โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

ของไหล

ดัชนี ของไหล

องไหล (fluid) ใช้นิยามสสารที่เปลี่ยนรูปร่างหรือไหลด้วยความเค้นเฉือน ของเหลวและแก๊สต่างก็เป็นรูปแบบหนึ่งของของไหล ของไหลเป็นสถานะหนึ่งของสสาร โดยทั่วไปในภาษาอังกฤษ คำว่า fluid หรือของไหลมักหมายถึงของเหลวหรือ liquid ด้วย ของไหลบางอย่างอาจมีความเหนียวสูงมาก ทำให้แยกแยะกับของแข็งได้ยาก หรือในโลหะบางชนิดก็อาจมีความแข็งต่ำมาก.

33 ความสัมพันธ์: บรรยากาศชลศาสตร์บารอมิเตอร์ฟิสิกส์พลศาสตร์ของไหลพื้นที่ระยะทางรถยนต์ลิ้นล็อกสุญญากาศสถานะ (สสาร)สเกลาร์อุตสาหกรรมผนังจินตนาการทรงกระบอกทันตแพทย์ของเหลวความสูงความหนาแน่นความดันปรอทประเทศอิตาลีน้ำหนักแบลซ ปัสกาลแพทยศาสตร์แก๊สแรงแรงเสียดทานโลหะเอวานเจลิสตา โตร์ริเชลลีเครื่องมือวัด

บรรยากาศ

มุมมองของชั้นบรรยากาศที่ตื่นตัวของดาวพฤหัสบดี รวมทั้งจุดแดงใหญ่ (Great Red Spot) บรรยากาศ หมายถึงชั้นแก๊สชนิดต่าง ๆ ที่ปกคลุมอยู่ทั่วดาวเคราะห์หรือวัตถุท้องฟ้านั้น ๆ ซึ่งจะแตกต่างกันไปในแต่ละดาว บางดาวไม่มีชั้นบรรยากาศ สำหรับบรรยากาศของโลกนั้นเป็นอากาศที่ห้อหุ้มโลก ประกอบไปด้วยไนโตรเจน, ออกซิเจน และแก๊สอื่น ๆ มีขอบเขตนับจากระดับน้ำทะเลขึ้นไปประมาณ 1000 กิโลเมตรโดยเฉลี่ย ดาวเคราะห์ชั้นในมีส่วนประกอบเป็นแก๊สคาร์บอนไดออกไซด์เป็นหลัก ส่วนดาวเคราะห์ชั้นนอกมีไฮโดรเจน, ฮีเลียม และแก๊สอื่นๆ เป็นหลัก.

ใหม่!!: ของไหลและบรรยากาศ · ดูเพิ่มเติม »

ชลศาสตร์

อุปกรณ์ไฮดรอลิกในรูปแบบต่าง ๆ ชลศาสตร์ (hydraulics) เป็นวิชาที่ศึกษาการเปลี่ยนพลังงานการไหลเป็นพลังงานกล โดยผ่านกลไกสำคัญต่าง ๆ อันประกอบไปด้วยลูกสูบไฮดรอลิก กระบอกสูบไฮดรอลิก และมอเตอร์ไฮดรอลิก และใช้หลักการตามทฤษฎีของแบลซ ปัสกาล นักฟิสิกส์ชาวฝรั่งเศส ชลศาสตร์เป็นหัวข้อที่มีอยู่ในวิทยาศาสตร์ประยุกต์และวิศวกรรมที่เกี่ยวข้องกับคุณสมบัติเชิงกลของของเหลว ชลศาสตร์โดยพื้นฐานแล้วคือรูปของเหลวของนิวแมติกส์ กลศาสตร์ของไหลนั้นเป็นรากฐานทางทฤษฎีสำหรับวิชาชลศาสตร์ซึ่งมุ่งเน้นไปทางด้านวิศวกรรมการใช้ประโยชน์จากคุณสมบัติของของเหลว ส่วนคำ hydraulics ในภาษาอังกฤษมีรากศัพท์จากคำในภาษากรีกว่า hydraulikos ซึ่งมาจากคำ hydor (แปลว่า น้ำ) ประสมกับคำ aulos (แปลว่า ท่อ).

ใหม่!!: ของไหลและชลศาสตร์ · ดูเพิ่มเติม »

บารอมิเตอร์

แอนิรอยด์บารอมิเตอร์ แบบใหม่บารอมิเตอร์แบบปรอทจาก Musée des Arts et Métiers, ปารีส บารอมิเตอร์ เป็นเครื่องมือตรวจวัดความดันบรรยากาศ สำหรับวัดค่าความกดดันที่เกิดจากแรงดันของอากาศ โดยใช้ของเหลวหรือวัสดุแข็งที่สัมผัสโดยตรงกับอากาศ การเปลี่ยนแปลงความกดดัน สามารถนำไปพยากรณ์การเปลี่ยนแปลงสภาพอากาศในช่วงเวลาสั้น ๆ การวัดความกดดันอากาศหลายจุดนำมาประมวลผลภายในการวิเคราะห์อากาศพื้นผิว (surface weather analysis) เพื่อช่วยค้นหาร่องความกดอากาศ (surface troughs), ระบบความกดอากาศสูง (high pressure systems) และเส้นความกดอากาศเท่า (frontal boundaries) ค้นพบหลักการและประดิษฐ์โดย เอวานเจลิสตา โตร์ริเชลลี.

ใหม่!!: ของไหลและบารอมิเตอร์ · ดูเพิ่มเติม »

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ใหม่!!: ของไหลและฟิสิกส์ · ดูเพิ่มเติม »

พลศาสตร์ของไหล

ลศาสตร์ของไหล(Fluid dynamics) เป็นสาขาวิชาการย่อยของกลศาสตร์ของไหล ที่ศึกษาการเคลื่อนที่ของของไหล ซึ่งหมายรวมถึงของเหลวและแก๊ส โดยพลศาสตร์ของไหลยังแบ่งแยกย่อยออกเป็นหลายสาขาวิชา เช่น อากาศพลศาสตร์ ที่ศึกษาการเคลื่อนที่ของอากาศ และพลศาสตร์ของเหลวที่ศึกษาการเคลื่อนที่ของของเหลว เราใช้พลศาสตร์ของไหลในหลายวิธี เช่นในการคำนวณแรงและโมเมนต์บนอากาศยาน ในการหาอัตราการไหลของมวลของปิโตรเลียมผ่านท่อ คาดคะเนแบบรูปของสภาพอากาศ ทำความเข้าใจเนบิวลาและสสารระหว่างดาว ตลอดจนงานคอมพิวเตอร์กราฟิก.

ใหม่!!: ของไหลและพลศาสตร์ของไหล · ดูเพิ่มเติม »

พื้นที่

ื้นที่โดยรวมของรูปร่างทั้งสามรูปเท่ากับประมาณ 15.56 ตารางหน่วย พื้นที่ คือ ปริมาณของพื้นผิวหรือรูปร่างสองมิติ ที่แสดงถึงขอบเขตเนื้อที่ในแนวแผ่นระนาบ พื้นที่สามารถเข้าใจได้ว่าเป็นจำนวนวัสดุที่หนาขนาดหนึ่งเท่าที่จำเป็นที่จะประกอบขึ้นเป็นรูปร่าง หรือปริมาณสีทาเท่าที่จำเป็นที่จะทาผิวหน้าในครั้งเดียว พื้นที่เป็นมโนทัศน์ในสองมิติที่คล้ายคลึงกับความยาวของเส้นโค้งในหนึ่งมิติ หรือปริมาตรของทรงตันในสามมิติ พื้นที่ของรูปร่างสามารถวัดได้โดยการเปรียบเทียบกับรูปสี่เหลี่ยมจัตุรัสที่มีขนาดตายตัวขนาดหนึ่ง หน่วยมาตรฐานของพื้นที่ในหน่วยเอสไอคือ ตารางเมตร (m2) ซึ่งเป็นพื้นที่ของรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละหนึ่งเมตร Bureau International des Poids et Mesures, retrieved 15 July 2012 รูปร่างที่มีพื้นที่เท่ากับสามตารางเมตร จะเหมือนกับพื้นที่ของรูปสี่เหลี่ยมจัตุรัสเช่นนั้นสามรูป ในทางคณิตศาสตร์ หน่วยตารางหน่วยถูกนิยามขึ้นให้มีพื้นที่เท่ากับ "หนึ่ง" และพื้นที่ของรูปร่างหรือพื้นผิวอื่น ๆ ก็จะเป็นจำนวนจริงไร้มิติจำนวนหนึ่ง สูตรคำนวณหาพื้นที่ของรูปร่างพื้นฐานหลายสูตรเป็นที่รู้จักโดยทั่วไป เช่น รูปสามเหลี่ยม รูปสี่เหลี่ยมมุมฉาก รูปวงกลม เป็นต้น จากการใช้สูตรเหล่านี้ พื้นที่ของรูปหลายเหลี่ยมใด ๆ สามารถหาได้จากการแบ่งรูปหลายเหลี่ยมเป็นรูปสามเหลี่ยม ส่วนรูปร่างที่มีขอบเขตเป็นเส้นโค้งมักจะคำนวณพื้นที่ได้ด้วยแคลคูลัส (calculus) สำหรับรูปร่างทรงตันอย่างเช่นทรงกลม ทรงกรวย หรือทรงกระบอก พื้นที่บนผิวรอบนอกของรูปทรงเหล่านี้เรียกว่า พื้นที่ผิว สูตรคำนวณพื้นที่ผิวของรูปทรงพื้นฐานต่าง ๆ สามารถหาได้ตั้งแต่ยุคกรีกโบราณ แต่การหาพื้นที่ผิวของรูปทรงที่ซับซ้อนยิ่งขึ้นต้องใช้แคลคูลัสหลายตัวแปร (multivariable calculus).

ใหม่!!: ของไหลและพื้นที่ · ดูเพิ่มเติม »

ระยะทาง

ลยืนอยู่ในระยะทางต่างๆ กัน ระยะทาง หมายถึงตัวเลขที่อธิบายว่า วัตถุแต่ละอย่างอยู่ห่างกันเท่าไรในช่วงเวลาหนึ่ง ในทางฟิสิกส์ ระยะทางอาจหมายถึงความยาวทางกายภาพ ระยะเวลา หรือการประมาณค่าบนสิ่งที่พิจารณาสองอย่าง ส่วนทางคณิตศาสตร์จะพิจารณาอย่างเฉพาะเจาะจงมากกว่า โดยทั่วไปแล้ว "ระยะทางจาก A ไป B" มีความหมายเหมือนกับ "ระยะทางระหว่าง A กับ B".

ใหม่!!: ของไหลและระยะทาง · ดูเพิ่มเติม »

รถยนต์

องรถยนต์และรถบรรทุกยุคใหม่กำลังขับอยู่บนทางด่วนสายหนึ่ง รถสปอร์ตยุคใหม่ รถยนต์หมายถึง ยานพาหนะทางบกที่ขับเคลื่อนที่ด้วยพลังงานอย่างใดอย่างหนึ่งและถ่ายทอดลงสู่ล้อ เพื่อพาผู้ขับ ผู้โดยสาร หรือสิ่งของ ไปยังจุดหมายปลายทาง ปัจจุบัน รถยนต์โดยส่วนมากได้รับการออกแบบอย่างซับซ้อนในทางวิศวกรรม และหลากหลายประเภท ตามความเหมาะสมของการใช้งาน หรือใช้สำหรับงานเฉพาะกิจ ทั้งนี้เว้นแต่รถไฟ.

ใหม่!!: ของไหลและรถยนต์ · ดูเพิ่มเติม »

ลิ้น

ลิ้น เป็นมัดของกล้ามเนื้อโครงร่างขนาดใหญ่ที่อยู่บริเวณฐานของช่องปากเพื่อรองรับอาหาร และช่วยในการเคี้ยวและการกลืน เป็นอวัยวะที่สำคัญในการรับรส บริเวณพื้นผิวของลิ้นปกคลุมไปด้วยปุ่มรับรส (taste bud) ลิ้นสามารถเคลื่อนไหวได้หลายทิศทาง จึงช่วยในการออกเสียง ลิ้นเป็นอวัยวะที่มีน้ำลายให้ความชุ่มชื้นอยู่เสมอ และเลี้ยงโดยเส้นประสาทและหลอดเลือดเป็นจำนวนมากเพื่อช่วยในการทำงานและการเคลื่อนไหว.

ใหม่!!: ของไหลและลิ้น · ดูเพิ่มเติม »

ล็อก

ล็อก เป็นคำทับศัพท์จากภาษาอังกฤษ สามารถหมายถึง.

ใหม่!!: ของไหลและล็อก · ดูเพิ่มเติม »

สุญญากาศ

ห้องสุญญากาศขนาดใหญ่ สุญญากาศ (vacuum มาจากภาษาละตินแปลว่า ว่างเปล่า) คือปริมาตรของช่องว่างซึ่งไม่มีสสารอยู่ภายใน เหมือนกับความดันแก๊สที่น้อยกว่าความดันบรรยากาศมาก ๆ ในความเป็นจริงเราไม่สามารถทำให้ปริมาตรของช่องว่างว่างเปล่าได้อย่างสมบูรณ์ที่เรียกว่า สุญญากาศสมบูรณ์ (perfect vacuum) ซึ่งมีความดันแก๊สเป็นศูนย์ สุญญากาศสมบูรณ์จึงเป็นแนวความคิดที่ไม่สามารถสังเกตการณ์ได้ในทางปฏิบัติ นักฟิสิกส์มักจะถกเถียงเกี่ยวกับผลการทดลองในอุดมคติว่าจะเกิดอะไรขึ้นในสุญญากาศสมบูรณ์ โดยใช้คำว่าสุญญากาศแทนสุญญากาศสมบูรณ์ และใช้คำว่า สุญญากาศบางส่วน (partial vacuum) แทนความหมายของสุญญากาศที่เกิดขึ้นได้จริง คุณภาพของสุญญากาศ หมายถึงระดับของสภาวะที่เข้าใกล้สุญญากาศสมบูรณ์ ความดันของแก๊สที่เหลืออยู่จะถูกใช้เป็นตัววัดคุณภาพของสุญญากาศเป็นหลัก โดยการวัดในหน่วยทอรร์ (Torr) หรือหน่วยเอสไออื่น ๆ ความดันแก๊สที่ยิ่งเหลือน้อยจะหมายถึงคุณภาพที่ยิ่งมากขึ้น ถึงแม้ว่าจะมีตัวแปรอื่นที่ต้องตัดออกในภายหลัง ทฤษฎีควอนตัมได้กำหนดขอบเขตสำหรับคุณภาพของสุญญากาศที่ดีที่สุดเท่าที่เป็นไปได้ จึงทำให้คาดเดาได้ว่าไม่มีปริมาตรของช่องว่างใดที่จะทำให้เป็นสุญญากาศได้อย่างสมบูรณ์ อวกาศเป็นสภาพสุญญากาศที่มีคุณภาพสูงโดยธรรมชาติ และสุญญากาศที่มีคุณภาพสูงกว่านั้นสามารถสร้างขึ้นได้ด้วยเทคโนโลยีปัจจุบัน สำหรับสุญญากาศคุณภาพต่ำได้ถูกใช้เพื่อการดูดและการสูบมากว่าหลายพันปีแล้ว สุญญากาศเป็นหัวข้อทางปรัชญาที่พบได้บ่อยตั้งแต่ยุคกรีกโบราณ แต่ก็ไม่ได้ทำการศึกษาอย่างจริงจังจนกระทั่งคริสต์ศตวรรษที่ 17 เอวันเจลิสตา ตอร์รีเชลลี (Evangelista Torricelli) นักฟิสิกส์ชาวอิตาลีได้สร้างสุญญากาศขึ้นในห้องทดลองเป็นครั้งแรกเมื่อ ค.ศ. 1643 และเทคนิคการทดลองอื่น ๆ ก็เป็นผลการพัฒนามาจากทฤษฎีเกี่ยวกับความดันบรรยากาศของเขา ต่อมาสุญญากาศกลายเป็นเครื่องมือที่มีค่าในอุตสาหกรรมการผลิตหลอดไฟและหลอดสุญญากาศในคริสต์ศตวรรษที่ 20 และเทคโนโลยีการสร้างสุญญากาศก็เริ่มแผ่ขยายไปในวงกว้าง คำว่า สุญญากาศ ในภาษาไทยมาจากคำสนธิ สุญญ + อากาศ รวมกันแปลว่า ไม่มีอากาศ หมวดหมู่:กระบวนการทางอุตสาหกรรม หมวดหมู่:แก๊ส หมวดหมู่:ความไม่มี หมวดหมู่:หลักการสำคัญของฟิสิกส์.

ใหม่!!: ของไหลและสุญญากาศ · ดูเพิ่มเติม »

สถานะ (สสาร)

นะ (State of matter) เป็นความสัมพันธ์กับโครงสร้างทางเคมีและคุณสมบัติทางฟิสิกส์ เช่น ความหนาแน่น, โครงสร้างผลึก (crystal structure), ดรรชนีหักเหของแสง (refractive index) และอื่นๆ สถานะที่คุ้นเคยกันมาก ได้แก่ ของแข็ง, ของเหลว, และแก๊ส ส่วนสถานะที่ไม่เป็นที่รู้จักกันมากนัก ได้แก่ พลาสมา และ พลาสมาควาร์ก-กลูออน, โบส-ไอน์สไตน์ คอนเดนเซต และ เฟอร์มิโอนิค คอนเดนเซต, วัตถุประหลาด, ผลึกเหลว, ซูเปอร์ฟลูอิด ซูเปอร์โซลิด พาราแมกเนติก, เฟอโรแมกเนติก, เฟสของ วัสดุ แม่เหล็ก.

ใหม่!!: ของไหลและสถานะ (สสาร) · ดูเพิ่มเติม »

สเกลาร์

กลาร์ คือปริมาณทางกายภาพที่บ่งบอกขนาดแต่ไม่มีทิศทาง ถือได้ว่าเป็น เทนเซอร์ (tensor) อันดับศูนย์ ค่าของปริมาณสเกลาร์นั้นจะไม่เปลี่ยนแปลงเมื่อมีการเปลี่ยนหรือการย้ายระบบพิกัด แม้แต่การแปลงลอเรนซ์ ตรงข้ามกับปริมาณเวกเตอร์ที่บ่งบอกทั้งขนาดและทิศทาง เช่น ความยาว พื้นที่ ปริมาตร อัตราเร็ว ตัวอย่างสเกลาร์อาทิ ความยาว พลังงาน เวลา อุณหภูมิ ความดัน เช่น ความยาว 2 เมตร อุณหภูมิ 100 องศาเซลเซียส เป็น อย่างไรก็ดี แม้ว่าปริมาณสเกลาร์นั้นจะเป็นปริมาณที่ไม่มีทิศทาง แต่ตัวมันนั้นสามารถเปลี่ยนแปลงไปในทิศทางหนึ่ง ๆ ได้ ตัวอย่างเช่น อุณหภูมิ มีแนวโน้มที่จะเพิ่มขึ้น เมื่อจุดที่กำลังถูกพิจารณาเคลื่อนที่เขาหาแหล่งกำเนิดความร้อน ทิศทางที่ปริมาณสเกลาร์เปลี่ยนแปลงมากที่สุด นั้นสามารถหาได้จาก เกรเดียนท์ (gradient) ของปริมาณสเกลาร์ หมวดหมู่:หลักการสำคัญของฟิสิกส์ หมวดหมู่:ฟิสิกส์เบื้องต้น de:Skalar (Mathematik) #Skalare in der Physik uk:Скалярна величина 1.

ใหม่!!: ของไหลและสเกลาร์ · ดูเพิ่มเติม »

อุตสาหกรรม

อุตสาหกรรม (Industry) เป็นคำจำกัดความที่ใช้กับกิจกรรมที่ใช้ทุนและแรงงาน เพื่อที่จะผลิตสิ่งของ หรือ จัดให้มีบริการ เช่น อุตสาหกรรมสิ่งทอ ในยุควิกตอเรีย นักประวัติศาสตร์เรียกช่วงเวลานั้นว่า การปฏิวัติอุตสาหกรรม โดยมีการผลิตเครื่องทุ่นแรงต่าง ๆ มากมาย และ ทำให้อุตสาหกรรมเจริญรุดหน้าอย่างรวดเร็วและมีระเบียบ เป็นมาตรฐานเดียวกันทั้งหมด นอกจากนี้ การปฏิวัติอุตสาหกรรมยังเกี่ยวของกับลัทธิสังคมนิยมของคาร์ล มาร์กซ (ลัทธิมาร์กซ) อีกด้วย ในปัจจุบันอุตสาหกรรมถือเป็นสิ่งหนึ่งที่จำเป็นต่อมนุษย์อย่างยิ่ง ด้วยว่ามนุษย์ต้องพึ่งพาการผลิตสิ่งที่จำเป็นต่อชีวิตประจำวัน หรือเรียกรวมว่าปัจจัยสี่ โดยสิ่งที่สามารถผลิตปัจจัยสี่ให้ดี มีคุณภาพและไม่ก่ออันตราย หรือก่ออันตรายให้กับร่างกายและทรัพย์สินน้อยที่สุด การปั่นด้ายในโรงงานอุตสาหกรรมช่วงยุคปฏิวัติอุตสาหกรรม.

ใหม่!!: ของไหลและอุตสาหกรรม · ดูเพิ่มเติม »

ผนัง

ผนังภายนอกอาคารในเม็กซิโกซิตี ผนัง เป็นโครงสร้างทางแนวตั้ง โดยมากมักมีลักษณะตัน ทึบ โดยทั่วไปแล้วมักหมายถึงผนังของอาคาร หรืออาจใช้รับน้ำหนักด้านบน ใช้แบ่งพื้นที่ในอาคารเป็นสัดส่วน หรือใช้ป้องกันหรือกำหนดพื้นที่ในที่โล่ง หมวดหมู่:ผนัง หมวดหมู่:บ้าน หมวดหมู่:ระบบโครงสร้าง.

ใหม่!!: ของไหลและผนัง · ดูเพิ่มเติม »

จินตนาการ

นตนาการ (Imagination) เป็นความสามารถในการสร้างภาพในสมอง ซึ่งภาพเหล่านี้ไม่ได้รับรู้ผ่านการมองเห็น การได้ยิน หรือผ่านวิธีการรับรู้อื่น ๆ จินตนาการถือได้ว่าเป็นตัวช่วยสำคัญในการนำความรู้ไปใช้งานจริงและแก้ไขปัญหาต่าง ๆ และยังเป็นรากฐานในการรวมประสบการณ์และกระบวนการเรียนรู้เข้าด้วยกันNorman 2000 pp.

ใหม่!!: ของไหลและจินตนาการ · ดูเพิ่มเติม »

ทรงกระบอก

รูปทรงกระบอก ในทางเรขาคณิต ทรงกระบอก (cylinder) เป็นกราฟสามมิติที่เกิดจากสมการ ทรงกระบอกที่มีรัศมี r และความสูง h จะสามารถหาปริมาตรของทรงกระบอกหาได้จากสูตร และพื้นที่ผิวของทรงกระบอกหาได้จากสูตร.

ใหม่!!: ของไหลและทรงกระบอก · ดูเพิ่มเติม »

ทันตแพทย์

ทันตแพทย์ คือ แพทย์ผู้มีบทบาทในการดูแลสุขภาพภายในช่องปากให้แก่ประชาชน ทำหน้าที่ดูแลและบำรุงรักษาโรคฟัน โรคเหงือก และความผิดปกติต่างๆ ภายในช่องปาก ซึ่งสุขภาพปากและฟันที่ดี จะนำไปสู่สุขภาพร่างกายโดยรวมที่ดี เพราะสัญญาณของโรคร้ายแรงบางอย่าง มักแสดงอาการโดยเริ่มจากเกิดความผิดปกติภายในช่องปากก่อนเป็นอันดับต้นๆ หมวดหมู่:ทันตแพทย์.

ใหม่!!: ของไหลและทันตแพทย์ · ดูเพิ่มเติม »

ของเหลว

รูปทรงของของเหลวเปลี่ยนไปตามภาชนะที่บรรจุ ของเหลว (Liquid) เป็นสถานะของของไหล ซึ่งปริมาตร จะถูกจำกัดภายใต้สภาวะคงที่ของอุณหภูมิและความดัน และรูปร่างของมันจะถูกกำหนดโดยภาชนะที่บรรจุมันอยู่ ยิ่งไปกว่านั้นของเหลวยังออกแรงกดดันต่อภาชนะด้านข้างและบางสิ่งบางอย่างในตัวของของเหลวเอง ความกดดันนี้จะถูกส่งผ่านไปทุกทิศทาง ถ้าของเหลวอยู่ในระเบียบของสนามแรงโน้มถ่วง ความดัน pที่จุดใด ๆ สามารถแสดงเป็นสูตรทางคณิตศาสตร์ได้ดังนี้ ที่ซึ่ง \rho เป็น ความหนาแน่น ของของเหลว (ซึ่งกำหนดให้คงที่) และ z คือความลึก ณ จุดใต้พื้นผิวของเหลวนั้น สังเกตว่าในสูตรนี้กำหนดให้ความดันที่ผิวบนเท่ากับ 0 และไม่ต้องคำนึงถึง ความตึงผิวของเหลวมีลักษณะเฉพาะของ แรงตึงผิว (surface tension) และ แรงยกตัว (capillarity) โดยทั่วไปของเหลวจะขยายตัวเมื่อถูกความร้อนและหดตัวเมื่อถูกความเย็น วัตถุที่จมอยู่ในของเหลวจะมีปรากฏการณ์ที่เรียกว่า แรงลอยตัว (buoyancy) ของเหลวเมื่อได้รับความร้อนจนถึง จุดเดือด จะเปลี่ยนสถานะเป็น ก๊าซ และเมื่อทำให้เย็นจนถึง จุดเยือกแข็งมันก็จะเปลี่ยนสถานะเป็น ของแข็ง โดย การกลั่นแยกส่วน (fractional distillation) ของเหลวจะถูกแยกจากกันและกันโดย การระเหย (vaporization) ที่ จุดเดือด ของของเหลวแต่ละชนิด การเก เนื่องจากโมเลกุลของของเหลวมีแรงดึงดูดซึ่งกันและกัน การเคลื่อนที่ของแต่ละโมเลกุลจึงอยู่ภายใต้อิทธิพลของโมเลกุลอื่นที่อยู่ใกล้เคียง โมเลกุลที่อยู่ตรงกลางได้รับแรงดึงดูดจากโมเลกุลอื่นที่อยู่ล้อมรอบเท่ากันทุกทิศทุกทาง ส่วนโมเลกุลที่ผิวหน้าจะได้รับแรงดึงดูดจากโมเลกุลที่อยู่ด้านล่างและด้านข้างเท่านั้น โมเลกุลที่ผิวหน้าจึงถูกดึงเข้าภายในของเหลว ทำให้พื้นที่ผิวของของเหลวลดลงเหลอน้อยที่สุด จะเห็นได้จากหยดน้ำที่เกาะบนพื้นผิวที่เรียบและสะอาดจะมีลักษณะเป็นทรงกลมซึ่งมีพื้นที่ผิวน้อยกว่าน้ำที่อยู่ในลักษณะแผ่ออกไป ของเหลวพยายามจัดตัวเองให้มีพื้นที่ผิวน้อยที่สุด เนื่องจากโมเลกุลที่ผิวไม่มีแรงดึงเข้าทางด้านบน จึงจะมีเสถียรภาพน้อยกว่าโมเลกุลที่อยู่ตรงกลาง การลดพื้นที่ผิวเท่ากับเป็นการลดจำนวนโมเลกุลที่ผิวหน้า จึงทำให้ของเหลวเสถียรมากขึ้นในบางกรณีของเหลวมีความจำเป็นต้องเพิ่มพื้นที่ผิว โดยที่โมเลกุลที่อยู่ด้านในของของเหลวจะเคลื่อนมายังพื้นผิว ในการนี้โมเลกุลเหล่านั้นต้องเอาชนะแรงดึงดูดระหว่างโมเลกุลที่อยูรอบ ๆ หรือกล่าวว่าต้องทำงาน งานที่ใช้ในการขยายพื้นที่ผิวของของเหลว 1 หน่วย เรียกว่า ความตึงผิว (Surface tension).

ใหม่!!: ของไหลและของเหลว · ดูเพิ่มเติม »

ความสูง

วัตถุทรงสี่เหลี่ยมมุมฉาก แสดงความกว้าง (Width) ความยาว (Length) และความสูง (Height) ความสูง คือการวัดระยะทางตามแนวตั้ง ใช้อธิบายว่าวัตถุใด ๆ อยู่สูงเท่าไรจากระดับอ้างอิงเช่น ความสูงของเครื่องบินจากพื้นโลก ความสูงของภูเขา ความสูงจากระดับน้ำทะเล ความสูงสามารถเรียกว่า ส่วนสูง หรือระดับความสูง (altitude) คำว่า ความสูง สามารถตีความหมายได้สองแบบ คือ วัตถุนั้นสูงยืนจากพื้นเท่าไร หรือ วัตถุหรืออยู่เหนือจากพื้นเท่าไร ตัวอย่างเช่น เราสามารถพูดได้ว่า "นั่นเป็นตึกสูง" (สูงยืนจากพื้น) หรือ "เครื่องบินบินอยู่สูงบนฟ้า" (เหนือจากพื้น) ซึ่งทั้งสองแบบสามารถใช้เป็นความสูงค่าหนึ่งของวัตถุ เช่น "ตึกหลังนั้นสูง 50 เมตร" หรือ "ความสูงของเครื่องบินอยู่ที่ 10,000 เมตร" เป็นต้น ค่าความสูงจะวัดจากจุดหนึ่งไปยังจุดหนึ่งขนานกับแกนตั้งตามแนวดิ่ง (แกน Y).

ใหม่!!: ของไหลและความสูง · ดูเพิ่มเติม »

ความหนาแน่น

วามหนาแน่น (อังกฤษ: density, สัญลักษณ์: ρ อักษรกรีก โร) เป็นการวัดมวลต่อหนึ่งหน่วยปริมาตร ยิ่งวัตถุมีความหนาแน่นมากขึ้น มวลต่อหน่วยปริมาตรก็ยิ่งมากขึ้น กล่าวอีกนัยหนึ่ง คือวัตถุที่มีความหนาแน่นสูง (เช่น เหล็ก) จะมีปริมาตรน้อยกว่าวัตถุความหนาแน่นต่ำ (เช่น น้ำ) ที่มีมวลเท่ากัน หน่วยเอสไอของความหนาแน่นคือ กิโลกรัมต่อลูกบาศก์เมตร (kg/m3) ความหนาแน่นเฉลี่ย (average density) หาได้จากผลหารระหว่างมวลรวมกับปริมาตรรวม ดังสมการ โดยที.

ใหม่!!: ของไหลและความหนาแน่น · ดูเพิ่มเติม »

ความดัน

วามดัน คือ แรงที่กระทำตั้งฉากต่อหนึ่งหน่วยพื้นที่ ภาพจำลอง–ความดันที่เกิดขึ้นจากการชนของอนุภาคในภาชนะปิด ความดันที่ระดับต่าง ๆ (หน่วยเป็น บาร์) ความดัน (pressure; สัญลักษณ์ p หรือ P) เป็นปริมาณชนิดหนึ่งในทางฟิสิกส์ หมายถึง อัตราส่วนระหว่างแรงที่กระทำตั้งฉากซึ่งทำโดยของแข็ง ของเหลว หรือแก๊ส ต่อพื้นที่ของสารใด ๆ (ของแข็ง ของเหลว หรือแก๊ส) ความดันเป็นปริมาณสเกลาร์ ซึ่งเป็นปริมาณที่มีแต่ขนาดไม่มีทิศทาง จากความหมายของความดันข้างต้นสามารถเขียนเป็นสูตรคณิตศาสตร์ (โดยทั่วไป) ได้ดังนี้ กำหนดให้ เนื่องจาก F มีหน่วยเป็น "นิวตัน" (N) และ A มีหน่วยเป็น "ตารางเมตร" (m2) ความดันจึงมีหน่วยเป็น "นิวตันต่อตารางเมตร" (N/m2; เขียนในรูปหน่วยฐานว่า kg·m−1·s−2) ในปี ค.ศ. 1971 (พ.ศ. 2514) มีการคิดค้นหน่วยของความดันขึ้นใหม่ เรียกว่า ปาสกาล (pascal, Pa) และกำหนดให้หน่วยชนิดนี้เป็นหน่วยเอสไอสำหรับความดัน โดยให้ 1 ปาสกาลมีค่าเท่ากับ 1 นิวตันต่อตารางเมตร (หรือ แรง 1 นิวตัน กระทำตั้งฉากกับพื้นที่ขนาด 1 ตารางเมตร) เพื่อให้เห็นภาพ ความดัน 1 ปาสกาลจะมีค่าประมาณ แรงกดของธนบัตรหนึ่งดอลลาร์ที่วางอยู่เฉย ๆ บนโต๊ะราบ ซึ่งนับว่าเป็นขนาดที่เล็กมาก ดังนั้นในชีวิตประจำวัน ความดันทั้งหลายมักมีค่าตั้งแต่ "กิโลปาสกาล" (kPa) ขึ้นไป โดยที่ 1 kPa.

ใหม่!!: ของไหลและความดัน · ดูเพิ่มเติม »

ปรอท

ปรอท (Mercury; Hydragyrum) เป็นธาตุเคมีสัญลักษณ์ Hg และเลขอะตอมเท่ากับ 80 รู้จักกันทั่วไปในชื่อ ควิกซิลเวอร์ (quicksilver) และมีชื่อเดิมคือ ไฮดราเจอรัม (hydrargyrum) ปรอทเป็นโลหะหนักสีเงินในบล็อก-d เป็นธาตุโลหะชนิดเดียวที่เป็นของเหลวในที่อุณหภูมิและความดันมาตรฐาน ธาตุอื่นอีกธาตุหนึ่งที่เป็นของเหลวภายใต้สภาวะเช่นนี้คือ โบรมีน แม้ว่าโลหะอย่างซีเซียม แกลเลียม และรูบิเดียมจะละลายที่อุณหภูมิสูงกว่าอุณหภูมิห้อง ปรอทพบได้ทั่วโลก ส่วนใหญ่พบในรูปซินนาบาร์ (เมอร์คิวริกซัลไฟด์) เมอร์คิวริกซัลไฟด์บริสุทธิ์เป็นผงสีแดงชาด ได้จากปฏิกิริยาของปรอท (เกิดจากรีดักชันจากซินนาบาร์) กับกำมะถัน หากสัมผัส สูดดมไอ หรือทานอาหารทะเลที่ปนเปื้อนปรอทที่ละลายน้ำ (เช่น เมอร์คิวริกคลอไรด์ หรือเมธิลเมอร์คิวรี) อาจเกิดเป็นพิษได้ ปรอทมักใช้ประโยชน์ในเทอร์โมมิเตอร์ บารอมิเตอร์ มาโนมิเตอร์ สฟิกโมมาโนมิเตอร์ โฟลตวาล์ว สวิตช์ปรอท ปรอทรีเลย์ หลอดฟลูออเรสเซนต์ และอุปกรณ์อื่น ๆ แม้ว่ายังมีประเด็นเรื่องพิษที่อาจทำให้เทอร์โมมิเตอร์และสฟิกโมมาโนมิเตอร์ไม่ถูกนำมาใช้อีก แต่จะใช้แอลกอฮอล์ หรือแก้วที่เติมกาลินสแตน หรือเครื่องมืออิเล็กทรอนิกส์ที่เป็นเทอร์มิสเตอร์ หรืออินฟราเรดแทน เช่นเดียวกัน สฟิกโมมาโนมิเตอร์ถูกแทนด้วยเกจความดันเชิงกลและเกจรับความตึงอิเล็กทรอนิกส์ ปรอทยังคงมีใช้ในงานวิจัยทางวิทยาศาสตร์ และสารอะมัลกัมสำหรับอุดฟันในบางท้องที่ ปรอทนำมาใช้ผลิตแสงสว่าง กล่าวคือ กระแสไฟฟ้าที่ไหลผ่านไอปรอทในหลอดไฟฟลูออเรสเซนต์จะสร้างแสงอัลตราไวโอเลตคลื่นสั้น ก่อให้เกิดฟอสเฟอร์ ทำให้หลอดเรืองแสง และเกิดเป็นแสงสว่างขึ้นม.

ใหม่!!: ของไหลและปรอท · ดูเพิ่มเติม »

ประเทศอิตาลี

อิตาลี (Italy; Italia อิตาเลีย) มีชื่ออย่างเป็นทางการคือ สาธารณรัฐอิตาลี (Italian Republic; Repubblica italiana) เป็นประเทศในทวีปยุโรป บริเวณยุโรปใต้ ตั้งอยู่ในคาบสมุทรอิตาลีที่มีรูปทรงคล้ายรองเท้าบูต และมีเกาะ 2 เกาะใหญ่ในทะเลเมดิเตอร์เรเนียน คือ เกาะซิซิลีและเกาะซาร์ดิเนีย และพรมแดนตอนเหนือแบ่งประเทศโดยเทือกเขาแอลป์ กับประเทศฝรั่งเศส สวิตเซอร์แลนด์ ออสเตรีย และสโลวีเนีย ประเทศอิตาลีเป็นประเทศสมาชิกก่อตั้งของสหภาพยุโรป เป็นสมาชิกองค์การสหประชาชาติ นาโต และกลุ่มจี 8 มีประเทศอิสระ 2 ประเทศ คือ ซานมารีโนและนครรัฐวาติกัน เป็นดินแดนที่ล้อมรอบไปด้วยพื้นที่ของอิตาลี ในขณะที่เมืองกัมปีโอเนดีตาเลีย เป็นดินแดนส่วนแยกของอิตาลีที่ถูกล้อมรอบด้วยพื้นที่ประเทศสวิตเซอร์แลน.

ใหม่!!: ของไหลและประเทศอิตาลี · ดูเพิ่มเติม »

น้ำหนัก

เครื่องชั่งสปริงเป็นเครื่องมือชนิดหนึ่งที่ใช้วัดขนาดของน้ำหนัก ในทางวิทยาศาสตร์และวิศวกรรมศาสตร์ น้ำหนัก หมายถึงแรงบนวัตถุอันเนื่องมาจากความโน้มถ่วง ขนาดของน้ำหนักในปริมาณสเกลาร์ มักเขียนแทนด้วย W แบบตัวเอน คือผลคูณของมวลของวัตถุ m กับขนาดของความเร่งเนื่องจากความโน้มถ่วง g นั่นคือ ถ้าหากพิจารณาน้ำหนักว่าเป็นเวกเตอร์ จะเขียนแทนด้วย W แบบตัวหนา หน่วยวัดของน้ำหนักใช้อย่างเดียวกันกับหน่วยวัดของแรง ซึ่งหน่วยเอสไอก็คือนิวตัน ยกตัวอย่าง วัตถุหนึ่งมีมวลเท่ากับ 1 กิโลกรัม มีน้ำหนักประมาณ 9.8 นิวตันบนพื้นผิวโลก มีน้ำหนักประมาณหนึ่งในหกเท่าบนพื้นผิวดวงจันทร์ และมีน้ำหนักที่เกือบจะเป็นศูนย์ในห้วงอวกาศที่ไกลออกไปจากเทหวัตถุอันจะส่งผลให้เกิดความโน้มถ่วง ในทางนิติศาสตร์และการพาณิชย์ น้ำหนัก มีความหมายเดียวกันกับมวล The National Standard of Canada, CAN/CSA-Z234.1-89 Canadian Metric Practice Guide, January 1989.

ใหม่!!: ของไหลและน้ำหนัก · ดูเพิ่มเติม »

แบลซ ปัสกาล

แบลซ ปัสกาล แบลซ ปาสกาล (Blaise Pascal) เกิดเมื่อ 19 มิถุนายน พ.ศ. 2166 (ค.ศ. 1623) ที่เมืองแกลร์มง (ปัจจุบันคือเมืองแกลร์มง-แฟร็อง) ประเทศฝรั่งเศส เสียชีวิตเมื่อ 19 สิงหาคม พ.ศ. 2205 (ค.ศ. 1662) ที่กรุงปารีส ประเทศฝรั่งเศส แบลซ ปาสกาล คือนักคณิตศาสตร์ นักฟิสิกส์ และนักปรัชญาผู้เคร่งครัดในศาสนา ปัสกาลเป็นเด็กที่มหัศจรรย์มีความรู้เหนือเด็กทั่วๆ ไปโดยได้ศึกษาเล่าเรียนจากพ่อของเขาเอง ปัสกาลจะตื่นทำงานแต่เช้าตรู่ท่ามกลางธรรมชาติโดยมักเกี่ยวข้องกับวิทยาศาสตร์ที่ซึ่งมีส่วนสำคัญในการสร้างเครื่องคิดเลขและการศึกษาเกี่ยวกับของเหลว ทำให้เขาเข้าใจความหมายของความดันและสุญญากาศด้วยการอธิบายของเอวันเจลิสตา ตอร์รีเชลลี ซึ่งเป็นลูกศิษย์ของกาลิเลโอ ปัสกาลเป็นหนึ่งในนักคณิตศาสตร์ที่โด่งดังที่สุดในวงการคณิตศาสตร์ เขาสร้างสองสาขาวิชาใหม่ในการทำรายงาน เขาเขียนหนังสือที่สำคัญบนหัวข้อผู้ออกแบบเรขาคณิตเมื่ออายุเพียง 16 ปีและยังติดต่อกับปีแยร์ เดอ แฟร์มา ในปี พ.ศ. 2197 (ค.ศ. 1654) เกี่ยวกับทฤษฎีความน่าจะเป็น ความมั่นคง อิทธิพลของการพัฒนาของเศรษฐกิจสมัยใหม่และวิทยาศาสตร์สังคม ประสบการณ์อันน่ามหัศจรรย์ในปี พ.ศ. 2197 (ค.ศ. 1654) ปัสกาลออกจากวงการคณิตศาสตร์และฟิสิกส์โดยอุทิศตัวเพื่องานเขียนเกี่ยวกับปรัชญาและศาสนา งานของเขามีชื่อเสียงมากในช่วงเวลานั้นคือ แล็ทร์พรอแว็งซียาล (Lettres provinciales) และป็องเซ (Pensées) อย่างไรก็ตามเขาได้รับโรคร้ายเข้าสู่ร่างกาย และได้เสียชีวิตหลังจากงานวันเกิดครบรอบอายุ 39 ปีเพียงสองเดือน ผลงานการค้นด้านฟิสิกส์ที่สำคัญ คือ การตั้งกฎของพาสคัล การประดิษฐ์บารอมิเตอร์ และเครื่องอัดไฮดรอลิก.

ใหม่!!: ของไหลและแบลซ ปัสกาล · ดูเพิ่มเติม »

แพทยศาสตร์

right แพทยศาสตร์ (Medicine) เป็นสาขาของวิทยาศาสตร์สุขภาพที่เกี่ยวข้องกับการดูแลสุขภาพและเยียวยารักษาโรคหรืออาการเจ็บป่วย การแพทย์เป็นแขนงอาชีพที่ต้องใช้ทั้งความรู้และทักษะอย่างสูง แพทยศาสตร์เป็นศาสตร์ที่เก่าแก่มีความสำคัญ ผู้ประกอบอาชีพทางการแพทย์มักได้รับความนับถือในสังคม แพทยศาสตร์มีศาสตร์เฉพาะทางต่าง ๆ อีกมากมายเช่น กุมารเวชศาสตร์, อายุรศาสตร์, ศัลยศาสตร์, ศัลยศาสตร์ออร์โธปิดิกส์ (ศัลยศาสตร์กระดูก), สูติศาสตร์, นรีเวชวิทยา, โสตศอนาสิกวิทยา, นิติเวชศาสตร์, จักษุวิทยา, จิตเวชศาสตร์,รังสีวิทยา,ตจวิทยา, พยาธิวิทยา, เวชศาสตร์ชุมชน, อาชีวเวชศาสตร์, เวชศาสตร์ฟื้นฟู, เวชระเบียน, เวชสถิติ และอื่น ๆ อีกมากมาย และในแต่ละสาขายังแบ่งย่อยเป็นสาขาย่อยลงไปอีกตามอวัยวะหรือกลุ่มของโรค เช่น ศัลยศาสตร์หัวใจและทรวงอก อายุรศาสตร์โรคไต เป็นต้น.

ใหม่!!: ของไหลและแพทยศาสตร์ · ดูเพิ่มเติม »

แก๊ส

อนุภาคในสถานะแก๊ส (อะตอม โมเลกุล หรือไอออน) เคลื่อนที่ได้อย่างอิสระภายในสนามแม่เหล็ก แก๊ส หรือที่เรียกอีกอย่างหนึ่งว่า ก๊าซ (Gas) เป็นหนึ่งในสถานะพื้นฐานทั้งสี่ของสสาร (ที่เหลือ คือ ของแข็ง ของเหลวและพลาสมา) แก๊สบริสุทธิ์ประกอบไปด้วยอะตอมเดี่ยว เช่น แก๊สมีตระกูล ส่วนแก๊สที่เป็นธาตุเคมี จะอยู่ในรูปหลายอะตอม แต่เป็นชนิดเดียวกัน เช่น ออกซิเจน หรือเป็นโมเลกุลสารประกอบที่อยู่ในรูปหลายอะตอมและต่างชนิดกัน เช่น คาร์บอนไดออกไซด์ แก๊สผสม เป็นแก๊สที่เกิดจากแก๊สบริสุทธิ์หลายชนิดรวมกัน เช่น อากาศ สิ่งที่แตกต่างระหว่างแก๊สที่ในอุณหภูมิห้องเป็นของเหลวกับแก๊สที่ในอุณหภูมิห้องเป็นของแข็ง คือโมเลกุลของแก๊ส และการแยกนี้ทำให้มีแก๊สไม่มีสี ซึ่งทำให้เรามองไม่เห็น การทำงานร่วมกันของอนุภาคของแก๊สมีขึ้นในสนามแม่แหล็กและแรงโน้มถ่วง แก๊สประเภทหนึ่งที่รู้จักกันดีคือ ไอน้ำ แก๊สมีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยมากจะอยู่ห่างกันและแพร่กระจายอยู่ทั่วทั้งภาชนะที่บรรจุ ทำให้มีรูปร่างเปลี่ยนแปลงตามขนาดและรูปร่างของภาชนะ สมบัติของแก๊ส 1.แก๊สมีรูปร่างเป็นปริมาตรไม่แน่นอน เปลี่ยนแปลงไปตามภาชนะที่บรรจุ บรรจุในภาชนะใดก็จะมีรูปร่างเป็นปริมาตรตามภาชนะนั้น เช่น ถ้าบรรจุในภาชนะทรงกลมขนาด 1 ลิตร แก๊สจะมีรูปร่างเป็นทรงกลมมีปริมาตร 1 ลิตร เพราะแก๊สมีแรงยึดเหนี่ยวระหว่างอนุภาคน้อยมากจึงทำให้อนุภาคของแก๊สสามารถเคลื่อนที่หรือแพร่กระจายเต็มภาชนะที่บรรจุ 2.ถ้าให้แก๊สอยู่ให้ภาชนะที่ได้ ปริมาตรของแก๊สจะขึ้นอยู่กับอุณหภูมิ ความดันและจำนวนโมลดังนั้นเมื่อบอกปริมาตรของแก๊สจะต้องบอกอุณหภูมิ ความดันและจำนวนโมล 3.สารที่อยู่ในสถานะแก๊สมีความหนาแน่นน้อยกว่าเมื่ออยู่ในสถานะของแข็งและของเหลวมาก 4.แก๊สสามารถแพร่ได้ และแพร่ได้เร็ว เพราะแก๊สมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยกว่าของเหลวและของแข็ง 5.แก๊สต่างๆ ตั้งแต่ 2 ชนิดขึ้นไปเมื่อนำมาใส่ในภาชนะเดียวกันแก๊สแต่ละชนิดจะแพร่ผสมกันอย่างสมบูรณ์ทุกส่วนนั้นคือส่วนผสมของแก๊สเป็นสารเดียวหรือเป็นสารละลาย 6.แก๊สส่วนใหญ่ไม่มีสีและโปร่งใสเช่นแก๊สออกซิเจน แก๊สไฮโดรเจน เป็นต้น.

ใหม่!!: ของไหลและแก๊ส · ดูเพิ่มเติม »

แรง

ในทางฟิสิกส์ แรง คือ อันตรกิริยาใด ๆ เมื่อไม่มีการขัดขวางแล้วจะเปลี่ยนแปลงการเคลื่อนที่ของวัตถุไป แรงที่สามารถทำให้วัตถุซึ่งมีมวลเปลี่ยนแปลงความเร็ว (ซึ่งรวมทั้งการเคลื่อนที่จากภาวะหยุดนิ่ง) กล่าวคือ ความเร่ง ซึ่งเป็นผลมาจากการใช้พลังงาน แรงยังอาจหมายถึงการผลักหรือการดึง แรงเป็นปริมาณที่มีทั้งขนาดหรือทิศทาง วัดได้ในหน่วยของนิวตัน โดยใช้สัญลักษณ์ทั่วไปเป็น F ตามกฎการเคลื่อนที่ข้อที่ 2 ของนิวตัน กล่าวว่าแรงลัพธ์ที่กระทำต่อวัตถุมีค่าเท่ากับอัตราของโมเมนตัมที่เปลี่ยนแปลงไปตามเวลา ถ้ามวลของวัตถุเป็นค่าคงตัว จากกฎข้อนี้จึงอนุมานได้ว่าความเร่งเป็นสัดส่วนโดยตรงกับแรงลัพธ์ที่กระทำต่อวัตถุในทิศทางของแรงลัพธ์และเป็นสัดส่วนผกผันกับมวลของวัตถุ แนวคิดเกี่ยวกับแรง ได้แก่ แรงขับซึ่งเพิ่มความเร็วของวัตถุให้มากขึ้น แรงฉุดซึ่งลดความเร็วของวัตถุ และทอร์กซึ่งทำให้เกิดการเปลี่ยนแปลงความเร็วในการหมุนของวัตถุ ในวัตถุที่มีส่วนขยาย แรงที่ทำกระทำคือแรงที่กระทำต่อส่วนของวัตถุที่อยู่ติดกัน การกระจายตัวของแรงดังกล่าวเป็นความเครียดเชิงกล ซึ่งไม่ทำให้เกิดความเร่งของวัตถุมื่อแรงสมดุลกัน แรงที่กระจายตัวกระทำบนส่วนเล็ก ๆ ของวัตถุอาจเรียกได้ว่าเป็นความดัน ซึ่งเป็นความเคลียดอย่างหนึ่งและถ้าไม่สมดุลอาจทำให้วัตถุมีความเร่งได้ ความเครียดมักจะทำให้วัตถุเกิดการเสียรูปของวัตถุที่เป็นของแข็งหรือการไหลของของไหล.

ใหม่!!: ของไหลและแรง · ดูเพิ่มเติม »

แรงเสียดทาน

ือ แรงที่กระทำต่อวัตถุ คลิ๊กที่นี.

ใหม่!!: ของไหลและแรงเสียดทาน · ดูเพิ่มเติม »

โลหะ

ลหะ คือ วัสดุที่ประกอบด้วยธาตุโลหะที่มีอิเล็กตรอนอิสระอยู่มากมาย นั่นคืออิเล็กตรอนเหล่านี้ไม่ได้เป็นของอะตอมใดอะตอมหนึ่งโดยเฉพาะ ทำให้มีคุณสมบัติพิเศษหลายประการ เช่น.

ใหม่!!: ของไหลและโลหะ · ดูเพิ่มเติม »

เอวานเจลิสตา โตร์ริเชลลี

อวานเจลิสตา โตร์ริเชลลี (อิตาลี: Evangelista Torricelli, บางตำราออกเสียงภาษาอังกฤษว่า ตอร์ริเชลลี หรือ ทอร์ริเชลลี, 15 ตุลาคม พ.ศ. 2151 - 25 ตุลาคม พ.ศ. 2190) เป็นนักฟิสิกส์ และนักคณิตศาสตร์ ชาวอิตาลี ผู้ประดิษฐ์คิดค้น บารอมิเตอร์ และภายหลังได้ถูกนำชื่อของเขาได้นำไปตั้งเป็น หน่วยของความดันในระบบ หน่วยเอสไอ บางตำรายกย่องให้เขาเป็น บิดาแห่งอุทกพลศาสตร.

ใหม่!!: ของไหลและเอวานเจลิสตา โตร์ริเชลลี · ดูเพิ่มเติม »

เครื่องมือวัด

กัปตันนีโมและศาสตราจารย์ Aronnax กำลังใคร่ครวญเครื่องมือวัดต่าง ๆ ในภาพยนตร์ ''ใต้ทะเลสองหมื่นโยชน์'' เครื่องมือวัดความรักและเครื่องทดสอบความแข็งแรงที่สถานีรถไฟเมืองฟรามิงแฮม, รัฐแมสซาชูเซต เครื่องมือวัด (Measuring Instrument) เป็นอุปกรณ์สำหรับการวัด ปริมาณทางกายภาพ ในสาขาวิทยาศาสตร์กายภาพ, การประกันคุณภาพ และ วิศวกรรม, การวัด เป็นกิจกรรมเพื่อให้ได้มาซึ่งปริมาณทางกายภาพของวัตถุและเหตุการณ์ที่เกิดขึ้นในโลกแห่งความเป็นจริง และทำการเปรียบเทียบปริมาณทางกายภาพเหล่านั้น มาตรฐานของวัตถุและเหตุการณ์ได้ถูกก่อตั้งขึ้นและถูกใช้เป็น หน่วยการวัด และกระบวนการของการวัดจะได้ผลออกมาเป็นตัวเลขหนึ่งที่เกี่ยวข้องกับสิ่งที่กำลังทำการวัดอยู่นั้นและหน่วยอ้างอิงของการวัด เครื่องมือวัดและวิธีการทดสอบอย่างเป็นทางการซึ่งเป็นตัวกำหนดการใช้เครื่องมือเป็นวิธีการที่จะบอกความสัมพันธ์ของตัวเลขเหล่านี้ เครื่องมือวัดทั้งหมดขึ้นอยู่กับปริมาณที่แปรได้ของความผิดพลาดของเครื่องมือวัดและความไม่แน่นอนในการวัด นักวิทยาศาสตร์, วิศวกรและคนอื่น ๆ ใช้เครื่องมือที่หลากหลายในการดำเนินการวัดของพวกเขา เครื่องมือเหล่านี้อาจจะเป็นตั้งแต่วัตถุง่าย ๆ เช่นไม้บรรทัดและนาฬิกาจับเวลาจนถึงกล้องจุลทรรศน์อิเล็กตรอนและเครื่องเร่งอนุภาค เครื่องมือวัดเสมือนจริงถูกนำมาใช้กันอย่างแพร่หลายในการพัฒนาเครื่องมือวัดที่ทันสมัย ราล์ฟ Müller (1940) กล่าวว่า "นั่นประวัติศาสตร์ของว​​ิทยาศาสตร์ทางกายภาพเป็นส่วนใหญ่ในประวัติศาสตร์ของเครื่องมือและการใช้งานที่ชาญฉลาดของพวกมันเป็นที่รู้จักกันเป็นอย่างดี ความเป็นสากลและทฤษฎีที่ได้เกิดขึ้นเป็นครั้งคราวได้ลุกขึ้นยืนหรือตกลงไปบนพื้นฐานของการวัดที่แม่นยำ และในหลายกรณีเครื่องมือใหม่จะต้องมีการปรับปรุงใหม่เพื่อให้ตรงกับวัตถุประสงค์ มีหลักฐานเล็กน้อยที่แสดงให้เห็นว่าจิตใจของคนทันสมัย​​จะเหนือกว่าพวกคนหัวโบราณ เครื่องมือของคนทันสมัยดีกว่าอย่างเทียบกันไม่ได้" เดวิส Baird ได้แย้งว่าการเปลี่ยนแปลงที่สำคัญจะเกี่ยวข้องกับตัวบ่งชี้ของ ฟลอริส โคเฮน เกี่ยวกับ "ปฏิวัติทางวิทยาศาสตร์ที่ยิ่งใหญ่ครั้งที่สี่" หลังจากสงครามโลกครั้งที่สอง เป็นการพัฒนาเครื่องมือทางวิทยาศาสตร์ ไม่เพียงแต่เฉพาะในทางเคมีเท่านั้น แต่ทั่วทุกสาขาวิทยาศาสตร์ ในสาขาวิชาเคมี หัวข้อแนะนำของเครื่องมือใหม่ในทศวรรษที่ 1940 คือ "ไม่มีอะไรน้อยกว่าการปฏิวัติทางวิทยาศาสตร์และเทคโนโลยี" ในการพัฒนานี้วิธีการเปียกและแห้งแบบคลาสสิกของเคมีอินทรีย์ด้านโครงสร้างได้ถูกตัดทิ้งไปและพื้นที่ใหม่ของการวิจัยได้ถูกเปิดขึ้น ความสามารถในการที่จะทำให้เกิดการวัดที่มีความแม่นยำ, ตรวจสอบได้และทำซ้ำใหม่ได้ของโลกธรรมชาติ ในระดับที่สังเกตไม่ได้ก่อนหน้านี้ โดยใช้เครื่องมือทางวิทยาศาสตร์ สิ่งเหล่านี้จะ "ทำให้เกิดเนื้อหาที่แตกต่างกันของโลก" การปฏิวัติเครื่องมือนี้ได้เปลี่ยนแปลงพื้นฐานในความสามารถของมนุษย์ด้านการเฝ้าระวังและตอบสนอง อย่างที่ได้แสดงในตัวอย่างของการตรวจสอบดีดีที(สารฆ่าแมลง) และการใช้เครื่องมือในการวิเคราะห์คลื่นความถี่รังสียูวี (Ultraviolet–visible spectroscopy) และแก๊ส chromatography (กระบวนการวิเคราะห์หรือแยกสาร โดยอาศัยความแตกต่างจากการเคลื่อนที่ของโมเลกุลของสารต่าง ๆ ที่ผสมรวมกันอยู่ โดยให้สารผ่านหรือไหลซึมไปในตัวกลางที่เหมาะสมด้วยแรงโน้มถ่วงหรือความดัน) ในการตรวจสอบมลพิษทางน้ำ การควบคุมกระบวนการเป็นหนึ่งในสาขาหลักของการประยุกต์ใช้เครื่องมือ (applied instrumentation) เครื่องมือมักจะเป็นส่วนหนึ่งของระบบควบคุมในโรงกลั่นน้ำมัน, โรงงานอุตสาหกรรม, และยานพาหนะ เครื่องมือที่เชื่อมต่อกับระบบควบคุมอาจจะส่งสัญญาณที่ใช้ในการทำงานของอุปกรณ์อื่น ๆ และให้การสนับสนุนการควบคุมระยะไกลหรือการทำงานแบบอัตโนมัติ การทำงานดังล่าวมักจะถูกเรียกว่าชิ้นส่วนควบคุมสุดท้ายเมื่อมีการควบคุมจากระยะไกลหรือโดยระบบควบคุม ในช่วงต้นปี 1954 Wildhack ได้กล่าวถึงศักยภาพทั้งในด้านการผลิตและการทำลายล้างโดยธรรมชาติในการควบคุมกระบวนการ (process control).

ใหม่!!: ของไหลและเครื่องมือวัด · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »