เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

คณิตศาสตร์และจำนวนอดิศัย

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง คณิตศาสตร์และจำนวนอดิศัย

คณิตศาสตร์ vs. จำนวนอดิศัย

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ. ในทางคณิตศาสตร์นั้น จำนวนอดิศัย (transcendental number) คือ จำนวนอตรรกยะที่ไม่ใช่จำนวนเชิงพีชคณิต ซึ่งหมายถึงจำนวนที่ไม่ใช่ราก (คำตอบ) ของสมการพหุนาม โดย n ≥ 1 และสัมประสิทธิ์ a_j เป็นจำนวนเต็ม (หรือจำนวนตรรกยะ ซึ่งให้ความหมายเดียวกัน เนื่องจากเราสามารถคูณสัมประสิทธิ์ทั้งหมดด้วยตัวคูณร่วมน้อย เพื่อให้สัมประสิทธิ์ทั้งหมดกลายเป็นจำนวนเต็ม) ซึ่งไม่เท่ากับศูนย์อย่างน้อยหนึ่งตัว.

ความคล้ายคลึงกันระหว่าง คณิตศาสตร์และจำนวนอดิศัย

คณิตศาสตร์และจำนวนอดิศัย มี 7 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนจำนวนจริงจำนวนธรรมชาติจำนวนตรรกยะจำนวนเชิงพีชคณิตจำนวนเต็มทฤษฎีเซต

จำนวน

ำนวน (number) คือวัตถุนามธรรมที่ใช้สำหรับอธิบายปริมาณ จำนวนมีหลายแบบ จำนวนที่เป็นที่คุ้นเคยก็คือ.

คณิตศาสตร์และจำนวน · จำนวนและจำนวนอดิศัย · ดูเพิ่มเติม »

จำนวนจริง

ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).

คณิตศาสตร์และจำนวนจริง · จำนวนจริงและจำนวนอดิศัย · ดูเพิ่มเติม »

จำนวนธรรมชาติ

ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.

คณิตศาสตร์และจำนวนธรรมชาติ · จำนวนธรรมชาติและจำนวนอดิศัย · ดูเพิ่มเติม »

จำนวนตรรกยะ

ในทางคณิตศาสตร์ จำนวนตรรกยะ (หรือเศษส่วน) คืออัตราส่วนของจำนวนเต็มสองจำนวน มักเขียนอยู่ในรูปเศษส่วน a/b เมื่อ a และ b เป็นจำนวนเต็ม และ b ไม่เท่ากับศูนย์ จำนวนตรรกยะแต่ละจำนวนสามารถเขียนได้ในรูปแบบที่หลากหลาย ตัวอย่างเช่น 3/6.

คณิตศาสตร์และจำนวนตรรกยะ · จำนวนตรรกยะและจำนวนอดิศัย · ดูเพิ่มเติม »

จำนวนเชิงพีชคณิต

ำนวนเชิงพีชคณิต (algebraic number) คือจำนวนเชิงซ้อนที่เป็นรากของพหุนามหนึ่งตัวแปร ซึ่งพหุนามไม่เป็นศูนย์ และมีสัมประสิทธิ์เป็นจำนวนตรรกยะ แทนด้วยสัญลักษณ์ \mathbb หรือ \mathbb จำนวนที่ไม่ใช่จำนวนเชิงพีชคณิตจะเรียกว่าจำนวนอดิศัย (transcendental number).

คณิตศาสตร์และจำนวนเชิงพีชคณิต · จำนวนอดิศัยและจำนวนเชิงพีชคณิต · ดูเพิ่มเติม »

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

คณิตศาสตร์และจำนวนเต็ม · จำนวนอดิศัยและจำนวนเต็ม · ดูเพิ่มเติม »

ทฤษฎีเซต

ทฤษฎีเซต คือทฤษฎีทางคณิตศาสตร์ที่เกี่ยวกับเรื่องเซต ซึ่งใช้นำเสนอการรวบรวมวัตถุนามธรรม ทฤษฎีเซตเป็นแนวความคิดของการรวบรวมวัตถุในชีวิตประจำวัน และใช้สอนในโรงเรียนประถมศึกษาซึ่งบ่อยครั้งใช้แผนภาพเวนน์เป็นสื่อช่วยสอน ทฤษฎีเซตใช้ภาษาในการอธิบายวัตถุทางคณิตศาสตร์เป็นธรรมเนียมการสอนคณิตศาสตร์สมัยใหม่ ทฤษฎีเซตเป็นหนึ่งในรากฐานทางคณิตศาสตร์ที่ยอมรับกันโดยทั่วไป เหมือนเช่นตรรกศาสตร์และแคลคูลัสภาคแสดง ซึ่งทำให้สามารถสร้างวัตถุทางคณิตศาสตร์ขึ้นมาใหม่โดยใช้ "เซต" และ "ความเป็นสมาชิกของเซต" เป็นตัวนิยาม ทฤษฎีเซตเองนั้นก็เป็นสาขาหนึ่งของคณิตศาสตร์ และยังคงเป็นสาขาที่สำคัญอยู่สำหรับการวิจั.

คณิตศาสตร์และทฤษฎีเซต · จำนวนอดิศัยและทฤษฎีเซต · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง คณิตศาสตร์และจำนวนอดิศัย

คณิตศาสตร์ มี 99 ความสัมพันธ์ขณะที่ จำนวนอดิศัย มี 25 ขณะที่พวกเขามีเหมือนกัน 7, ดัชนี Jaccard คือ 5.65% = 7 / (99 + 25)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง คณิตศาสตร์และจำนวนอดิศัย หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: