เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง 1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก

1 − 2 + 3 − 4 + · · · vs. อนุกรมลู่ออก

กราฟแสดงผลรวมจำกัดพจน์ 15,000 ค่าแรกของอนุกรม 1 − 2 + 3 − 4 + … ในทางคณิตศาสตร์ 1 − 2 + 3 − 4 + ··· เป็นอนุกรมอนันต์ที่แต่ละพจน์เป็นจำนวนเต็มบวกลำดับถัดจากพจน์ก่อนหน้า โดยใส่เครื่องหมายบวกและลบสลับกัน ผลรวม m พจน์แรกของอนุกรมนี้สามารถเขียนโดยใช้สัญลักษณ์ผลรวมได้ในรูป อนุกรมนี้เป็นอนุกรมลู่ออก เพราะลำดับของผลรวมจำกัดพจน์ (1, -1, 2, -2, …) ไม่ลู่เข้าหาลิมิตที่เป็นจำนวนจำกัดใด ๆ อย่างไรก็ตาม มีปฏิทรรศน์จำนวนมากที่แสดงว่าอนุกรมนี้มีลิมิต ในคริสต์ศตวรรษที่ 18 เลออนฮาร์ด ออยเลอร์ ได้เขียนสมการซึ่งเขายอมรับว่าเป็นปฏิทรรศน์ต่อไปนี้ เป็นเวลานานกว่าจะมีคำอธิบายอย่างชัดเจนถึงสมการดังกล่าว ตั้งแต่ปี พ.ศ. 2433 แอร์เนสโต เชซะโร, เอมีล บอแรล และนักคณิตศาสตร์คนอื่น ๆ ได้ร่วมกันพัฒนาวิธีการนิยามผลรวมของอนุกรมลู่ออกทั่วไป วิธีเหล่านั้นจำนวนมากต่างได้นิยามค่า 1 − 2 + 3 − 4 + … ให้ "เท่ากับ" 1/4 ผลรวมเซซาโรเป็นหนึ่งในวิธีการที่ไม่สามารถนิยามค่าของ 1 − 2 + 3 − 4 + … ได้ อนุกรมนี้จึงเป็นหนึ่งในตัวอย่างที่ต้องใช้วิธีการที่แรงกว่าเพื่อนิยามค่า เช่น ผลรวมอาเบล อนุกรม 1 − 2 + 3 − 4 + … เป็นอนุกรมที่เกี่ยวข้องกับอนุกรมแกรนดี 1 − 1 + 1 − 1 + … ออยเลอร์ได้พิจารณาอนุกรมทั้งสองว่าเป็นกรณีเฉพาะของอนุกรม งานวิจัยของเขาได้ต่อยอดไปสู่การศึกษาเรื่องปัญหาบาเซิล ซึ่งนำไปสู่สมการเชิงฟังก์ชันที่ปัจจุบันรู้จักกันในชื่อฟังก์ชันอีตาของดิริชเลต์และฟังก์ชันซีตาของรีมันน. ในทางคณิตศาสตร์ อนุกรมลู่ออก เป็นอนุกรมที่ไม่ลู่เข้า นั่นคือลำดับอนันต์ของผลบวกจำกัดพจน์ไม่สามารถหาลิมิตที่เป็นจำนวนจำกัดได้ หากอนุกรมหนึ่งลู่เข้า แต่ละพจน์ของอนุกรมจะต้องลู่เข้าสู่ศูนย์ ดังนั้นอนุกรมที่แต่ละพจน์ไม่ลู่เข้าสู่ศูนย์จะลู่ออกเสมอ อย่างไรก็ตาม บทกลับนั้นไม่เป็นจริง อนุกรมที่แต่ละพจน์ลู่เข้าสู่ศูนย์นั้นไม่จำเป็นต้องลู่เข้า ตัวอย่างค้านเช่น ลำดับฮาร์โมนิก.

ความคล้ายคลึงกันระหว่าง 1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก

1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ลิมิตของฟังก์ชันอนุกรมคณิตศาสตร์

ลิมิตของฟังก์ชัน

ในวิชาคณิตศาสตร์ ลิมิตของฟังก์ชัน เป็นแนวคิดพื้นฐานของ คณิตวิเคราะห์ (ภาคทฤษฎีของแคลคูลัส) ถ้าเราพูดว่า ฟังก์ชัน f มีลิมิต L ที่จุด p หมายความว่า ผลลัพธ์ของ f จะเข้าใกล้ L ที่จุดใกล้จุด p สำหรับนิยามอย่างเป็นทางการนั้น มีการกำหนดขึ้นครั้งแรก ช่วงปลายของคริสต์ศตวรรษที่ 19 มีรายละเอียดอยู่ข้างล่าง ดูที่ ข่ายลำดับ (topology) สำหรับนัยทั่วไปของแนวคิดของลิมิต.

1 − 2 + 3 − 4 + · · ·และลิมิตของฟังก์ชัน · ลิมิตของฟังก์ชันและอนุกรมลู่ออก · ดูเพิ่มเติม »

อนุกรม

ในทางคณิตศาสตร์ อนุกรม คือผลจากการบวกสมาชิกทุกตัวของลำดับไม่จำกัดเข้าด้วยกัน หากกำหนดให้ลำดับของจำนวนเป็น \.

1 − 2 + 3 − 4 + · · ·และอนุกรม · อนุกรมและอนุกรมลู่ออก · ดูเพิ่มเติม »

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.

1 − 2 + 3 − 4 + · · ·และคณิตศาสตร์ · คณิตศาสตร์และอนุกรมลู่ออก · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง 1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก

1 − 2 + 3 − 4 + · · · มี 47 ความสัมพันธ์ขณะที่ อนุกรมลู่ออก มี 4 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 5.88% = 3 / (47 + 4)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง 1 − 2 + 3 − 4 + · · ·และอนุกรมลู่ออก หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: