ความคล้ายคลึงกันระหว่าง ความเร็วและฟังก์ชัน (คณิตศาสตร์)
ความเร็วและฟังก์ชัน (คณิตศาสตร์) มี 1 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): อนุพันธ์
อนุพันธ์
กราฟของฟังก์ชันแสดงด้วยเส้นสีดำ และเส้นสัมผัสแสดงด้วยเส้นสีแดง ความชันของเส้นสัมผัสมีค่าเท่ากับอนุพันธ์ของฟังก์ชันที่จุดสีแดง ในวิชาคณิตศาสตร์ อนุพันธ์ของฟังก์ชันของตัวแปรจริงเป็นการวัดการเปลี่ยนแปลงของค่าของฟังก์ชันเทียบกับการเปลี่ยนแปลงของอาร์กิวเมนต์ (ค่าที่ป้อนเข้าหรือตัวแปรต้น) อนุพันธ์เป็นเครื่องมือพื้นฐานของแคลคูลัส ตัวอย่างเช่น อนุพันธ์ของตำแหน่งของวัตถุที่กำลังเคลื่อนที่เทียบกับเวลา คือ ความเร็วของวัตถุนั้น ซึ่งเป็นการวัดว่าตำแหน่งของวัตถุมีการเปลี่ยนแปลงอย่างรวดเร็วเพียงใดเมื่อเวลาผ่านไป อนุพันธ์ของฟังก์ชันตัวแปรเดียวที่ตัวแปรต้นใด ๆ คือความชันของเส้นสัมผัสที่สัมผัสกับกราฟของฟังก์ชันที่จุดนั้น เส้นสัมผัสคือการประมาณเชิงเส้นของฟังก์ชันที่ดีที่สุดใกล้กับตัวแปรต้นนั้น ด้วยเหตุนี้ อนุพันธ์มักอธิบายได้ว่าเป็น "อัตราการเปลี่ยนแปลงขณะใดขณะหนึ่ง" ซึ่งก็คืออัตราส่วนของการเปลี่ยนแปลงขณะใดขณะหนึ่งของตัวแปรตามต่อตัวแปรต้นหรือตัวแปรอิสระ กระบวนการหาอนุพันธ์เรียกว่า การหาอนุพันธ์ (differentiation หรือ การดิฟเฟอเรนชิเอต) ส่วนกระบวนการที่กลับกันเรียกว่า การหาปฏิยานุพันธ์ (antidifferentiation) ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่าการหาปฏิยานุพันธ์เหมือนกันกับการหาปริพันธ์ (integration หรือ การอินทิเกรต) การหาอนุพันธ์และการหาปริพันธ์เป็นตัวดำเนินการพื้นฐานในแคลคูลัสตัวแปรเดียว อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์).
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ ความเร็วและฟังก์ชัน (คณิตศาสตร์) มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง ความเร็วและฟังก์ชัน (คณิตศาสตร์)
การเปรียบเทียบระหว่าง ความเร็วและฟังก์ชัน (คณิตศาสตร์)
ความเร็ว มี 2 ความสัมพันธ์ขณะที่ ฟังก์ชัน (คณิตศาสตร์) มี 47 ขณะที่พวกเขามีเหมือนกัน 1, ดัชนี Jaccard คือ 2.04% = 1 / (2 + 47)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง ความเร็วและฟังก์ชัน (คณิตศาสตร์) หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: