เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ซากมหานวดาราและพัลซาร์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ซากมหานวดาราและพัลซาร์

ซากมหานวดารา vs. พัลซาร์

ซากมหานวดารา N49 ในเมฆแมเจลแลนใหญ่ ซากมหานวดารา (supernova remnant; SNR) คือโครงสร้างที่เกิดจากการระเบิดขนาดใหญ่ของดวงดาวในปรากฏการณ์ มหานวดารา ซากมหานวดาราคงอยู่ด้วยคลื่นช็อคที่ขยายตัวออกมา ประกอบด้วยวัตถุที่ดีดตัวออกมาจากการระเบิด รวมถึงวัตถุมวลสารระหว่างดาวระหว่างเส้นทางที่ถูกกวาดเข้ามารวมด้วย เส้นทางการเกิดมหานวดารามีสองทางคือ เมื่อดาวฤกษ์มวลมากไม่มีเชื้อเพลิงต่อไปและหยุดสร้างพลังงานฟิวชั่นที่แกนกลาง จึงเกิดการแตกสลายจากภายในด้วยแรงจากความโน้มถ่วงของมันเองกลายเป็นดาวนิวตรอนหรือหลุมดำ หรือดาวแคระขาวที่รวบรวมวัตถุจากดาวข้างเคียงเข้ามาจนกระทั่งมีขนาดถึงมวลวิกฤต และเกิดการระเบิดนิวเคลียร์ความร้อนขึ้น ผลจากการระเบิดมหานวดาราทั้งสองกรณีทำให้มวลสารระหว่างดาวส่วนใหญ่หรือทั้งหมดถูกขับออกไปด้วยความเร็วประมาณ 10% ของความเร็วแสง หรือราว 3,000 กิโลเมตร/วินาที เมื่อมวลสารเหล่านี้ปะทะกับอวกาศหรือแก๊สระหว่างดาวที่อยู่รอบๆ จึงเกิดเป็นคลื่นช็อคที่ทำให้แก๊สมีอุณหภูมิเพิ่มสูงขึ้นมากถึงขนาด 10 ล้านเคลวิน และกลายเป็นพลาสมา ซากมหานวดาราที่โด่งดังที่สุดและถูกเฝ้าสังเกตมากที่สุดน่าจะได้แก่ SN 1987A ซึ่งเป็นมหานวดาราในเมฆแมเจลแลนใหญ่ ค้นพบในปี.. แผนภาพของพัลซาร์ ทรงกลมตรงกลางหมายถึงดาวนิวตรอน เส้นโค้งรอบๆ คือเส้นสนามแม่เหล็ก ส่วนรูปกรวยที่พุ่งออกมาคือลำการแผ่รังสี พัลซาร์ (Pulsar; มาจากการรวมกันของ 2 คำ คือ pulsating และ star) คือดาวนิวตรอนที่หมุนรอบตัวเองด้วยความเร็วสูงมาก และแผ่รังสีคลื่นแม่เหล็กไฟฟ้าออกมาเป็นจังหวะ คาบการหมุนที่สังเกตได้อยู่ระหว่าง 1.4 มิลลิวินาที ถึง 8.5 วินาที เราสามารถสังเกตเห็นการแผ่รังสีได้จากลำรังสีที่ชี้มาทางโลกเท่านั้น ลักษณะปรากฏการณ์เช่นนี้เรียกว่า ปรากฏการณ์ประภาคาร (lighthouse effect) และการที่สังเกตเห็นรังสีเป็นช่วงๆ (pulse) นี้เองเป็นที่มาของชื่อพัลซาร์ พัลซาร์บางแห่งมีดาวเคราะห์โคจรอยู่รอบๆ เช่น ดาว PSR B1257+12 เวอร์เนอร์ เบ็คเกอร์ แห่งสถาบันมักซ์ พลังค์เพื่อการศึกษาฟิสิกส์นอกโลก (Max Planck Institute for Extraterrestrial Physics) ได้กล่าวเอาไว้ในปี 2549 ว่า "ทฤษฎีว่าด้วยเหตุที่พัลซาร์แผ่รังสีออกมายังคงเป็นสิ่งลึกลับ แม้จะมีการเฝ้าศึกษามาเป็นเวลากว่า 40 ปีแล้ว".

ความคล้ายคลึงกันระหว่าง ซากมหานวดาราและพัลซาร์

ซากมหานวดาราและพัลซาร์ มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): หลุมดำดาวนิวตรอน

หลุมดำ

มุมมองจำลองของหลุมดำด้านหน้าของทางช้างเผือก โดยมีมวลเทียบเท่าดวงอาทิตย์ 10 ดวงจากระยะทาง 600 กิโลเมตร หลุมดำ (black hole) หมายถึงเทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้แต่แสง ยกเว้นหลุมดำด้วยกัน เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ ที่ตำแหน่งรัศมีชวาร์สชิลด์ ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึงจะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า "หลุมดำ" เราไม่สามารถมองเห็นหลุมดำด้วยกล้องโทรทรรศน์ใดๆ เนื่องจากหลุมดำไม่เปล่งแสงหรือรังสีใดเลย แต่สามารถตรวจพบได้ด้วยกล้องโทรทรรศน์วิทยุ และคลื่นโน้มถ่วงของหลุมดำ (ในเชิงทฤษฎี โครงการแอลไอจีโอ) และจนถึงปัจจุบันได้ค้นพบหลุมดำในจักรวาลแล้วอย่างน้อย 6 แห่ง หลุมดำเป็นซากที่สิ้นสลายของดาวฤกษ์ที่ถึงอายุขัยแล้ว สสารที่เคยประกอบกันเป็นดาวนั้นได้ถูกอัดตัวด้วยแรงดึงดูดของตนเองจนเหลือเป็นเพียงมวลหนาแน่นที่มีขนาดเล็กยิ่งกว่านิวเคลียสของอะตอมเดียว ซึ่งเรียกว่า ภาวะเอกฐาน หลุมดำแบ่งได้เป็น 4 ประเภท คือ หลุมดำมวลยวดยิ่ง เป็นหลุมดำในใจกลางของดาราจักร, หลุมดำขนาดกลาง, หลุมดำจากดาวฤกษ์ ซึ่งเกิดจากการแตกดับของดาวฤกษ์, และ หลุมดำจิ๋วหรือหลุมดำเชิงควอนตัม ซึ่งเกิดขึ้นในยุคเริ่มแรกของเอกภพ แม้ว่าจะไม่สามารถมองเห็นภายในหลุมดำได้ แต่ตัวมันก็แสดงการมีอยู่ผ่านการมีผลกระทบกับวัตถุที่อยู่ในวงโคจรภายนอกขอบฟ้าเหตุการณ์ ตัวอย่างเช่น หลุมดำอาจจะถูกสังเกตเห็นได้โดยการติดตามกลุ่มดาวที่โคจรอยู่ภายในศูนย์กลางหลุมดำ หรืออาจมีการสังเกตก๊าซ (จากดาวข้างเคียง) ที่ถูกดึงดูดเข้าสู่หลุมดำ ก๊าซจะม้วนตัวเข้าสู่ภายใน และจะร้อนขึ้นถึงอุณหภูมิสูง ๆ และปลดปล่อยรังสีขนาดใหญ่ที่สามารถตรวจจับได้จากกล้องโทรทรรศน์ที่โคจรอยู่รอบโลก การสำรวจให้ผลในทางวิทยาศาสตร์เห็นพ้องต้องกันว่าหลุมดำนั้นมีอยู่จริงในเอกภพ แนวคิดของวัตถุที่มีแรงดึงดูดมากพอที่จะกันไม่ให้แสงเดินทางออกไปนั้นถูกเสนอโดยนักดาราศาสตร์มือสมัครเล่นชาวอังกฤษ จอห์น มิเชล ในปี 1783 และต่อมาในปี 1795 นักฟิสิกส์ชาวฝรั่งเศส ปีแยร์-ซีมง ลาปลาส ก็ได้ข้อสรุปเดียวกัน ตามความเข้าใจล่าสุด หลุมดำถูกอธิบายโดยทฤษฎีสัมพัทธภาพทั่วไป ซึ่งทำนายว่าเมื่อมีมวลขนาดใหญ่มากในพื้นที่ขนาดเล็ก เส้นทางในพื้นที่ว่างนั้นจะถูกทำให้บิดเบี้ยวไปจนถึงศูนย์กลางของปริมาตร เพื่อไม่ให้วัตถุหรือรังสีใดๆ สามารถออกมาได้ ขณะที่ทฤษฏีสัมพัทธภาพทั่วไปอธิบายว่าหลุมดำเป็นพื้นที่ว่างที่มีความเป็นภาวะเอกฐานที่จุดศูนย์กลางและที่ขอบฟ้าเหตุการณ์บริเวณขอบ คำอธิบายนี่เปลี่ยนไปเมื่อค้นพบกลศาสตร์ควอนตัม การค้นคว้าในหัวข้อนี้แสดงให้เห็นว่านอกจากหลุมดำจะดึงวัตถุไว้ตลอดกาล แล้วยังมีการค่อย ๆ ปลดปล่อยพลังงานภายใน เรียกว่า รังสีฮอว์คิง และอาจสิ้นสุดลงในที่สุด อย่างไรก็ตาม ยังไม่มีคำอธิบายเกี่ยวกับหลุมดำที่ถูกต้องตามทฤษฎีควอนตัม.

ซากมหานวดาราและหลุมดำ · พัลซาร์และหลุมดำ · ดูเพิ่มเติม »

ดาวนิวตรอน

วนิวตรอน (Neutron Star) เป็นซากที่เหลือจากยุบตัวของการระเบิดแบบซูเปอร์โนวาชนิด II,Ib หรือ Ic และจะเกิดเฉพาะดาวฤกษ์มวลมากมีส่วนประกอบเพียงนิวตรอนที่อะตอมไร้กระแสไฟฟ้า (นิวตรอนมีมวลสารใกล้เคียงโปรตอน) และดาวประเภทนี้สามารถคงตัวอยู่ได้ด้วยหลักการกีดกันของเพาลีเกี่ยวกับแรงผลักระหว่างนิวตรอน ดาวนิวตรอนมีมวลประมาณ 1.35 ถึง 2.1 เท่ามวลดวงอาทิตย์ และมีรัศมี 20 ถึง 10 กิโลเมตรตามลำดับ (เมื่อดาวนิวตรอนมีมวลเพิ่มขึ้น รัศมีของดาวจะลดลง) ดาวนิวตรอนจึงมีขนาดเล็กกว่าดวงอาทิตย์ 30,000 ถึง 70,000 เท่า ดังนั้นดาวนิวตรอนจึงมีความหนาแน่นที่ 8*1013 ถึง 2*1015 กรัมต่อลูกบากศ์เซนติเมตร ซึ่งเป็นช่วงของความหนาแน่นของนิวเคลียสอะตอม ต้องใช้ความเร็วหลุดพ้นประมาณ 150,000 กิโลเมตรต่อวินาที หรือประมาณครึ่งหนึ่งของความเร็วแสง โดยทั่วไปแล้ว ดาวที่มีมวลน้อยกว่า 1.44 เท่ามวลดวงอาทิตย์ จะเป็นดาวแคระขาวตามขีดจำกัดของจันทรสิกขาร์ ถ้าอยู่ระหว่าง 2 ถึง 3 เท่ามวลดวงอาทิตย์อาจจะเป็นดาวควาร์ก (แต่ก็ยังเป็นที่ถกเถียงกันอยู่) ส่วนดาวที่มีมวลมากกว่านี้จะกลายเป็นหลุมดำไป เมื่อดาวฤกษ์มวลมากเกิดซูเปอร์โนวาและกลายเป็นดาวนิวตรอน ส่วนแก่นของมันจะได้รับโมเมนตัมเชิงมุมมา ซึ่งการเปลี่ยนแปลงรัศมีจากใหญ่ไปเล็กนั้นจะทำให้ความเร็วในการหมุนรอบตัวเองขึ้น แต่เมื่อเวลาผ่านไปก็จะหมุนรอบตัวเองช้าลงทีละน้อย ความเร็วในการหมุนรอบตัวเองของดาวนิวตรอนที่มีการบันทึกได้นั้นอยู่ระหว่าง 700 รอบต่อวินาทีไปจนถึง 30 วินาทีต่อรอบ ความเร่งที่พื้นผิวอยู่ที่ 2*1011 ถึง 3*1012 เท่ามากกว่าโลก ด้วยเหตุนี้ดาวนิวตรอนจึงสามารถส่งคลื่นวิทยุออกมาเป็นช่วงหรือพัลซาร์ และกระแสแม่เหล็กออกมาปริมาณมหาศาล การที่ดาวนิวตรอนสามารถส่งคลื่นวิทยุออกมาเป็นช่วงๆ นั้นทำได้อย่างไร ยังคงเป็นคำถามที่ไม่มีคำตอบ แม้ว่าจะมีการวิจัยเรื่องนี้มานานกว่า 40 ปีแล้วก็ตามในดาราจักรของเรานั้นเราพบเพียงไม่กี่สิบดวงเท่านั้น เรายังพบอีกว่า ดาวนิวตรอนน่าจะเป็นต้นกำเนิดของ แสงวาบรังสีแกมมา ที่มีความสว่างมากกว่าซูเปอร์โนวา หลายเท.

ซากมหานวดาราและดาวนิวตรอน · ดาวนิวตรอนและพัลซาร์ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ซากมหานวดาราและพัลซาร์

ซากมหานวดารา มี 15 ความสัมพันธ์ขณะที่ พัลซาร์ มี 6 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 9.52% = 2 / (15 + 6)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ซากมหานวดาราและพัลซาร์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: