เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ความเข้มข้นและอิเล็กโทรไลต์

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ความเข้มข้นและอิเล็กโทรไลต์

ความเข้มข้น vs. อิเล็กโทรไลต์

น้ำผสมสีแดงด้วยปริมาณสีที่แตกต่างกัน ทางซ้ายคือเจือจาง ทางขวาคือเข้มข้น ในทางเคมี ความเข้มข้น คือการวัดปริมาณของสสารที่กำหนดซึ่งผสมอยู่ในสสารอีกชนิดหนึ่ง ใช้วัดสารผสมทางเคมีชนิดต่าง ๆ แต่บ่อยครั้งแนวคิดนี้ก็ใช้จำกัดแต่เฉพาะสารละลาย ซึ่งหมายถึงปริมาณของตัวถูกละลายในตัวทำละลาย การที่จะทำให้สารละลายเข้มข้นขึ้น ทำได้โดยการเพิ่มปริมาณของตัวถูกละลายมากขึ้น หรือการลดตัวทำละลายลง ในทางตรงข้าม การที่จะทำให้สารละลายเจือจางลง ก็จะต้องเพิ่มตัวทำละลายขึ้น หรือลดตัวถูกละลายลง เป็นอาทิ ถึงแม้สสารทั้งสองชนิดจะผสมกันได้อย่างเต็มที่ แต่ก็จะมีความเข้มข้นค่าหนึ่งซึ่งตัวถูกละลายจะไม่ละลายในสารผสมนั้นอีกต่อไป ที่จุดนี้เรียกว่าจุดอิ่มตัวของสารละลาย ซึ่งขึ้นอยู่กับตัวแปรหลายอย่าง เช่นอุณหภูมิแวดล้อม และสมบัติทางเคมีโดยธรรมชาติของสสารชนิดนั้น. อิเล็กโทรไลต์คือสารที่สามารถแตกตัวเป็นไอออนอิสระเมื่อละลายน้ำหรือหลอมเหลว ทำให้สามารถนำไฟฟ้าได้เนื่องจากโดยทั่วไป สารละลายนั้นจะประกอบไปด้วยไออนจึงมักเรียกกันว่า สารละลายไอออนิก ในบางครั้งอาจเรียกสั้นๆ ว่า ไลต์ โดยปกติแล้วอิเล็กโทรไลต์จะอยู่ในรูปของกรด เบส หรือเกลือ นอกจากนี้ แก๊สบางชนิดอาจทำตัวเป็นอิเล็กโทรไลต์ได้ภายใต้อุณหภูมิสูงและความดันต่ำ การจำแนกอิเล็กโทรไลต์ออกเป็นอิเล็กโทรไลต์เข้มข้นหรือเจือจางสามารถจำแนกได้จากความเข้มข้นของไอออน ถ้าความเข้มข้นมาก จะเรียกว่า อิเล็กโทรไลต์เข้มข้น แต่ถ้ามีความเข้มข้นของไอออนน้อยจะเรียกว่า อิเล็กโทรไลต์เจือจาง ถ้าสัดส่วนการแตกตัวเป็นไอออนของสารใดมีมาก จะเรียกว่าอิเล็กโทรไลต์แก่ แต่ถ้าสัดส่วนนั้นน้อย(ส่วนใหญ่ไม่แตกตัวเป็นไอออน) จะเรียกว่าอิเล็กโทรไลต์อ่อน.

ความคล้ายคลึงกันระหว่าง ความเข้มข้นและอิเล็กโทรไลต์

ความเข้มข้นและอิเล็กโทรไลต์ มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): สารละลายในน้ำอุณหภูมิความดันเกลือ

สารละลายในน้ำ

ซเดียมไอออนที่ละลายในน้ำ สารละลายในน้ำ หรือ เอเควียส (Aqueous solution)​ คือสารละลายที่มีตัวทำละลายเป็นน้ำ มักจะแสดงไว้ในสมการเคมีโดยใส่ "(aq)" ต่อท้ายสสารนั้น ซึ่ง aq ย่อมาจาก aqueous หมายถึงความเกี่ยวข้องหรือการละลายในน้ำ น้ำเป็นตัวทำละลายที่ดีชนิดหนึ่งทั้งในธรรมชาติและในการทดลองทางเคมี สารที่ไม่ละลายในน้ำมักมีคุณสมบัติไม่ชอบน้ำ (hydrophobic) ส่วนสารที่ละลายในน้ำได้มักมีคุณสมบัติชอบน้ำ (hydrophilic) ตัวอย่างของสารที่ละลายในน้ำได้เช่นโซเดียมคลอไรด์ (เกลือแกง) กรดและเบสส่วนใหญ่เป็นสามารถละลายได้ในน้ำ ซึ่งเป็นไปตามนิยามส่วนหนึ่งของทฤษฎีปฏิกิริยากรดเบส (ยกเว้นนิยามของลิวอิส) ความสามารถในการละลายน้ำของสสารจะพิจารณาว่า สสารนั้นสามารถจับตัวกับน้ำได้ดีกว่าแรงดึงดูดระหว่างโมเลกุลของน้ำหรือแรงดึงดูดระหว่างโมเลกุลของสารนั้นหรือไม่ หากเกิดการเปลี่ยนแปลงที่ทำให้ความสามารถในการละลายน้ำลดลง (เช่น อุณหภูมิเปลี่ยนไป) น้ำระเหยออกไปจากสารละลาย หรือ เกิดปฏิปริกิริยาเคมีทำให้เกิดสารที่ไม่ละลายน้ำ จะเกิดการตกตะกอนหรือตกผลึก สารละลายในน้ำที่สามารถนำไฟฟ้าได้จะต้องมีอิเล็กโทรไลต์อย่างเข้มอย่างเพียงพอ คือสสารนั้นสามารถแตกตัวเป็นไอออนได้ในน้ำอย่างสมบูรณ์ น้ำซึ่งเป็นโมเลกุลมีขั้วก็จะมาอยู่ล้อมรอบ ส่วนอิเล็กโทรไลต์อย่างอ่อนที่แตกตัวในน้ำได้ไม่ดี ก็จะทำให้สารละลายนั้นนำไฟฟ้าได้ไม่ดีตามไปด้วย สำหรับสสารที่ไม่ได้เป็นอิเล็กโทรไลต์แต่สามารถละลายในน้ำได้ เนื่องจากสสารนั้นไม่แตกตัวเป็นไอออนในน้ำ ยังรักษารูปร่างของโมเลกุลเอาไว้ อาทิ น้ำตาล ยูเรีย กลีเซอรอล และเมทิลซัลโฟนิลมีเทน (MSM) เป็นต้น.

ความเข้มข้นและสารละลายในน้ำ · สารละลายในน้ำและอิเล็กโทรไลต์ · ดูเพิ่มเติม »

อุณหภูมิ

อุณหภูมิของก๊าซอุดมคติอะตอมเดี่ยวสัมพันธ์กับค่าเฉลี่ยพลังงานจลน์ของอะตอม อุณหภูมิ คือการวัดค่าเฉลี่ยของพลังงานจลน์ของอนุภาคในสสารใดๆ ซึ่งสอดคล้องกับความร้อนหรือเย็นของสสารนั้น ในอดีตมีแนวคิดเกี่ยวกับอุณหภูมิเกิดขึ้นเป็น 2 แนวทาง คือตามแนวทางของหลักอุณหพลศาสตร์ และตามการอธิบายเชิงจุลภาคทางฟิสิกส์เชิงสถิติ แนวคิดทางอุณหพลศาสตร์นั้น ถูกพัฒนาขึ้นโดยลอร์ดเคลวิน โดยเกี่ยวข้องกับการวัดในเชิงมหภาค ดังนั้นคำจำกัดความอุณหภูมิในเชิงอุณหพลศาสตร์ในเบื้องแรก จึงระบุเกี่ยวกับค่าตัวแปรต่างๆ ที่สามารถตรวจวัดได้จากการสังเกต ส่วนแนวทางของฟิสิกส์เชิงสถิติจะให้ความเข้าใจในเชิงลึกยิ่งกว่าอุณหพลศาสตร์ โดยอธิบายถึงการสะสมจำนวนอนุภาคขนาดใหญ่ และตีความพารามิเตอร์ต่างๆ ในอุณหพลศาสตร์ (เชิงมหภาค) ในฐานะค่าเฉลี่ยทางสถิติของพารามิเตอร์ของอนุภาคในเชิงจุลภาค ในการศึกษาฟิสิกส์เชิงสถิติ สามารถตีความคำนิยามอุณหภูมิในอุณหพลศาสตร์ว่า เป็นการวัดพลังงานเฉลี่ยของอนุภาคในแต่ละองศาอิสระในระบบอุณหพลศาสตร์ โดยที่อุณหภูมินั้นสามารถมองเป็นคุณสมบัติเชิงสถิติ ดังนั้นระบบจึงต้องประกอบด้วยปริมาณอนุภาคจำนวนมากเพื่อจะสามารถบ่งบอกค่าอุณหภูมิอันมีความหมายที่นำไปใช้ประโยชน์ได้ ในของแข็ง พลังงานนี้พบในการสั่นไหวของอะตอมของสสารในสภาวะสมดุล ในแก๊สอุดมคติ พลังงานนี้พบในการเคลื่อนไหวไปมาของอนุภาคโมเลกุลของแก.

ความเข้มข้นและอุณหภูมิ · อิเล็กโทรไลต์และอุณหภูมิ · ดูเพิ่มเติม »

ความดัน

วามดัน คือ แรงที่กระทำตั้งฉากต่อหนึ่งหน่วยพื้นที่ ภาพจำลอง–ความดันที่เกิดขึ้นจากการชนของอนุภาคในภาชนะปิด ความดันที่ระดับต่าง ๆ (หน่วยเป็น บาร์) ความดัน (pressure; สัญลักษณ์ p หรือ P) เป็นปริมาณชนิดหนึ่งในทางฟิสิกส์ หมายถึง อัตราส่วนระหว่างแรงที่กระทำตั้งฉากซึ่งทำโดยของแข็ง ของเหลว หรือแก๊ส ต่อพื้นที่ของสารใด ๆ (ของแข็ง ของเหลว หรือแก๊ส) ความดันเป็นปริมาณสเกลาร์ ซึ่งเป็นปริมาณที่มีแต่ขนาดไม่มีทิศทาง จากความหมายของความดันข้างต้นสามารถเขียนเป็นสูตรคณิตศาสตร์ (โดยทั่วไป) ได้ดังนี้ กำหนดให้ เนื่องจาก F มีหน่วยเป็น "นิวตัน" (N) และ A มีหน่วยเป็น "ตารางเมตร" (m2) ความดันจึงมีหน่วยเป็น "นิวตันต่อตารางเมตร" (N/m2; เขียนในรูปหน่วยฐานว่า kg·m−1·s−2) ในปี ค.ศ. 1971 (พ.ศ. 2514) มีการคิดค้นหน่วยของความดันขึ้นใหม่ เรียกว่า ปาสกาล (pascal, Pa) และกำหนดให้หน่วยชนิดนี้เป็นหน่วยเอสไอสำหรับความดัน โดยให้ 1 ปาสกาลมีค่าเท่ากับ 1 นิวตันต่อตารางเมตร (หรือ แรง 1 นิวตัน กระทำตั้งฉากกับพื้นที่ขนาด 1 ตารางเมตร) เพื่อให้เห็นภาพ ความดัน 1 ปาสกาลจะมีค่าประมาณ แรงกดของธนบัตรหนึ่งดอลลาร์ที่วางอยู่เฉย ๆ บนโต๊ะราบ ซึ่งนับว่าเป็นขนาดที่เล็กมาก ดังนั้นในชีวิตประจำวัน ความดันทั้งหลายมักมีค่าตั้งแต่ "กิโลปาสกาล" (kPa) ขึ้นไป โดยที่ 1 kPa.

ความดันและความเข้มข้น · ความดันและอิเล็กโทรไลต์ · ดูเพิ่มเติม »

เกลือ

กลือ เกลือ เป็นแร่ธาตุส่วนใหญ่ประกอบด้วยโซเดียมคลอไรด์ (NaCl) สารประกอบในระดับสูงกว่าเกลือชนิดต่าง ๆ เกลือในธรรมชาติก่อตัวเป็นแร่ผลึกรู้จักกันว่า เกลือหิน หรือแฮไลต์ เกลือพบได้ในปริมาณมหาศาลในทะเลซึ่งเป็นองค์ประกอบของแร่ที่สำคัญ ในมหาสมุทรมีแร่ธาตุ 35 กรัมต่อลิตร ความเค็ม 3.5% เกลือเป็นสิ่งจำเป็นต่อชีวิตสัตว์ ความเค็มเป็นรสชาติพื้นฐานของมนุษย์ เนื้อเยื่อสัตว์บรรจุเกลือปริมาณมากกว่าเนื้อเยื่อพืช ดังนั้นอาหารของชนเผ่าเร่ร่อนที่ดำรงชีวิตในฝูงต้องการเกลือเพียงเล็กน้อย หรือไม่ต้องการเกลือเลย ขณะอาหารประเภทซีเรียลจำเป็นต้องเพิ่มเกลือ เกลือเป็นหนึ่งในเครื่องปรุงรสที่เก่าแก่ที่สุดและหาได้ง่ายที่สุด และการดองเค็มก็เป็นวิธีการถนอมอาหารที่สำคัญวิธีหนึ่ง หลักฐานการทำเกลือยุคแรกที่สุดย้อนไปถึง 6,000 ปีที่แล้ว เมื่อคนที่อาศัยในประเทศโรมาเนียต้มน้ำเพื่อสกัดเกลือ การทำนาเกลือในจีนก็เกิดขึ้นในเวลาไล่เลี่ยกัน เกลือถูกชาวฮีบรู กรีก โรมัน ไบแซนไทน์ ฮิไทต์ และอียิปต์ ตีราคาสูง เกลือกลายเป็นวัตถุสำคัญและขนส่งทางเรือผ่านทะเลเมดิเตอร์เรเนียน ผ่านทางทางเกลือที่สร้างขึ้นเฉพาะ และผ่านทะเลทรายซาฮาราในคาราวานอูฐ ความขาดแคลนและความต้องการเกลือทั่วโลกนำไปสู่สงครามชิงเกลือ และใช้เกลือเพื่อเพิ่มภาษีเงินได้ เกลือยังถูกใช้ในพิธีทางศาสนา และวัฒนธรรมต่าง ๆ ด้วย เกลือผลิตจากเหมืองเกลือ หรือจากการระเหยน้ำทะเล หรือน้ำซับที่อุดมไปด้วยแร่ธาตุในบ่อตื้น ผลิตภัณฑ์อุตสาหกรรมหลักของเกลือคือโซดาไฟ และคลอรีน และใช้ในกระบวนการทางอุตสาหกรรมและในการผลิตโพลีไวนิลคลอไรด์ พลาสติก เยื่อกระดาษ และผลิตภัณฑ์อื่น ๆ จากการผลิตเกลือปริมาณสองล้านตันต่อปี มีเพียง 6% ที่ให้มนุษย์บริโภค ส่วนอื่น ๆ ใช้ในการปรับสภาวะของน้ำ กำจัดน้ำแข็งบนถนน และใช้ในการเกษตร เกลือที่กินได้มีขายในหลายรูปแบบ เช่น เกลือสมุทรและเกลือโต๊ะปกติจะบรรจุสารป้องกันการรวมตัวเป็นก้อน และอาจเสริมไอโอดีนเพื่อป้องกันภาวะพร่องไอโอดีน นอกจากจะใช้ปรุงอาหารและวางบนโต๊ะแล้ว เกลือยังพบได้ในอาหารแปรรูปจำนวนมาก อาหารที่มีโซเดียมมากเกินไปทำให้ความดันโลหิตสูง และอาจเพิ่มความเสี่ยงของกล้ามเนื้อหัวใจตายเหตุขาดเลือด และโรคหลอดเลือดสมอง องค์การอนามัยโลกแนะนำว่าผู้ใหญ่ควรบริโภคโซเดียมน้อยกว่า 2,000 มิลลิกรัม หรือเทียบเท่ากับเกลือ 5 กรัมต่อวัน.

ความเข้มข้นและเกลือ · อิเล็กโทรไลต์และเกลือ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ความเข้มข้นและอิเล็กโทรไลต์

ความเข้มข้น มี 23 ความสัมพันธ์ขณะที่ อิเล็กโทรไลต์ มี 25 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 8.33% = 4 / (23 + 25)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ความเข้มข้นและอิเล็กโทรไลต์ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: