โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

จำนวนเต็มและริง (คณิตศาสตร์)

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง จำนวนเต็มและริง (คณิตศาสตร์)

จำนวนเต็ม vs. ริง (คณิตศาสตร์)

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว. ในทางคณิตศาสตร์ ริง (ring) หมายถึงโครงสร้างเชิงพีชคณิตประเภทหนึ่ง ซึ่งประกอบด้วยคุณสมบัติต่างๆ ทางพีชคณิตของจำนวนเต็ม ริงหนึ่งๆ มีการดำเนินการสองชนิดที่มักเรียกว่า การบวก กับ การคูณ ต่างกับกรุป (group) ที่มีการดำเนินการเพียงชนิดเดียว สาขาหนึ่งของพีชคณิตนามธรรมที่ศึกษาเกี่ยวกับริง เรียกว่า ทฤษฎีริง.

ความคล้ายคลึงกันระหว่าง จำนวนเต็มและริง (คณิตศาสตร์)

จำนวนเต็มและริง (คณิตศาสตร์) มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): กรุป (คณิตศาสตร์)สมบัติการสลับที่สมบัติการเปลี่ยนหมู่สมาชิกเอกลักษณ์

กรุป (คณิตศาสตร์)

กรุป (group) ในพีชคณิตนามธรรม คือ เซตกับการดำเนินการทวิภาค เช่น การคูณหรือการบวก ซึ่งสอดคล้องกับสัจพจน์ ตัวอย่างเช่น เซตของจำนวนเต็มเป็นกรุปภายใต้การดำเนินการการบวก สาขาของคณิตที่ศึกษาเกี่ยวกับกรุปเรียกว่า ทฤษฎีกรุป ต้นกำเนิดของทฤษฎีกรุปนั้นย้อนกลับไปสู่ผลงานของเอวาริสต์ กาลัว (พ.ศ. 2373) เกี่ยวกับปัญหาที่ว่าเมื่อใดสมการเชิงพีชคณิตจึงจะสามารถหาคำตอบได้จากราก ก่อนผลงานของเขาการศึกษากรุปเป็นไปอย่างเป็นรูปธรรม ในรูปแบบการเรียงสับเปลี่ยน หลักเกณฑ์บางข้อของอาบีเลียนกรุป อยู่ในทฤษฎีรูปแบบกำลังสอง หลายสิ่งที่ศึกษากันในคณิตศาสตร์เป็นกรุป รวมไปถึงระบบจำนวนที่คุ้นเคย เช่น จำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อน ภายใต้การบวก เช่นเดียวกับจำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อนที่ไม่ใช่ศูนย์ ภายใต้การคูณ ตัวอย่างที่สำคัญอีกตัวอย่างหนึ่งคือ เมทริกซ์ไม่เอกฐาน ภายใต้การคูณ และฟังก์ชันที่หาฟังก์ชันผกผันได้ ภายใต้ การประกอบฟังก์ชัน ทฤษฎีกรุปรองรับคุณสมบัติของระบบเหล่านี้และระบบอื่นๆอีกมากมายในรูปแบบทั่วไป ผลลัพธ์ยังสามารถประยุกต์ได้หลากหลาย ทฤษฎีกรุปยังเต็มไปด้วยทฤษฎีบทในตัวมันเองอีกมากเช่นกัน ภายใต้กรุปยังมีโครงสร้างเชิงพีชคณิตอีกมาก เช่นฟิลด์ และปริภูมิเวกเตอร์ กรุปยังเป็นเครื่องมือที่สำคัญในการศึกษาสมมาตรในรูปแบบต่างๆ หลักการที่ว่า "สมมาตรของวัตถุใดๆก่อให้เกิดกรุป" เป็นหลักพื้นฐานของคณิตศาสตร์มากมาย ด้วยเหตุผลเหล่านี้ทฤษฎีกรุปจึงเป็นสาขาที่สำคัญในคณิตศาสตร์ยุดใหม่ และยังเป็นหนึ่งในบทประยุกต์ของ ฟิสิกส์เชิงคณิตศาสตร์ อีกด้วย (ตัวอย่างเช่น ฟิสิกส์อนุภาค).

กรุป (คณิตศาสตร์)และจำนวนเต็ม · กรุป (คณิตศาสตร์)และริง (คณิตศาสตร์) · ดูเพิ่มเติม »

สมบัติการสลับที่

ตัวอย่างแสดงสมบัติการสลับที่ของการบวก (3 + 2.

จำนวนเต็มและสมบัติการสลับที่ · ริง (คณิตศาสตร์)และสมบัติการสลับที่ · ดูเพิ่มเติม »

สมบัติการเปลี่ยนหมู่

ในคณิตศาสตร์ สมบัติการเปลี่ยนหมู่ (associativity) เป็นสมบัติหนึ่งที่สามารถมีได้ของการดำเนินการทวิภาค ซึ่งนิพจน์ที่มีตัวดำเนินการเดียวกันตั้งแต่สองตัวขึ้นไป การดำเนินการสามารถกระทำได้โดยไม่สำคัญว่าลำดับของตัวถูกดำเนินการจะเป็นอย่างไร นั่นหมายความว่า การใส่วงเล็บเพื่อบังคับลำดับการคำนวณในนิพจน์ จะไม่ส่งผลต่อผลลัพธ์สุดท้าย ตัวอย่างเช่น นิพจน์ข้างซ้ายจะบวก 5 กับ 2 ก่อนแล้วค่อยบวก 1 ส่วนนิพจน์ข้างขวาจะบวก 2 กับ 1 ก่อนแล้วค่อยบวก 5 ไม่ว่าลำดับของวงเล็บจะเป็นอย่างไร ผลบวกของนิพจน์ก็เท่ากับ 8 ไม่เปลี่ยนแปลง และเนื่องจากสมบัตินี้เป็นจริงในการบวกของจำนวนจริงใดๆ เรากล่าวว่า การบวกของจำนวนจริงเป็นการดำเนินการที่ เปลี่ยนหมู่ได้ (associative) ไม่ควรสับสนระหว่างสมบัติการเปลี่ยนหมู่กับสมบัติการสลับที่ สมบัติการสลับที่เป็นการเปลี่ยนลำดับของตัวถูกดำเนินการในนิพจน์ ในขณะที่สมบัติการเปลี่ยนหมู่ไม่ได้สลับตัวถูกดำเนินการเหล่านั้น เพียงแค่เปลี่ยนลำดับการคำนวณ เช่นตัวอย่างต่อไปนี้ ไม่ใช่ตัวอย่างของสมบัติการเปลี่ยนหมู่ เพราะว่า 2 กับ 5 สลับที่กัน การดำเนินการเปลี่ยนหมู่ได้มีมากมายในคณิตศาสตร์ และด้วยข้อเท็จจริงที่ว่าโครงสร้างเชิงพีชคณิตส่วนใหญ่จำเป็นต้องมีการดำเนินการทวิภาคที่เปลี่ยนหมู่ได้เป็นส่วนประกอบ อย่างไรก็ตามการดำเนินการหลายอย่างที่สำคัญก็ เปลี่ยนหมู่ไม่ได้ หรือ ไม่เปลี่ยนหมู่ (non-associative) เช่นผลคูณไขว้ของเวกเตอร.

จำนวนเต็มและสมบัติการเปลี่ยนหมู่ · ริง (คณิตศาสตร์)และสมบัติการเปลี่ยนหมู่ · ดูเพิ่มเติม »

สมาชิกเอกลักษณ์

ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.

จำนวนเต็มและสมาชิกเอกลักษณ์ · ริง (คณิตศาสตร์)และสมาชิกเอกลักษณ์ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง จำนวนเต็มและริง (คณิตศาสตร์)

จำนวนเต็ม มี 22 ความสัมพันธ์ขณะที่ ริง (คณิตศาสตร์) มี 15 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 10.81% = 4 / (22 + 15)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง จำนวนเต็มและริง (คณิตศาสตร์) หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »