประโยชน์ในเรื่องพีชคณิตเชิงหลายเส้น (multilinear algebra) และแคลคูลัส ซึ่งใช้สำหรับกฎการแทนที่ (substitution rule) ในตัวแปรบางกลุ่ม สำหรับจำนวนเต็มบวก n ที่กำหนดขึ้น ฟังก์ชันดีเทอร์มิแนนต์จะมีเพียงหนึ่งเดียวบนเมทริกซ์มิติ n×n เหนือริงสลับที่ใดๆ (commutative ring) โดยเฉพาะเมื่อฟังก์ชันนี้นิยามไว้บนริงสลับที่ที่เป็นฟีลด์ของจำนวนจริงหรือจำนวนเชิงซ้อน ดีเทอร์มิแนนต์ของเมทริกซ์ A สามารถเขียนแทนได้ด้วย det (A) หรือ |A| ซึ่งสัญกรณ์แบบขีดตั้งอาจเกิดความกำกวม เนื่องจากมีการใช้สัญกรณ์เดียวกันนี้สำหรับค่าประจำเมทริกซ์ (matrix norm) และค่าสัมบูรณ์ อย่างไรก็ตาม ค่าประจำเมทริกซ์มักจะเขียนด้วยสัญกรณ์แบบขีดตั้งสองขีด (เช่น ‖A‖) เพื่อไม่ให้เกิดความสับสนกับดีเทอร์มิแนนต์ ตัวอย่างการใช้งาน กำหนดให้ A เป็นเมทริกซ์ดังนี้ ดีเทอร์มิแนนต์ของ A สามารถเขียนเป็น ซึ่งวงเล็บเหลี่ยมนอกเมทริกซ์จะถูกแทนที่ด้วยเส้นตั้งเพียงอย่างเดียว. ในพีชคณิตเชิงเส้น รอยเมทริกซ์ หรือ เดือยเมทริกซ์ (ทับศัพท์ว่า เทรซ) คือผลบวกของสมาชิกที่อยู่บนเส้นทแยงมุมของเมทริกซ์จัตุรัส (จากซ้ายบนไปขวาล่าง) นั่นคือ โดยที่ a_ หมายถึงสมาชิกในแถวที่ i และหลักที่ j ของเมทริกซ์ A นอกจากนั้น รอยเมทริกซ์ยังเท่ากับผลบวกของค่าลักษณะเฉพาะ (eigenvalue) อีกด้วย ดังตัวอย่างการหารอยเมทริกซ์ ของเมทริกซ์ต่อไปนี้ 1 & 5 & 3 \\ 0 & 1 & 4 \\ 5 & -3 & -4 \end.

ความคล้ายคลึงกันระหว่าง ดีเทอร์มิแนนต์และรอยเมทริกซ์

ดีเทอร์มิแนนต์และรอยเมทริกซ์ มี 0 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย)

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ดีเทอร์มิแนนต์และรอยเมทริกซ์

ดีเทอร์มิแนนต์ มี 18 ความสัมพันธ์ขณะที่ รอยเมทริกซ์ มี 4 ขณะที่พวกเขามีเหมือนกัน 0, ดัชนี Jaccard คือ 0.00% = 0 / (18 + 4)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ดีเทอร์มิแนนต์และรอยเมทริกซ์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: