ความคล้ายคลึงกันระหว่าง คณิตศาสตร์และจำนวนอดิศัย
คณิตศาสตร์และจำนวนอดิศัย มี 7 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนจำนวนจริงจำนวนธรรมชาติจำนวนตรรกยะจำนวนเชิงพีชคณิตจำนวนเต็มทฤษฎีเซต
จำนวน
ำนวน (number) คือวัตถุนามธรรมที่ใช้สำหรับอธิบายปริมาณ จำนวนมีหลายแบบ จำนวนที่เป็นที่คุ้นเคยก็คือ.
คณิตศาสตร์และจำนวน · จำนวนและจำนวนอดิศัย ·
จำนวนจริง
ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).
คณิตศาสตร์และจำนวนจริง · จำนวนจริงและจำนวนอดิศัย ·
จำนวนธรรมชาติ
ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.
คณิตศาสตร์และจำนวนธรรมชาติ · จำนวนธรรมชาติและจำนวนอดิศัย ·
จำนวนตรรกยะ
ในทางคณิตศาสตร์ จำนวนตรรกยะ (หรือเศษส่วน) คืออัตราส่วนของจำนวนเต็มสองจำนวน มักเขียนอยู่ในรูปเศษส่วน a/b เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ จำนวนตรรกยะแต่ละจำนวนสามารถเขียนได้ในรูปแบบที่หลากหลาย ตัวอย่างเช่น 3/6.
คณิตศาสตร์และจำนวนตรรกยะ · จำนวนตรรกยะและจำนวนอดิศัย ·
จำนวนเชิงพีชคณิต
ำนวนเชิงพีชคณิต (algebraic number) คือจำนวนเชิงซ้อนที่เป็นรากของพหุนามหนึ่งตัวแปร ซึ่งพหุนามไม่เป็นศูนย์ และมีสัมประสิทธิ์เป็นจำนวนตรรกยะ แทนด้วยสัญลักษณ์ \mathbb หรือ \mathbb จำนวนที่ไม่ใช่จำนวนเชิงพีชคณิตจะเรียกว่าจำนวนอดิศัย (transcendental number).
คณิตศาสตร์และจำนวนเชิงพีชคณิต · จำนวนอดิศัยและจำนวนเชิงพีชคณิต ·
จำนวนเต็ม
ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.
คณิตศาสตร์และจำนวนเต็ม · จำนวนอดิศัยและจำนวนเต็ม ·
ทฤษฎีเซต
ทฤษฎีเซต คือทฤษฎีทางคณิตศาสตร์ที่เกี่ยวกับเรื่องเซต ซึ่งใช้นำเสนอการรวบรวมวัตถุนามธรรม ทฤษฎีเซตเป็นแนวความคิดของการรวบรวมวัตถุในชีวิตประจำวัน และใช้สอนในโรงเรียนประถมศึกษาซึ่งบ่อยครั้งใช้แผนภาพเวนน์เป็นสื่อช่วยสอน ทฤษฎีเซตใช้ภาษาในการอธิบายวัตถุทางคณิตศาสตร์เป็นธรรมเนียมการสอนคณิตศาสตร์สมัยใหม่ ทฤษฎีเซตเป็นหนึ่งในรากฐานทางคณิตศาสตร์ที่ยอมรับกันโดยทั่วไป เหมือนเช่นตรรกศาสตร์และแคลคูลัสภาคแสดง ซึ่งทำให้สามารถสร้างวัตถุทางคณิตศาสตร์ขึ้นมาใหม่โดยใช้ "เซต" และ "ความเป็นสมาชิกของเซต" เป็นตัวนิยาม ทฤษฎีเซตเองนั้นก็เป็นสาขาหนึ่งของคณิตศาสตร์ และยังคงเป็นสาขาที่สำคัญอยู่สำหรับการวิจั.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ คณิตศาสตร์และจำนวนอดิศัย มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง คณิตศาสตร์และจำนวนอดิศัย
การเปรียบเทียบระหว่าง คณิตศาสตร์และจำนวนอดิศัย
คณิตศาสตร์ มี 99 ความสัมพันธ์ขณะที่ จำนวนอดิศัย มี 25 ขณะที่พวกเขามีเหมือนกัน 7, ดัชนี Jaccard คือ 5.65% = 7 / (99 + 25)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง คณิตศาสตร์และจำนวนอดิศัย หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: