เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ

ค่าคงตัวทางคณิตศาสตร์ vs. จำนวนอตรรกยะ

งตัวทางคณิตศาสตร์ คือปริมาณที่มีอยู่โดยตรงในวิชาคณิตศาสตร์ ซึ่งมักจะเป็นจำนวนจริงหรือจำนวนเชิงซ้อน และไม่มีการเปลี่ยนแปลง ต่างจากค่าคงตัวทางฟิสิกส์ ที่ค่าคงตัวทางคณิตศาสตร์นิยามเป็นเอกเทศจากการวัดเชิงกายภาพใดๆ มีจำนวนมากมายที่มีความสำคัญเป็นพิเศษในวิชาคณิตศาสตร์ และมีอยู่ในเนื้อความแตกต่างกัน ตัวอย่างเช่นในการคูณด้วยจำนวนเชิงซ้อนที่ไม่ใช่ศูนย์ จะมีฟังก์ชันเอกพันธุ์ เฉพาะตัว f ที่มี f'. ำนวนอตรรกยะ ในวิชาคณิตศาสตร์ คือจำนวนที่ไม่สามารถเขียนได้ในรูปเศษส่วนที่มีทั้งตัวเศษและส่วนเป็นจำนวนเต็มได้ หรือกล่าวได้ว่ามันไม่สามารถเขียนในรูป ได้ เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ เห็นได้ชัดว่าจำนวนอตรรกยะคือจำนวนที่ไม่ว่าเขียนทศนิยมในฐานใดก็ตามจะไม่รู้จบ และไม่มีรูปแบบตายตัว แต่นักคณิตศาสตร์ก็ไม่ได้ให้นิยามจำนวนอตรรกยะเช่นนั้น จำนวนจริงเกือบทั้งหมดเป็นจำนวนอตรรกยะโดยนัยที่จะอธิบายต่อไปนี้ จำนวนอตรรกยะบางจำนวนเป็นจำนวนพีชคณิต เช่น √2 รากที่สองของ 2 3√5 รากที่สามของ 5 และสัดส่วนทอง แทนด้วยอีกษรกรีก \varphi (ฟาย) หรือบางครั้ง \tau (เทา) ที่เหลือเป็นจำนวนอดิศัย เช่น π และ e เมื่ออัตราส่วนของความยาวของส่วนของเส้นตรงสองเส้นเป็นจำนวนอตรรกยะ เราเรียกส่วนของเส้นตรงทั้งสองเส้นนั้นว่าวัดไม่ได้ (incommensurable) หมายความว่า ทั้งสองเส้นไม่มีมาตรวัดเดียวกัน มาตรวัดของส่วนของเส้นตรง I ในที่นี้หมายถึงส่วนของเส้นตรง J ที่วัด I โดยวาง J แบบหัวต่อหางเป็นจำนวนเต็มจนยาวเท่ากับ I.

ความคล้ายคลึงกันระหว่าง ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ

ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ มี 6 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): พาย (ค่าคงตัว)อัตราส่วนทองจำนวนอดิศัยจำนวนเชิงพีชคณิตคณิตศาสตร์E (ค่าคงตัว)

พาย (ค่าคงตัว)

ัญลักษณ์ของพาย พาย หรือ ไพ (อักษรกรีก) เป็นค่าคงตัวทางคณิตศาสตร์ ที่เกิดจากความยาวเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม ค่า π มักใช้ในคณิตศาสตร์, ฟิสิกส์ และวิศวกรรม π เป็นอักษรกรีกที่ตรงกับตัว "p" ในอักษรละติน มีชื่อว่า "pi" (อ่านว่า พาย ในภาษาอังกฤษ แต่อ่านว่า พี ในภาษากรีก) บางครั้งเรียกว่า ค่าคงตัวของอาร์คิมิดีส (Archimedes' Constant) หรือจำนวนของลูดอล์ฟ (Ludolphine number หรือ Ludolph's Constant) ในเรขาคณิตแบบยุคลิด π มีนิยามว่าเป็นอัตราส่วนของเส้นรอบวงหารด้วยเส้นผ่านศูนย์กลางของวงกลม หรือเป็นอัตราส่วนของพื้นที่วงกลม หารด้วย รัศมียกกำลังกำลังสอง ในคณิตศาสตร์ชั้นสูงจะนิยาม π โดยใช้ฟังก์ชันตรีโกณมิติ เช่น π คือจำนวนบวก x ที่น้อยสุดที่ทำให้ sin (x).

ค่าคงตัวทางคณิตศาสตร์และพาย (ค่าคงตัว) · จำนวนอตรรกยะและพาย (ค่าคงตัว) · ดูเพิ่มเติม »

อัตราส่วนทอง

'''สัดส่วนทองคำ (golden section)''' คือส่วนของเส้นที่ถูกแบ่งตรงตำแหน่งที่ก่อให้เกิด "อัตราส่วนทอง (golden ratio)": อัตราส่วนของความยาวรวม '''''a + b''''' ต่อความยาวส่วนที่ยาว '''''a''''' มีค่าเท่ากับความยาวส่วนที่ยาว '''''a''''' ต่อความยาวของส่วนที่สั้น '''''b'''''. อัตราส่วนทอง (golden ratio) ในทางคณิตศาสตร์และศิลปะนั้น, เลขสองจำนวน (สมมุติให้เป็น a, b และ a>b) จะเป็น "อัตราส่วนทอง" ถ้าอัตราส่วนระหว่างจำนวนมาก (a) ต่อผลรวม (a + b) มีค่าเท่ากับอัตราส่วนระหว่างจำนวนน้อย (b) ต่อจำนวนมาก (a) "อัตราส่วนทอง" เป็นค่าคงที่ทางคณิตศาสตร์ที่ไม่มีเหตุผลชัดเจน มีค่าประมาณ 1.6180339887 ชื่ออื่นที่เป็นที่รู้จักของ "อัตราส่วนทอง" ได้แก่ golden section (ละติน: sectio aurea) และ golden mean, extreme and mean ratio, medial section, divine proportion, divine section (ละติน: sectio divina), golden proportion, golden cut, golden number, และ mean of Phidias.

ค่าคงตัวทางคณิตศาสตร์และอัตราส่วนทอง · จำนวนอตรรกยะและอัตราส่วนทอง · ดูเพิ่มเติม »

จำนวนอดิศัย

ในทางคณิตศาสตร์นั้น จำนวนอดิศัย (transcendental number) คือ จำนวนอตรรกยะที่ไม่ใช่จำนวนเชิงพีชคณิต ซึ่งหมายถึงจำนวนที่ไม่ใช่ราก (คำตอบ) ของสมการพหุนาม โดย n ≥ 1 และสัมประสิทธิ์ a_j เป็นจำนวนเต็ม (หรือจำนวนตรรกยะ ซึ่งให้ความหมายเดียวกัน เนื่องจากเราสามารถคูณสัมประสิทธิ์ทั้งหมดด้วยตัวคูณร่วมน้อย เพื่อให้สัมประสิทธิ์ทั้งหมดกลายเป็นจำนวนเต็ม) ซึ่งไม่เท่ากับศูนย์อย่างน้อยหนึ่งตัว.

ค่าคงตัวทางคณิตศาสตร์และจำนวนอดิศัย · จำนวนอดิศัยและจำนวนอตรรกยะ · ดูเพิ่มเติม »

จำนวนเชิงพีชคณิต

ำนวนเชิงพีชคณิต (algebraic number) คือจำนวนเชิงซ้อนที่เป็นรากของพหุนามหนึ่งตัวแปร ซึ่งพหุนามไม่เป็นศูนย์ และมีสัมประสิทธิ์เป็นจำนวนตรรกยะ แทนด้วยสัญลักษณ์ \mathbb หรือ \mathbb จำนวนที่ไม่ใช่จำนวนเชิงพีชคณิตจะเรียกว่าจำนวนอดิศัย (transcendental number).

ค่าคงตัวทางคณิตศาสตร์และจำนวนเชิงพีชคณิต · จำนวนอตรรกยะและจำนวนเชิงพีชคณิต · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

คณิตศาสตร์และค่าคงตัวทางคณิตศาสตร์ · คณิตศาสตร์และจำนวนอตรรกยะ · ดูเพิ่มเติม »

E (ค่าคงตัว)

กราฟแสดงอนุพันธ์ของฟังก์ชัน f(x).

E (ค่าคงตัว)และค่าคงตัวทางคณิตศาสตร์ · E (ค่าคงตัว)และจำนวนอตรรกยะ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ

ค่าคงตัวทางคณิตศาสตร์ มี 47 ความสัมพันธ์ขณะที่ จำนวนอตรรกยะ มี 12 ขณะที่พวกเขามีเหมือนกัน 6, ดัชนี Jaccard คือ 10.17% = 6 / (47 + 12)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ค่าคงตัวทางคณิตศาสตร์และจำนวนอตรรกยะ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: