เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ

ขั้นตอนวิธีแบบยุคลิด vs. จำนวนธรรมชาติ

วิธีของยุคลิดสำหรับหาตัวหารร่วมมาก (หรม.) ของความยาวเริ่มต้น BA และ DC ซึ่งต่างนิยามให้เป็นพหุคูณของความยาว"หน่วย"เดียวกัน เพราะว่า DC สั้นกว่าจึงใช้"วัด" BA แต่เพียงครั้งเดียวเพราะเศษ EA น้อยกว่า CD ใช้ EA วัดความยาว DC ที่สั้นกว่าสองครั้ง จะเหลือเศษ FC สั้นกว่า EA แล้วใช้ FC วัดความยาว EA สามครั้ง เพราะว่าขั้นตอนนี้ไม่มีเศษ จึงจบโดยมี FC เป็น หรม. ด้านขวาเป็นตัวอย่างของนิโคมาคัสโดยจำนวน 49 และ 21 ให้ผลลัพธ์ค่าตัวหารร่วมมากเป็น 7 (ประยุกต์จาก Heath 1908:300) ในวิชาคณิตศาสตร์ ขั้นตอนวิธีแบบยุคลิด (Euclidean Algorithm) หรือขั้นตอนวิธีของยุคลิด เป็นวิธีคำนวณตัวหารร่วมมาก (หรม.) ของจำนวนเต็มสองจำนวน ตั้งชื่อตามยุคลิด นักคณิตศาสตร์ชาวกรีกผู้อธิบายทฤษฎีนี้ในอิลิเมนต์ของยุคลิดเล่ม VII และ X ตัวหารร่วมมากของจำนวนเต็มสองจำนวนคือจำนวนมากที่สุดที่หารทั้งสองได้โดยไม่เหลือเศษ รูปอย่างง่ายที่สุดของขั้นตอนวิธีแบบยุคลิดเริ่มด้วยจำนวนเต็มบวกคู่หนึ่ง และสร้างจำนวนคู่หนึ่งที่ประกอบด้วยจำนวนที่น้อยกว่าและผลต่างระหว่างจำนวนทั้งสอง กระบวนการทำซ้ำจนจำนวนทั้งสองเท่ากัน จำนวนสุดท้ายเป็นตัวหารร่วมมากของจำนวนเต็มบวกที่ขั้นตอนเริ่ม หลักการสำคัญคือ หรม. ในทางคณิตศาสตร์ จำนวนธรรมชาติ อาจหมายถึง จำนวนเต็มบวก หรือ จำนวนนับ (1, 2, 3, 4,...) หรือ จำนวนเต็มไม่เป็นลบ (0, 1, 2, 3, 4,...) ความหมายแรกมีการใช้ในทฤษฎีจำนวน ส่วนแบบหลังได้ใช้งานใน ตรรกศาสตร์,เซตและวิทยาการคอมพิวเตอร์ ถุ จำนวนธรรมชาติมีการใช้งานหลักอยู่สองประการ กล่าวคือเราสามารถใช้จำนวนธรรมชาติในการนับ เช่น มีส้มอยู่ 3 ผลบนโต๊ะ หรือเราอาจใช้สำหรับการจัดอันดับ เช่น เมืองนี้เป็นเมืองที่มีขนาดใหญ่เป็นอันดับที่ 3 ในประเทศ เป็นต้น คุณสมบัติของจำนวนธรรมชาติที่เกี่ยวกับการหารลงตัว เช่นการกระจายของจำนวนเฉพาะ เป็นเนื้อหาในทฤษฎีจำนวน ปัญหาที่เกี่ยวกับการนับ เช่น ทฤษฎีแรมซี นั้นถูกศึกษาในคณิตศาสตร์เชิงการจั.

ความคล้ายคลึงกันระหว่าง ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ

ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): จำนวนเต็มจำนวนเฉพาะทฤษฎีจำนวนคณิตศาสตร์

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

ขั้นตอนวิธีแบบยุคลิดและจำนวนเต็ม · จำนวนธรรมชาติและจำนวนเต็ม · ดูเพิ่มเติม »

จำนวนเฉพาะ

ในคณิตศาสตร์ จำนวนเฉพาะ (อังกฤษ: prime number) คือ จำนวนเต็มบวกที่มีตัวหารที่เป็นบวกอยู่ 2 ตัว คือ 1 กับตัวมันเอง ตรงข้ามกับจำนวนประกอบ ลำดับของจำนวนเฉพาะเริ่มต้นด้วย ดูบทความ รายชื่อจำนวนเฉพาะ สำหรับจำนวนเฉพาะ 500 จำนวนแรก สำหรับเลข 1 ไม่ถือว่าเป็นจำนวนเฉพาะตามนิยาม เซตของจำนวนเฉพาะทั้งหมดมักเขียนแทนด้วย \mathbb P เนื่องจาก 2 เป็นจำนวนเฉพาะตัวเดียวที่เป็นเลขคู่ ดังนั้นคำว่า จำนวนเฉพาะคี่ จะถูกใช้เพื่อหมายถึงจำนวนเฉพาะทั้งหมดที่ไม่ใช่ 2.

ขั้นตอนวิธีแบบยุคลิดและจำนวนเฉพาะ · จำนวนธรรมชาติและจำนวนเฉพาะ · ดูเพิ่มเติม »

ทฤษฎีจำนวน

ทฤษฎีจำนวน (number theory) โดยธรรมเนียมเดิมเป็นสาขาหนึ่งของคณิตศาสตร์บริสุทธิ์ ซึ่งศึกษาเกี่ยวกับคุณสมบัติของจำนวนเต็ม สาขานี้มีผลงานและปัญหาเปิดมากมายที่สามารถเข้าใจได้ง่าย แม้กระทั่งผู้ที่ไม่ใช่นักคณิตศาสตร์ แต่ในปัจจุบัน สาขานี้ยังได้สนใจกลุ่มของปัญหาที่กว้างขึ้น ซึ่งมักเป็นปัญหาที่ต่อยอดมาจากการศึกษาจำนวนเต็ม นักคณิตศาสตร์ที่ศึกษาสาขานี้เรียกว่า นักทฤษฎีจำนวน คำว่า "เลขคณิต" (arithmetic) มักถูกใช้เพื่ออ้างถึงทฤษฎีจำนวน นี่เป็นการเรียกในอดีต ซึ่งในปัจจุบันไม่ได้รับความนิยมเช่นเคย ทฤษฎีจำนวนเคยถูกเรียกว่า เลขคณิตชั้นสูง ซึ่งเลิกใช้ไปแล้ว อย่างไรก็ตามคำว่า "เลขคณิต" ยังปรากฏในสาขาทางคณิตศาสตร์อยู่ (เช่น ฟังก์ชันเลขคณิต เลขคณิตของเส้นโค้งวงรี หรือ ทฤษฎีบทมูลฐานของเลขคณิต) ไม่ควรจะสับสนระหว่างคำว่า เลขคณิต นี้ กับเลขคณิตมูลฐาน (elementary arithmetic) หรือสาขาของตรรกศาสตร์ที่ศึกษาเลขคณิตเปียโนในรูปของระบบรูปนั.

ขั้นตอนวิธีแบบยุคลิดและทฤษฎีจำนวน · จำนวนธรรมชาติและทฤษฎีจำนวน · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

ขั้นตอนวิธีแบบยุคลิดและคณิตศาสตร์ · คณิตศาสตร์และจำนวนธรรมชาติ · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ

ขั้นตอนวิธีแบบยุคลิด มี 25 ความสัมพันธ์ขณะที่ จำนวนธรรมชาติ มี 23 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 8.33% = 4 / (25 + 23)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง ขั้นตอนวิธีแบบยุคลิดและจำนวนธรรมชาติ หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: