เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

จำนวนเต็มและฟังก์ชันไดแกมมา

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง จำนวนเต็มและฟังก์ชันไดแกมมา

จำนวนเต็ม vs. ฟังก์ชันไดแกมมา

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว. ในทางคณิตศาสตร์ ฟังก์ชันไดแกมมา (digamma function) คือฟังก์ชันที่นิยามว่าเป็นอนุพันธ์ลอการิทึม (logarithmic derivative) ของฟังก์ชันแกมมา กล่าวคือ ซึ่งฟังก์ชันไดแกมมา เป็นฟังก์ชันโพลีแกมมา (polygamma function) อันดับที่ 1 ด.

ความคล้ายคลึงกันระหว่าง จำนวนเต็มและฟังก์ชันไดแกมมา

จำนวนเต็มและฟังก์ชันไดแกมมา มี 0 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย)

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง จำนวนเต็มและฟังก์ชันไดแกมมา

จำนวนเต็ม มี 22 ความสัมพันธ์ขณะที่ ฟังก์ชันไดแกมมา มี 3 ขณะที่พวกเขามีเหมือนกัน 0, ดัชนี Jaccard คือ 0.00% = 0 / (22 + 3)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง จำนวนเต็มและฟังก์ชันไดแกมมา หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: