เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ค่าเบี่ยงเบนมาตรฐานและมัชฌิม

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ค่าเบี่ยงเบนมาตรฐานและมัชฌิม

ค่าเบี่ยงเบนมาตรฐาน vs. มัชฌิม

ี่ยงเบนมาตรฐาน หรือ ส่วนเบี่ยงเบนมาตรฐาน หรือ ความเบี่ยงเบนมาตรฐาน (standard deviation: SD) ในทางสถิติศาสตร์และความน่าจะเป็น เป็นการวัดการกระจายแบบหนึ่งของกลุ่มข้อมูล สามารถนำไปใช้กับการแจกแจงความน่าจะเป็น ตัวแปรสุ่ม ประชากร หรือมัลติเซต ค่าเบี่ยงเบนมาตรฐานมักเขียนแทนด้วยอักษรกรีกซิกมาตัวเล็ก (σ) นิยามขึ้นจากส่วนเบี่ยงเบนแบบ root mean square (RMS) กับค่าเฉลี่ย หรือนิยามขึ้นจากรากที่สองของความแปรปรวน ค่าเบี่ยงเบนมาตรฐานคิดค้นโดย ฟรานซิส กาลตัน (Francis Galton) ในช่วงปลายคริสต์ทศวรรษ 1860 เป็นการวัดการกระจายทางสถิติที่เป็นปกติทั่วไป ใช้สำหรับเปรียบเทียบว่าค่าต่างๆ ในเซตข้อมูลกระจายตัวออกไปมากน้อยเท่าใด หากข้อมูลส่วนใหญ่อยู่ใกล้ค่าเฉลี่ยมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่าน้อย ในทางกลับกัน ถ้าข้อมูลแต่ละจุดอยู่ห่างไกลจากค่าเฉลี่ยเป็นส่วนมาก ค่าเบี่ยงเบนมาตรฐานก็จะมีค่ามาก และเมื่อข้อมูลทุกตัวมีค่าเท่ากันหมด ค่าเบี่ยงเบนมาตรฐานจะมีค่าเท่ากับศูนย์ นั่นคือไม่มีการกระจายตัว คุณสมบัติที่เป็นประโยชน์อย่างหนึ่งก็คือ ค่าเบี่ยงเบนมาตรฐานใช้หน่วยอันเดียวกันกับข้อมูล แต่กับความแปรปรวนนั้นไม่ใช่ เมื่อตัวอย่างของข้อมูลกลุ่มหนึ่งถูกเลือกมาจากประชากรทั้งหมด ค่าเบี่ยงเบนมาตรฐานของประชากรสามารถประมาณค่าได้จากค่าเบี่ยงเบนมาตรฐานของกลุ่มตัวอย่างนั้น. มัชฌิม (mean) ในทางสถิติศาสตร์มีความหมายได้สองทางคือ.

ความคล้ายคลึงกันระหว่าง ค่าเบี่ยงเบนมาตรฐานและมัชฌิม

ค่าเบี่ยงเบนมาตรฐานและมัชฌิม มี 5 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟังก์ชันการแจกแจงความน่าจะเป็นสถิติศาสตร์ค่าคาดหมายตัวแปรสุ่ม

ฟังก์ชัน

ฟังก์ชัน เป็นคำทับศัพท์จากภาษาอังกฤษ function สามารถหมายถึง.

ค่าเบี่ยงเบนมาตรฐานและฟังก์ชัน · ฟังก์ชันและมัชฌิม · ดูเพิ่มเติม »

การแจกแจงความน่าจะเป็น

ในความน่าจะเป็นและสถิติศาสตร์ การแจกแจงความน่าจะเป็นกำหนดความน่าจะเป็นให้เซตย่อยของผลลัพธ์การทดลองสุ่ม การสำรวจหรือวิธีอนุมานทางสถิติที่วัดได้ทั้งหมด ตัวอย่างการแจกแจงความน่าจะเป็นพบได้ในการทดลองที่ปริภูมิตัวอย่างไม่เป็นตัวเลข ซึ่งการแจกแจงจะเป็นการแจกแจงประเภท, การทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มวิยุต ซึ่งการแจกแจงสามารถระบุได้ด้วยฟังก์ชันมวลของความน่าจะเป็น, และการทดลองที่ปริภูมิตัวอย่างเข้ารหัสด้วยตัวแปรสุ่มต่อเนื่อง ซึ่งการแจกแจงสามารถเจาะจงได้ด้วยฟังก์ชันความหนาแน่นของความน่าจะเป็น การทดลองที่ซับซ้อนกว่า เช่น การทดลองที่เกี่ยวข้องกับกระบวนการสโทแคสติกที่นิยามในเวลาต่อเนื่อง อาจต้องใช้เมเชอร์ความน่าจะเป็นที่เจาะจงน้อยกว.

การแจกแจงความน่าจะเป็นและค่าเบี่ยงเบนมาตรฐาน · การแจกแจงความน่าจะเป็นและมัชฌิม · ดูเพิ่มเติม »

สถิติศาสตร์

ติศาสตร์ (Statistic Science) เป็นการศึกษาการเก็บ การวิเคราะห์ การตีความ การนำเสนอและการจัดระเบียบข้อมูล ในการประยุกต์สถิติศาสตร์กับปัญหาทางวิทยาศาสตร์ อุตสาหกรรมหรือสังคม ฯลฯ จำเป็นต้องเริ่มด้วยประชากรหรือกระบวนการที่จะศึกษา ประชากรเป็นได้หลากหลาย เช่น "ทุกคนที่อาศัยอยู่ในประเทศหนึ่ง" หรือ "ทุกอะตอมซึ่งประกอบเป็นผลึก" สถิติศาสตร์ว่าด้วยทุกแง่มุมของข้อมูลซึ่งรวมการวางแผนการเก็บข้อมูลในแง่การออกแบบการสำรวจและการทดลอง ในกรณีไม่สามารถเก็บข้อมูลสำมะโนได้ นักสถิติศาสตร์เก็บข้อมูลโดยการพัฒนาการออกแบบการทดลองจำเพาะและตัวอย่างสำรวจ การชักตัวอย่างเพื่อเป็นตัวแทนประกันว่าการอนุมานและการสรุปสามารถขยายจากตัวอย่างไปยังประชากรโดยรวมได้โดยปลอดภัย การศึกษาทดลองเกี่ยวข้องกับการวัดระบบที่กำลังศึกษา จัดดำเนินการระบบ แล้ววัดเพิ่มโดยใช้วิธีดำเนินการเดียวกันเพื่อตัดสินว่าการจัดดำเนินการดัดแปรค่าของการวัดหรือไม่ ในทางกลับกัน การศึกษาสังเกตไม่เกี่ยวข้องกับการจัดดำเนินการทดลอง มีการใช้ระเบียบวิธีสถิติศาสตร์สองอย่างหลักในการวิเคราะห์ข้อมูล ได้แก่ สถิติศาสตร์พรรณนา ซึ่งสรุปข้อมูลจากตัวอย่างโดยใช้ดัชนีอย่างค่าเฉลี่ยหรือค่าเบี่ยงเบนมาตรฐาน และสถิติศาสตร์อนุมาน ซึ่งดึงข้อสรุปจากข้อมูลซึ่งมีการกระจายสุ่ม (เช่น ข้อผิดพลาดสังเกต การกระจายการชักตัวอย่าง) สถิติศาสตร์พรรณนาส่วนใหญ่ว่าด้วยชุดคุณสมบัติของการกระจายสองชุด ได้แก่ แนวโน้มสู่ส่วนกลางซึ่งมุ่งให้ลักษระค่ากลางหรือตรงแบบของการกระจาย ขณะที่การกระจายให้ลักษณะขอบเขตซึ่งสมาชิกของการกระจายอยู่ห่างจากส่วนกลางและสมาชิกอื่น การอนุมานสถิติศาสตร์คณิตศาสตร์กระทำภายใต้กรอบทฤษฎีความน่าจะเป็น ซึ่งว่าด้วยการวิเคราะห์ปรากฏการณ์สุ่ม ในการอนุมานปริมาณไม่ทราบค่า มีการประเมินค่าตัวประมาณค่าตั้งแต่หนึ่งตัวโดยใช้ตัวอย่าง 1.สถิติ (Statistics) 2.เซตและการให้เหตุผล (Set and reasoning) 3.

ค่าเบี่ยงเบนมาตรฐานและสถิติศาสตร์ · มัชฌิมและสถิติศาสตร์ · ดูเพิ่มเติม »

ค่าคาดหมาย

ำหรับทฤษฎีความน่าจะเป็นแล้ว ค่าคาดหมาย (expected value, expectation) ของ ตัวแปรสุ่ม คือ ค่าเฉลี่ยถ่วงน้ำหนัก (weighted average) ของทุกๆค่าที่เป็นไปได้ของตัวแปรสุ่ม โดยในการคำนวณการถ่วงน้ำหนักจะใช้ค่าฟังก์ชันความหนาแน่นของความน่าจะเป็น (probability density function)สำหรับตัวแปรสุ่มต่อเนื่อง หรือใช้ค่าฟังก์ชันมวลของความน่าจะเป็น (probability mass function) สำหรับตัวแปรวิยุต ค่าความคาดหมายนี้เมื่อพิจารณาจากกฎว่าด้วยจำนวนมาก ก็คือค่าลิมิตแบบ almost surely ของค่าเฉลี่ยที่ได้จากการสุ่มตัวอย่าง โดยที่จำนวนการสุ่มโตเข้าสู่ค่าอนันต์ หรือกล่าวอย่างไม่เป็นทางการว่า ค่าความคาดหมายคือค่าเฉลี่ยจากการสุ่มวัดที่ทำหลายๆครั้งมาก.

ค่าคาดหมายและค่าเบี่ยงเบนมาตรฐาน · ค่าคาดหมายและมัชฌิม · ดูเพิ่มเติม »

ตัวแปรสุ่ม

สำหรับทฤษฎีความน่าจะเป็นและสถิติศาสตร์ ตัวแปรสุ่ม (random variable) หมายถึง ตัวแปรที่ค่าของมันวัดได้จากกระบวนการสุ่มหรือกระบวนการที่มีความไม่แน่นอนอยู่ ตัวแปรสุ่มจะเป็นฟังก์ชันที่แปลงเหตุการณ์หรือผล (เช่น ผลลัพธ์ของการทอยลูกเต๋า)ไปเป็นจำนวนจริง (เช่น 1, 2, 3,..., 6) ค่าที่เป็นไปได้ของตัวแปรสุ่มจะแทนผลที่เป็นไปได้ของการทดลองที่ยังไม่ได้ทำหรือค่าของปริมาณที่ค่าจริงนั้นไม่แน่นอน (เช่น ผลของข้อมูลที่ไม่สมบูรณ์ หรือการวัดที่ไม่เที่ยงตรง) หรืออาจมองได้ว่า ตัวแปรสุ่มก็คือปริมาณที่ค่าของมันไม่ถูกเจาะจงไว้ หรือไม่ได้รู้แน่ๆ แต่อาจเป็นได้หลายๆค่า โดยที่การแจกแจงความน่าจะเป็นจะใช้ในการอธิบายถึงโอกาสที่ค่าต่างๆของตัวแปรสุ่มจะเป็นไปได้ หมวดหมู่:ทฤษฎีความน่าจะเป็น หมวดหมู่:การสุ่ม หมวดหมู่:ทฤษฎีทางสถิติ.

ค่าเบี่ยงเบนมาตรฐานและตัวแปรสุ่ม · ตัวแปรสุ่มและมัชฌิม · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ค่าเบี่ยงเบนมาตรฐานและมัชฌิม

ค่าเบี่ยงเบนมาตรฐาน มี 17 ความสัมพันธ์ขณะที่ มัชฌิม มี 13 ขณะที่พวกเขามีเหมือนกัน 5, ดัชนี Jaccard คือ 16.67% = 5 / (17 + 13)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ค่าเบี่ยงเบนมาตรฐานและมัชฌิม หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: