เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร

การแจกแจงปรกติ vs. การแจกแจงปรกติหลายตัวแปร

ำหรับทฤษฎีความน่าจะเป็น การแจกแจงปรกติ (normal distribution) เป็นการแจกแจงความน่าจะเป็นของค่าของตัวแปรสุ่มที่เป็นค่าแบบต่อเนื่อง โดยที่ค่าของตัวแปรสุ่มมีแนวโน้มที่จะมีค่าอยู่ใกล้ ๆ กับค่า ๆ หนึ่ง (เรียกว่าค่ามัชฌิม) กราฟแสดงค่าฟังก์ชันความหนาแน่น (probability density function) จะเป็นรูปคล้ายระฆังคว่ำ หรือเรียกว่า Gaussian function โดยค่าฟังก์ชันความหนาแน่นของการแจกแจงปรกติ ได้แก่ โดย "x" แทนตัวแปรสุ่ม พารามิเตอร์ μ แสดงค่ามัชฌิม และ σ 2 คือค่าความแปรปรวน (variance) ซึ่งเป็นค่าที่ใช้บอกปริมาณการกระจายของการแจกแจง การแจกแจงปรกติที่มีค่า และ จะถูกเรียกว่า การแจกแจงปรกติมาตรฐาน การแจกแจงปรกติเป็นการแจกแจงที่เด่นที่สุดในทางวิชาความน่าจะเป็นและสถิติศาสตร์ ซึ่งก็มาจากหลาย ๆ เหตุผล ซึ่งก็รวมถึงผลจากทฤษฎีบทขีดจํากัดกลาง (central limit theorem) ที่กล่าวว่า ภายใต้สภาพทั่ว ๆ ไปแล้ว ค่าเฉลี่ยจากการสุ่มค่าของตัวแปรสุ่มอิสระจากการแจกแจงใด ๆ (ที่มีค่าเฉลี่ยและค่าความแปรปรวนจำกัด) ถ้าจำนวนการสุ่มนั้นใหญ่พอ แล้วค่าเฉลี่ยนั้นจะมีการแจกแจงประมาณได้เป็นการแจกแจงปรกต. การแจกแจงแบบปรกติหลายตัวแปร (multivariate normal distribution) เป็นการขยายวางนัยทั่วไปจากการแจกแจงแบบปรกติ (ตัวแปรเดียว) ไปเป็นหลายมิติ(หลายตัวแปร) เวกเตอร์สุ่มที่มีการแจกแจงแบบปรกติหลายตัวแปร คือ ทุกๆผลรวมเชิงเส้น (linear combination) ของส่วนประกอบของเวกเตอร์มีการแจกแจงเป็นการแจกแจงแบบปรกติ การแจกแจงแบบปรกติหลายตัวแปร มักใช้อธิบาย เซตของตัวแปรสุ่มหลายๆตัวที่มีความสัมพันธ์กัน โดยที่แต่ค่าของตัวแปรจะมีค่าเกาะกลุ่มอยู่ใกล้ๆกับค่ามัชฌิม.

ความคล้ายคลึงกันระหว่าง การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร

การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร มี 2 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): การแจกแจงปรกติมัชฌิม

การแจกแจงปรกติ

ำหรับทฤษฎีความน่าจะเป็น การแจกแจงปรกติ (normal distribution) เป็นการแจกแจงความน่าจะเป็นของค่าของตัวแปรสุ่มที่เป็นค่าแบบต่อเนื่อง โดยที่ค่าของตัวแปรสุ่มมีแนวโน้มที่จะมีค่าอยู่ใกล้ ๆ กับค่า ๆ หนึ่ง (เรียกว่าค่ามัชฌิม) กราฟแสดงค่าฟังก์ชันความหนาแน่น (probability density function) จะเป็นรูปคล้ายระฆังคว่ำ หรือเรียกว่า Gaussian function โดยค่าฟังก์ชันความหนาแน่นของการแจกแจงปรกติ ได้แก่ โดย "x" แทนตัวแปรสุ่ม พารามิเตอร์ μ แสดงค่ามัชฌิม และ σ 2 คือค่าความแปรปรวน (variance) ซึ่งเป็นค่าที่ใช้บอกปริมาณการกระจายของการแจกแจง การแจกแจงปรกติที่มีค่า และ จะถูกเรียกว่า การแจกแจงปรกติมาตรฐาน การแจกแจงปรกติเป็นการแจกแจงที่เด่นที่สุดในทางวิชาความน่าจะเป็นและสถิติศาสตร์ ซึ่งก็มาจากหลาย ๆ เหตุผล ซึ่งก็รวมถึงผลจากทฤษฎีบทขีดจํากัดกลาง (central limit theorem) ที่กล่าวว่า ภายใต้สภาพทั่ว ๆ ไปแล้ว ค่าเฉลี่ยจากการสุ่มค่าของตัวแปรสุ่มอิสระจากการแจกแจงใด ๆ (ที่มีค่าเฉลี่ยและค่าความแปรปรวนจำกัด) ถ้าจำนวนการสุ่มนั้นใหญ่พอ แล้วค่าเฉลี่ยนั้นจะมีการแจกแจงประมาณได้เป็นการแจกแจงปรกต.

การแจกแจงปรกติและการแจกแจงปรกติ · การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร · ดูเพิ่มเติม »

มัชฌิม

มัชฌิม (mean) ในทางสถิติศาสตร์มีความหมายได้สองทางคือ.

การแจกแจงปรกติและมัชฌิม · การแจกแจงปรกติหลายตัวแปรและมัชฌิม · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร

การแจกแจงปรกติ มี 6 ความสัมพันธ์ขณะที่ การแจกแจงปรกติหลายตัวแปร มี 10 ขณะที่พวกเขามีเหมือนกัน 2, ดัชนี Jaccard คือ 12.50% = 2 / (6 + 10)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง การแจกแจงปรกติและการแจกแจงปรกติหลายตัวแปร หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: