เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ขีดจำกัดฮายาชิและดาวยักษ์แดง

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ขีดจำกัดฮายาชิและดาวยักษ์แดง

ขีดจำกัดฮายาชิ vs. ดาวยักษ์แดง

ีดจำกัดฮายาชิ (Hayashi limit) คือ ขีดจำกัดมากที่สุดของรัศมีของดาวฤกษ์ซึ่งถูกกำหนดโดยมวลของดาวฤกษ์ เมื่อดาวมีสภาวะสมดุลอุทกสถิตอยู่ภายใน (คือเงื่อนไขของดาวที่มีแรงโน้มถ่วงที่มีทิศเข้าสู่ภายในพอดีกันกับความดันของพลาสมาที่ดันออกมา) ในขณะที่ดาวมีรัศมีน้อยกว่าขีดจำกัดฮายาชิก็จะมีนัยสำคัญในการวิวัฒนาการของดาวทั้งในระหว่างคาบการหดตัวของดาวและหลังจากที่ดาวใช้ไฮโดรเจนในปฏิกิริยานิวเคลียร์ฟิวชัน ในแผนภาพ HR Diagram ที่แสดงความสัมพันธ์ระหว่างอุณหภูมิพื้นผิวต่อกำลังส่องสว่าง ในแผนภาพนี้ขีดจำกัดฮายาชิจะเป็นเส้นแนวตั้งใกล้ ๆ กับอุณหภูมิ 3,500 เคลวิน ดาวอุณหภูมิต่ำจะปรากฏแต่ชั้นพาความร้อน และแบบจำลองโครงสร้างของดาวสำหรับดาวที่มีเฉพาะชั้นพาความร้อนไม่สามารถหาคำอธิบายเมื่ออยู่ทางด้านขวาของเส้นนี้ในขณะที่ดาวอยู่ในสภาวะสมดุล (และมีอุณหภูมิต่ำ) ดังนั้นดาวจะถูกบังคับให้หลงเหลืออยู่ทางด้านซ้ายของขีดจำกัดนี้ตลอดทุกคาบเมื่อมันอยู่ในสภาวะสมดุลอุทกสถิต และบริเวณที่อยู่ทางด้านขวาของเส้นนี้จะจัดอยู่ในประเภท "Forbidden zone" (บริเวณต้องห้าม) อย่างไรก็ตามก็ยังมีข้อยกเว้นของขีดจำกัดฮายาชิอยู่ ซึ่งนั่นรวมถึงดาวโปรโตสตาร์ที่ยุบตัวลงและดาวที่มีสนามแม่เหล็กแทรกสอดกับการพาพลังงานภายในดาวด้วยวิธีการพาความร้อน. นาดของดวงอาทิตย์ปัจจุบัน (อยู่บนแถบลำดับหลัก) เปรียบเทียบกับขนาดโดยประมาณหากอยู่ในสภาวะดาวยักษ์แดง ดาวยักษ์แดง (Red Giant) เป็นดาวฤกษ์มวลน้อยหรือมวลปานกลางขนาดยักษ์ที่ส่องสว่างมาก (มวลโดยประมาณ 0.5-10 เท่าของมวลดวงอาทิตย์) ซึ่งอยู่ในช่วงเวลาท้ายๆ ของวิวัฒนาการของดาวฤกษ์ บรรยากาศรอบนอกของดาวจะลอยตัวและบางมาก ทำให้รัศมีของดาวขยายใหญ่ขึ้นมาก และอุณหภูมิพื้นผิวก็ต่ำ อาจอยู่ที่ประมาณ 5000 เคลวินหรือน้อยกว่านั้น ภาพปรากฏของดาวยักษ์แดงจะมีสีตั้งแต่เหลืองส้มออกไปจนถึงแดง ครอบคลุมระดับสเปกตรัมในชั้น K และ M อาจบางทีรวมถึงชั้น S และดาวคาร์บอนจำนวนมากด้วย ดาวยักษ์แดงส่วนใหญ่โดยทั่วไปมักเรียกกันเป็น red giant branch stars (RGB) ซึ่งยังมีปฏิกิริยาหลอมไฮโดรเจนไปเป็นฮีเลียมอยู่ แต่ที่แกนกลางจะเป็นฮีเลียมที่ไม่มีปฏิกิริยาแล้ว แต่ยังมีดาวยักษ์แดงอีกพวกหนึ่งคือ asymptotic giant branch stars (AGB) ที่สร้างคาร์บอนจากฮีเลียมด้วยกระบวนการทริปเปิล-อัลฟา ดาวยักษ์แดงประเภท AGB จะเป็นดาวคาร์บอนประเภท C-N หรือ C-R ช่วงปลายๆ ดาวยักษ์แดงที่สว่างและโดดเด่นในยามค่ำคืน ได้แก่ ดาวอัลดิบาแรน ดาวอาร์คตุรุส และแกมมาครูซิส เป็นต้น ขณะที่ดาวที่ใหญ่ยิ่งกว่านั้นคือดาวอันแตร์ส (อัลฟาสกอร์ปิไอ) และดาวบีเทลจุส เป็นดาวยักษ์ใหญ่แดง (red supergiant).

ความคล้ายคลึงกันระหว่าง ขีดจำกัดฮายาชิและดาวยักษ์แดง

ขีดจำกัดฮายาชิและดาวยักษ์แดง มี 5 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฮีเลียมดาวยักษ์แดงดาวฤกษ์ไฮโดรเจนเคลวิน

ฮีเลียม

ีเลียม (Helium) เป็นธาตุเคมีที่มีสัญลักษณ์ว่า He และมีเลขอะตอมเท่ากับ 2 ฮีเลียมเป็นแก๊สไม่มีสี ไม่มีกลิ่น ไม่มีรส ไม่เป็นพิษ เฉื่อย มีอะตอมเดี่ยวซึ่งถูกจัดให้อยู่ในหมู่แก๊สมีตระกูลบนตารางธาตุ จุดเดือดและจุดหลอมเหลวของฮีเลียม มีค่าต่ำสุดกว่าบรรดาธาตุทั้งหมดในตารางธาตุ และมันจะปรากฏในอยู่รูปของแก๊สเท่านั้น ยกเว้นในสภาวะที่เย็นยิ่งยว.

ขีดจำกัดฮายาชิและฮีเลียม · ดาวยักษ์แดงและฮีเลียม · ดูเพิ่มเติม »

ดาวยักษ์แดง

นาดของดวงอาทิตย์ปัจจุบัน (อยู่บนแถบลำดับหลัก) เปรียบเทียบกับขนาดโดยประมาณหากอยู่ในสภาวะดาวยักษ์แดง ดาวยักษ์แดง (Red Giant) เป็นดาวฤกษ์มวลน้อยหรือมวลปานกลางขนาดยักษ์ที่ส่องสว่างมาก (มวลโดยประมาณ 0.5-10 เท่าของมวลดวงอาทิตย์) ซึ่งอยู่ในช่วงเวลาท้ายๆ ของวิวัฒนาการของดาวฤกษ์ บรรยากาศรอบนอกของดาวจะลอยตัวและบางมาก ทำให้รัศมีของดาวขยายใหญ่ขึ้นมาก และอุณหภูมิพื้นผิวก็ต่ำ อาจอยู่ที่ประมาณ 5000 เคลวินหรือน้อยกว่านั้น ภาพปรากฏของดาวยักษ์แดงจะมีสีตั้งแต่เหลืองส้มออกไปจนถึงแดง ครอบคลุมระดับสเปกตรัมในชั้น K และ M อาจบางทีรวมถึงชั้น S และดาวคาร์บอนจำนวนมากด้วย ดาวยักษ์แดงส่วนใหญ่โดยทั่วไปมักเรียกกันเป็น red giant branch stars (RGB) ซึ่งยังมีปฏิกิริยาหลอมไฮโดรเจนไปเป็นฮีเลียมอยู่ แต่ที่แกนกลางจะเป็นฮีเลียมที่ไม่มีปฏิกิริยาแล้ว แต่ยังมีดาวยักษ์แดงอีกพวกหนึ่งคือ asymptotic giant branch stars (AGB) ที่สร้างคาร์บอนจากฮีเลียมด้วยกระบวนการทริปเปิล-อัลฟา ดาวยักษ์แดงประเภท AGB จะเป็นดาวคาร์บอนประเภท C-N หรือ C-R ช่วงปลายๆ ดาวยักษ์แดงที่สว่างและโดดเด่นในยามค่ำคืน ได้แก่ ดาวอัลดิบาแรน ดาวอาร์คตุรุส และแกมมาครูซิส เป็นต้น ขณะที่ดาวที่ใหญ่ยิ่งกว่านั้นคือดาวอันแตร์ส (อัลฟาสกอร์ปิไอ) และดาวบีเทลจุส เป็นดาวยักษ์ใหญ่แดง (red supergiant).

ขีดจำกัดฮายาชิและดาวยักษ์แดง · ดาวยักษ์แดงและดาวยักษ์แดง · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ขีดจำกัดฮายาชิและดาวฤกษ์ · ดาวยักษ์แดงและดาวฤกษ์ · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ขีดจำกัดฮายาชิและไฮโดรเจน · ดาวยักษ์แดงและไฮโดรเจน · ดูเพิ่มเติม »

เคลวิน

ลวิน (kelvin, สัญลักษณ์: K) เป็นหน่วยวัดอุณหภูมิหนึ่ง และเป็นหน่วยพื้นฐานหนึ่งในเจ็ดของระบบเอสไอ นิยามให้เท่ากับ 1/273.16 เท่าของอุณหภูมิเทอร์โมไดนามิกของจุดสามสถานะของน้ำ เคลวินตั้งชื่อเพื่อเป็นเกียรติแต่นักฟิสิกส์และวิศวกรชาวอังกฤษ วิลเลียม ทอมสัน บารอนที่หนึ่งแห่ง เคลวิน (William Thomson, 1st Baron Kelvin) ซึ่งชื่อบรรดาศักดิ์นี้ตั้งตามชื่อ แม่น้ำเคลวิน อีกทีหนึ่ง แม่น้ำสายนี้ตัดผ่านมหาวิทยาลัยกลาสโกว์ สกอตแลนด์ เคลวิน เป็นหน่วยของหน่วยวัดอุณหภูมิหนึ่ง ที่ลอร์เควิน ได้พัฒนาคิดสเกลขึ้นใหม่ โดยหาความสัมพันธ์ระหว่างอุณหภูมิและความเร็วของอิเล็กตรอนที่เคลื่อนที่รอบนิวเคลียส โดยสังเกตว่าถ้าให้ความร้อนกับสสารมากขึ้น อิเล็กตรอนจะมีพลังงานมากขึ้น ทำให้เคลื่อนที่มีความเร็วมากขึ้น ในทางกลับกันถ้าลดความร้อนให้กับสสาร อิเล็กตรอนก็จะมีพลังงานน้อยลง ทำให้การเคลื่อนที่ลดลง และถ้าสามารถลดอุณหภูมิลงจนถึงจุดที่อิเล็กตรอนหยุดการเคลื่อนที่ ณ จุดนั้น จะไม่มีอุณหภูมิหรือพลังงานในสสารเลย และจะไม่มีการแผ่รังสีความร้อนจากวัตถุ จึงเรียกอุณหภูมิ ณ จุดนี้ว่า ศูนย์สัมบูรณ์ (0 K) หมวดหมู่:หน่วยฐานเอสไอ หมวดหมู่:หน่วยวัดอุณหภูมิ.

ขีดจำกัดฮายาชิและเคลวิน · ดาวยักษ์แดงและเคลวิน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ขีดจำกัดฮายาชิและดาวยักษ์แดง

ขีดจำกัดฮายาชิ มี 12 ความสัมพันธ์ขณะที่ ดาวยักษ์แดง มี 17 ขณะที่พวกเขามีเหมือนกัน 5, ดัชนี Jaccard คือ 17.24% = 5 / (12 + 17)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ขีดจำกัดฮายาชิและดาวยักษ์แดง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: