เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

จำนวนจุดลอยตัวและจำนวนอตรรกยะ

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง จำนวนจุดลอยตัวและจำนวนอตรรกยะ

จำนวนจุดลอยตัว vs. จำนวนอตรรกยะ

Z3 คอมพิวเตอร์ฐานสองเชิงกลที่สามารถโปรแกรมและดำนำเนินการทางคณิตศาสตร์ได้เครื่องแรก (จัดแสดงต่อสาธารณะที่พิพิธภัณฑ์เยอรมันในเมืองมิวนิก ตัวอย่างแสดงถึงการแทนจำนวนจุดลอยตัวโดยแบ่งเป็นการเก็บค่าเลขนัยสำคัญและเลขชี้กำลัง ในทางคอมพิวเตอร์ จำนวนจุดลอยตัว (floating point) คือระบบแทนจำนวนชนิดหนึ่ง ซึ่งจำนวนนั้นอาจมีขนาดใหญ่หรือขนาดเล็กเกินกว่าที่จะแทนด้วยจำนวนเต็ม เนื่องจากจำนวนต่าง ๆ สามารถเขียนแทนด้วยเลขนัยสำคัญ (mantissa) จำนวนหนึ่งโดยประมาณ และเปลี่ยนสเกลด้วยเลขชี้กำลัง (exponent) ฐานของสเกลปกติจะเป็น 2, 10 หรือ 16 เป็นต้น จำนวนทั่วไปจึงสามารถเขียนให้อยู่ในรูปแบบนี้ได้ คำว่า จุดลอยตัว จึงหมายถึงจุดฐาน (จุดทศนิยม หรือในคอมพิวเตอร์คือ จุดทวินิยม) ที่สามารถ "ลอยตัว" ได้ หมายความว่า จุดฐานสามารถวางไว้ที่ตำแหน่งใดก็ได้ที่สัมพันธ์กับเลขนัยสำคัญของจำนวนนั้น ตำแหน่งนี้แสดงไว้แยกต่างหากในข้อมูลภายใน และการแทนด้วยจำนวนจุดลอยตัวจึงอาจถือว่าเป็นสัญกรณ์วิทยาศาสตร์ในบริบทของคอมพิวเตอร์ หลายปีที่ผ่านมา คอมพิวเตอร์ใช้งานจำนวนจุดลอยตัวในรูปแบบที่แตกต่างกัน เวลาต่อมาจึงทำให้เกิดมาตรฐาน IEEE 754 สำหรับจำนวนที่พบได้อย่างปกติสามัญชนิดนี้ ข้อดีของจำนวนจุดลอยตัวที่มีต่อจำนวนจุดตรึง (fixed point รวมทั้งจำนวนเต็ม) คือจำนวนจุดลอยตัวสามารถรองรับค่าได้ในขอบเขตที่กว้างกว่า ตัวอย่างเช่น จำนวนจุดตรึงที่มีตัวเลขเจ็ดหลัก และกำหนดให้สองหลักสุดท้ายอยู่หลังจุด สามารถแทนจำนวนเหล่านี้ได้ 12345.67, 123.45, 1.23 ในขณะที่จำนวนจุดลอยตัว (ตามเลขฐานสิบของมาตรฐาน IEEE 754) ที่มีตัวเลขเจ็ดหลักเช่นกัน สามารถแทนจำนวนเหล่านี้ได้อีกเพิ่มเติม 1.234567, 123456.7, 0.00001234567, 1234567000000000 เป็นต้น แต่ข้อเสียคือรูปแบบของจำนวนจุดลอยตัวจำเป็นต้องใช้หน่วยเก็บข้อมูลมากขึ้นอีกเล็กน้อย (สำหรับเข้ารหัสตำแหน่งของจุดฐาน) ดังนั้นเมื่อจำนวนทั้งสองประเภทเก็บบันทึกอยู่ในที่ที่เหมือนกัน จำนวนจุดลอยตัวจะใช้เนื้อที่มากกว่าเพื่อเพิ่มความเที่ยง (precision) ความเร็วของการดำเนินการกับจำนวนจุดลอยตัว เป็นการวัดประสิทธิภาพของคอมพิวเตอร์อย่างหนึ่งที่สำคัญในขอบเขตข่ายโปรแกรมประยุกต์ ซึ่งมีหน่วยวัดเป็นฟล็อปส์ (FLOPS - floating-point operations per second การประมวลผลจุดลอยตัวต่อวินาที). ำนวนอตรรกยะ ในวิชาคณิตศาสตร์ คือจำนวนที่ไม่สามารถเขียนได้ในรูปเศษส่วนที่มีทั้งตัวเศษและส่วนเป็นจำนวนเต็มได้ หรือกล่าวได้ว่ามันไม่สามารถเขียนในรูป ได้ เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ เห็นได้ชัดว่าจำนวนอตรรกยะคือจำนวนที่ไม่ว่าเขียนทศนิยมในฐานใดก็ตามจะไม่รู้จบ และไม่มีรูปแบบตายตัว แต่นักคณิตศาสตร์ก็ไม่ได้ให้นิยามจำนวนอตรรกยะเช่นนั้น จำนวนจริงเกือบทั้งหมดเป็นจำนวนอตรรกยะโดยนัยที่จะอธิบายต่อไปนี้ จำนวนอตรรกยะบางจำนวนเป็นจำนวนพีชคณิต เช่น √2 รากที่สองของ 2 3√5 รากที่สามของ 5 และสัดส่วนทอง แทนด้วยอีกษรกรีก \varphi (ฟาย) หรือบางครั้ง \tau (เทา) ที่เหลือเป็นจำนวนอดิศัย เช่น π และ e เมื่ออัตราส่วนของความยาวของส่วนของเส้นตรงสองเส้นเป็นจำนวนอตรรกยะ เราเรียกส่วนของเส้นตรงทั้งสองเส้นนั้นว่าวัดไม่ได้ (incommensurable) หมายความว่า ทั้งสองเส้นไม่มีมาตรวัดเดียวกัน มาตรวัดของส่วนของเส้นตรง I ในที่นี้หมายถึงส่วนของเส้นตรง J ที่วัด I โดยวาง J แบบหัวต่อหางเป็นจำนวนเต็มจนยาวเท่ากับ I.

ความคล้ายคลึงกันระหว่าง จำนวนจุดลอยตัวและจำนวนอตรรกยะ

จำนวนจุดลอยตัวและจำนวนอตรรกยะ มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): พาย (ค่าคงตัว)จำนวนเต็ม

พาย (ค่าคงตัว)

ัญลักษณ์ของพาย พาย หรือ ไพ (อักษรกรีก) เป็นค่าคงตัวทางคณิตศาสตร์ ที่เกิดจากความยาวเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม ค่า π มักใช้ในคณิตศาสตร์, ฟิสิกส์ และวิศวกรรม π เป็นอักษรกรีกที่ตรงกับตัว "p" ในอักษรละติน มีชื่อว่า "pi" (อ่านว่า พาย ในภาษาอังกฤษ แต่อ่านว่า พี ในภาษากรีก) บางครั้งเรียกว่า ค่าคงตัวของอาร์คิมิดีส (Archimedes' Constant) หรือจำนวนของลูดอล์ฟ (Ludolphine number หรือ Ludolph's Constant) ในเรขาคณิตแบบยุคลิด π มีนิยามว่าเป็นอัตราส่วนของเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม หรือเป็นอัตราส่วนของพื้นที่วงกลม หารด้วย รัศมียกกำลังกำลังสอง ในคณิตศาสตร์ชั้นสูงจะนิยาม π โดยใช้ฟังก์ชันตรีโกณมิติ เช่น π คือจำนวนบวก x ที่น้อยสุดที่ทำให้ sin (x).

จำนวนจุดลอยตัวและพาย (ค่าคงตัว) · จำนวนอตรรกยะและพาย (ค่าคงตัว) · ดูเพิ่มเติม »

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

จำนวนจุดลอยตัวและจำนวนเต็ม · จำนวนอตรรกยะและจำนวนเต็ม · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง จำนวนจุดลอยตัวและจำนวนอตรรกยะ

จำนวนจุดลอยตัว มี 55 ความสัมพันธ์ขณะที่ จำนวนอตรรกยะ มี 12 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 2.99% = 2 / (55 + 12)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง จำนวนจุดลอยตัวและจำนวนอตรรกยะ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: