โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ไดโอด

ดัชนี ไดโอด

อดชนิดต่าง ๆ ไดโอด (diode) เป็นชิ้นส่วนอิเล็กทรอนิกส์ชนิดสองขั้วคือขั้ว p และขั้ว n ที่ออกแบบและควบคุมทิศทางการไหลของประจุไฟฟ้า มันจะยอมให้กระแสไฟฟ้าไหลในทิศทางเดียว และกั้นการไหลในทิศทางตรงกันข้าม เมื่อกล่าวถึงไดโอด มักจะหมายถึงไดโอดที่ทำมาจากสารกึ่งตัวนำ (Semiconductor diode) ซึ่งก็คือผลึกของสารกึ่งตัวนำที่ต่อกันได้ขั้วทางไฟฟ้าสองขั้ว ส่วนไดโอดแบบหลอดสูญญากาศ (Vacuum tube diode) ถูกใช้เฉพาะทางในเทคโนโลยีไฟฟ้าแรงสูงบางประเภท เป็นหลอดสูญญากาศที่ประกอบด้วยขั้วอิเล็ดโทรดสองขั้ว ซึ่งจะคือแผ่นตัวนำ (plate) และแคโทด (cathode) ส่วนใหญ่เราจะใช้ไดโอดในการยอมให้กระแสไปในทิศทางเดียว โดยยอมให้กระแสไฟในทางใดทางหนึ่ง ส่วนกระแสที่ไหลทิศทางตรงข้ามกันจะถูกกั้น ดังนั้นจึงอาจถือว่าไดโอดเป็นวาล์วตรวจสอบแบบอิเล็กทรอนิกส์อย่างหนึ่ง ซึ่งนับเป็นประโยชน์อย่างมากในวงจรอิเล็กทรอนิกส์ เช่น ใช้เป็นตัวเรียงกระแสไฟฟ้าในวงจรแหล่งจ่ายไฟ เป็นต้น อย่างไรก็ตามไดโอดมีความสามารถมากกว่าการเป็นอุปกรณ์ที่ใช้เปิด-ปิดกระแสง่าย ๆ ไดโอดมีคุณลักษณะทางไฟฟ้าที่ไม่เป็นเชิงเส้น ดังนั้นมันยังสามารถปรับปรุงโดยการปรับเปลี่ยนโครงสร้างของพวกมันที่เรียกว่ารอยต่อ p-n มันถูกนำไปใช้ประโยชน์ในงานที่มีวัตถุประสงค์พิเศษ นั่นทำให้ไดโอดมีรูปแบบการทำงานได้หลากหลายรูปแบบ ยกตัวอย่างเช่น ซีเนอร์ไดโอด เป็นไดโอดชนิดพิเศษที่ทำหน้าที่รักษาระดับแรงดันให้คงที่ วาริแอกไดโอดใช้ในการปรับแต่งสัญญาณในเครื่องรับวิทยุและโทรทัศน์ ไดโอดอุโมงค์หรือทันเนลไดโอดใช้ในการสร้างสัญญาณความถี่วิทยุ และไดโอดเปล่งแสงเป็นอุปกรณ์ที่สร้างแสงขึ้น ไดโอดอุโมงค์มีความน่าสนใจตรงที่มันจะมีค่าความต้านทานติดลบ ซึ่งเป็นประโยชน์มากเมื่อใช้ในวงจรบางประเภท ไดโอดตัวแรกเป็นอุปกรณ์หลอดสูญญากาศ โดยไดโอดแบบสารกึ่งตัวนำตัวแรกถูกค้นพบจากการทดสอบความสามารถในการเรียงกระแสของผลึกโดยคาร์ล เฟอร์ดินานด์ บรวน นักฟิสิกส์ชาวเยอรมัน ในปี..

35 ความสัมพันธ์: ชิ้นส่วนอิเล็กทรอนิกส์กระแสไฟฟ้ากาลีนากูลเยลโม มาร์โกนีกีตาร์ไฟฟ้ารอยต่อ p-nลุดวิก โบลทซ์มันน์วาริสเตอร์สภาพพาสซีฟสารกึ่งตัวนำสถิตยศาสตร์ไฟฟ้าสตรอนเชียมสนามไฟฟ้าหลอดสุญญากาศหลอดไส้ร้อนแบบธรรมดาออกไซด์อิเล็กทรอนิกส์อิเล็กตรอนจูลทรานซิสเตอร์ทอมัส เอดิสันทังสเตนคลื่นวิทยุตัวต้านทานตัวเรียงกระแสซิลิคอนซีเนอร์ไดโอดประจุไฟฟ้าแบเรียมแหล่งจ่ายไฟโลหะแอลคาไลน์เอิร์ทไบอัสไดโอดเปล่งแสงเจอร์เมเนียมเคลวิน

ชิ้นส่วนอิเล็กทรอนิกส์

้นส่วนอิเล็กทรอนิกส์ (Electronic Component) เป็นอุปกรณ์พื้นฐานที่แยกออกเป็นชิ้นย่อยๆเป็นเอกเทศหรือเป็นอุปกรณ์ที่มีเอกลักษณ์ทางกายภาพในระบบอิเล็กทรอนิกส์ที่ใช้ในการส่งผลกระทบต่ออิเล็กตรอนหรือสาขาที่เกี่ยวข้องกับอิเล็กตรอน ตัวอย่างชิ้นส่วนอิเล็กทรอนิกส์ ชิ้นส่วนอิเล็กทรอนิกส์ที่มีมากกว่าสองขั้วไฟฟ้า(ขาหรือลีดส์) เมื่อนำขาของชิ้นส่วนหลายชนิดมาบัดกรีเข้าด้วยกันบนแผงวงจรพิมพ์จะสร้างเป็นวงจรอิเล็กทรอนิกส์ (วงจรย่อย) ที่มีฟังก์ชันที่เฉพาะเจาะจง (เช่นเครื่องขยายสัญญาณ, เครื่องรับสัญญาณวิทยุหรือ oscillator) ชิ้นส่วนอิเล็กทรอนิกส์พื้นฐานอาจจะถูกเก็บในบรรจุภัณฑ์แยกชนิดกัน หรือจัดเรียงเป็นแถวหรือเครือข่ายของส่วนประกอบที่เหมือนกันหรือผสมกันภายในแพคเกจเช่นวงจรรวมเซมิคอนดักเตอร์, แผงวงจรไฟฟ้าไฮบริดหรืออุปกรณ์ฟิล์มหน.

ใหม่!!: ไดโอดและชิ้นส่วนอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

กระแสไฟฟ้า

วงจรไฟฟ้าอย่างง่าย โดยที่กระแสถูกแสดงด้วยอักษร ''i'' ความสัมพันธ์ระหว่างแรงดันไฟฟ้า (V), ตัวต้านทาน (R), และกระแส (I) คือ V.

ใหม่!!: ไดโอดและกระแสไฟฟ้า · ดูเพิ่มเติม »

กาลีนา

กาลีนา เป็นสินแร่สำคัญของตะกั่วและเงินhttp://www.dmr.go.th/main.php?filename.

ใหม่!!: ไดโอดและกาลีนา · ดูเพิ่มเติม »

กูลเยลโม มาร์โกนี

กูลเยลโม มาร์โกนี กูลเยลโม มาร์โกนี (Guglielmo Marconi; 25 เมษายน ค.ศ. 1874 – 20 กรกฎาคม ค.ศ. 1937) เป็นวิศวกรไฟฟ้าชาวอิตาลี ได้รับรางวัลโนเบลสาขาฟิสิกส์ ประจำปี ค.ศ. 1909 เป็นที่รู้จักมีชื่อเสียงจากผลงานการพัฒนาระบบโทรเลขไร้สายที่สามารถใช้งานได้จริง เรียกว่า วิทยุ มาร์โกนีเคยเป็นนายกราชบัณฑิตยสถานแห่งอิตาลี (Accademia d'Italia) และสมาชิกพรรคฟาสซิสต์ของอิตาลีด้ว.

ใหม่!!: ไดโอดและกูลเยลโม มาร์โกนี · ดูเพิ่มเติม »

กีตาร์ไฟฟ้า

กีตาร์ไฟฟ้า กีตาร์ไฟฟ้า (Electric Guitar) คือ กีตาร์ ที่มีการติดตั้งอุปกรณ์ที่มักเรียกว่า Pick Up ทำหน้าที่แปลงเสียงที่เกิดจากสั่นของสายกีตาร์ให้กลายเป็นสัญญาณอิเล็คทรอนิคส์ ส่งผ่านสายสัญญาณ (Cable) ไปยังเครื่องขยายสัญญาณ (แอมปลิฟายเออร์)และออกสู่ลำโพงในที่สุด กีตาร์ไฟฟ้ามีความแตกต่างจากกีต้าร์โปร่ง (Acoustic Guitar) และ กีต้าร์โปร่งไฟฟ้า (Acoustic Electric Guitar) ตรงที่ลำตัวของกีตาร์ไฟฟ้าโดยส่วนมากจะไม่มีโพรงเสียง หรืออาจเรียกว่า "ลำตัวตัน" (Solid Body) อย่างไรก็ดี กีตาร์ไฟฟ้าอาจหมายรวมถึง กีตาร์ที่มีโพรงเสียงบางประเภทที่มีการติดตั้ง Pick Up (Hollow Body Guitar)ซึ่งนิยมใช้เล่นในแนวดนตรีประเภทแจ๊ส หรือ บลูส์ ปัจจุบันนิยมนำสัญญาณเสียงที่ได้จากกีตาร์ไฟฟ้ามาดัดแปลงผ่านอุปกรณ์ดัดแปลงสัญญาณ (Guitar Effect) ก่อนเข้าสู่เครื่องขยายสัญญาณกีตาร์ เพื่อให้ได้ลักษณะเสียงที่มีความแตกต่างหลากหลายมากขึ้นจากกีตาร์ตัวเดียว กีตาร์ไฟฟ้าเป็นที่นิยมแพร่หลายทั่วโลก และใช้เล่นกันในแทบทุกประเภทดนตรี เนื่องจากความสะดวกในการใช้งานและการปรับแต่งเสียง กีตาร์ไฟฟ้าผลิตออกมาในหลายระดับคุณภาพและราคา บริษัทที่ผลิตกีตาร์ไฟฟ้ามีหลายบริษัทอาทิเช่น gibson fender prs framus B.C Rich guitars ESP Ibanez Ernie Ball - Musicman Rickenbacker Schecter Washburn YAMAHA Epiphone เป็นต้น หมวดหมู่:กีตาร์ หมวดหมู่:เครื่องดนตรีอิเล็กทรอนิกส์ หมวดหมู่:สิ่งประดิษฐ์ของสหรัฐอเมริกา.

ใหม่!!: ไดโอดและกีตาร์ไฟฟ้า · ดูเพิ่มเติม »

รอยต่อ p-n

รูปแสดงสัญญลักษณ์ของ PN diode รูปสามเหลี่ยมแทน p side เส้นขีดแนวตั้งแทน n side รอยต่อ p-n (p-n junction) คือ บริเวณขอบเขตแดนหรือรอยเชื่อมต่อระหว่างสารกึ่งตัวนำสองประเภท ได้แก่สารแบบ p-type และแบบ n-type ภายในผลึกกึ่งตัวนำเดี่ยว รอยต่อ p-n นี้จะถูกสร้างขึ้นโดยการโด๊ป ด้วยวิธีการเช่นการปลูกไอออน หรือด้วยแพร่กระจายของสารเจือปน หรือด้วยการ epitaxy (การปลูกผลึกหนึ่งชั้นที่ถูกโด๊ปด้วย สารเจือปนประเภทหนึ่งบนด้านบนของชั้นผลึกที่ถูกโด๊ปด้วยสารเจือปนอีกประเภทหนึ่ง) ถ้าวัสดุที่เป็นรอยต่อนี้ถูกทำเป็นสองชิ้นแยกจากกัน รอยต่อนี้จะเป็นขอบเขตระหว่างสารกึ่งตัวนำที่ ยับยั้งการไหลของกระแสอย่างรุนแรง โดยทำให้อิเล็กตรอนและโฮลในสารกึ่งตัวนำกระจัดกร.

ใหม่!!: ไดโอดและรอยต่อ p-n · ดูเพิ่มเติม »

ลุดวิก โบลทซ์มันน์

ลุดวิก เอดูอาร์ด โบลทซ์มันน์ (Ludwig Eduard Boltzmann; 20 กุมภาพันธ์ ค.ศ. 1844 - 5 กันยายน ค.ศ. 1906) เป็นนักฟิสิกส์ชาวออสเตรีย ผู้มีชื่อเสียงจากการเป็นส่วนหนึ่งของการค้นพบด้านกลศาสตร์สถิติและอุณหพลศาสตร์สถิติ เป็นหนึ่งในบรรดานักวิทยาศาสตร์ผู้คิดค้นทฤษฎีอะตอมในยุคที่แบบจำลองวิทยาศาสตร์ด้านอะตอมยังเป็นที่ถกเถียงกันอยู.

ใหม่!!: ไดโอดและลุดวิก โบลทซ์มันน์ · ดูเพิ่มเติม »

วาริสเตอร์

วาริสเตอร์ วาริสเตอร์ (varistor) เป็นอุปกรณ์สารกึ่งตัวนำอีกชนิดหนึ่งที่สามารถเปลี่ยนแปลงค่าความต้านทานได้ตามระดับแรงดันไฟฟ้า การทำงานของวาริสเตอร์คล้ายกับซีเนอร์ไดโอด คือ เมื่อแรงดันไฟฟ้าสูงกว่าค่าที่กำหนดมันจะยอมให้กระแสไหลผ่านตัวมันเองได้ ยังส่งผลให้สามารถรักษาระดับของแรงดันไฟฟ้าให้อยู่ในสภาพปกติ วาริสเตอร์ชนิดนี้เรามักจะเรียกว่า วีดีอาร์ (VDR: Voltage Dependent Resistor) และมีบางชนิดที่มีลักษณะการทำงานคล้ายกับไดโอดแต่จุดทำงานจะสูงตามที่กำหนด การใช้วาริสเตอร์จะใช้เป็นวงจรป้องกันอุปกรณ์ต่างๆ ไม่ให้ได้รับความเสียหาย เมื่อกระแสไฟฟ้าหรือแรงดันไฟฟ้าในวงจรเกิดการเปลี่ยนแปลงสูงขึ้น โดยวาริสเตอร์จะทำหน้าที่แบ่งกระแสไฟฟ้าหรือลดแรงดันไฟฟ้า เมื่อกระแสไฟฟ้าหรือแรงดันไฟฟ้ามากเกินปกติ มิฉะนั้นวงจรอาจเกิดการเสียหายได้ หมวดหมู่:อุปกรณ์ไฟฟ้า หมวดหมู่:อุปกรณ์สารกึ่งตัวนำ หมวดหมู่:อุปกรณ์อิเล็กทรอนิกส์.

ใหม่!!: ไดโอดและวาริสเตอร์ · ดูเพิ่มเติม »

สภาพพาสซีฟ

ซีฟ (passivity) เป็นคุณสมบัติของระบบวิศวกรรมที่ถูกนำมาใช้ในสาขาวิชาวิศวกรรมอย่างหลากหลาย แต่มักพบมากที่สุดในระบบอิเล็กทรอนิกส์และการควบคุมแบบแอนะล็อก ชิ้นส่วนที่เป็นพาสซีฟจะขึ้นอยู่กับสนามไฟฟ้า และอาจจะเป็นอย่างใดอย่างหนึ่งคือ 1.

ใหม่!!: ไดโอดและสภาพพาสซีฟ · ดูเพิ่มเติม »

สารกึ่งตัวนำ

รกึ่งตัวนำ (semiconductor) คือ วัสดุที่มีคุณสมบัติในการนำไฟฟ้าอยู่ระหว่างตัวนำและฉนวน เป็นวัสดุที่ใช้ทำอุปกรณ์อิเล็คทรอนิกส์ มักมีตัวประกอบของ germanium, selenium, silicon วัสดุเนื้อแข็งผลึกพวกหนึ่งที่มีสมบัติเป็นตัวนำ หรือสื่อไฟฟ้าก้ำกึ่งระหว่างโลหะกับอโลหะหรือฉนวน ความเป็นตัวนำไฟฟ้าขึ้นอยู่กับอุณหภูมิ และสิ่งไม่บริสุทธิ์ที่มีเจือปนอยู่ในวัสดุพวกนี้ ซึ่งอาจเป็นธาตุหรือสารประกอบก็มี เช่น ธาตุเจอร์เมเนียม ซิลิคอน ซีลีเนียม และตะกั่วเทลลูไรด์ เป็นต้น วัสดุกึ่งตัวนำพวกนี้มีความต้านทานไฟฟ้าลดลงเมื่ออุณหภูมิสูงขึ้น ซึ่งเป็นลักษณะตรงข้ามกับโลหะทั้งปวง ที่อุณหภูมิ ศูนย์ เคลวิน วัสดุพวกนี้จะไม่ยอมให้ไฟฟ้าไหลผ่านเลย เพราะเนื้อวัสดุเป็นผลึกโควาเลนต์ ซึ่งอิเล็กตรอนทั้งหลายจะถูกตรึงอยู่ในพันธะโควาเลนต์หมด (พันธะที่หยึดเหนี่ยวระหว่างอะตอม) แต่ในอุณหภูมิธรรมดา อิเล็กตรอนบางส่วนมีพลังงาน เนื่องจากความร้อนมากพอที่จะหลุดไปจากพันธะ ทำให้เกิดที่ว่างขึ้น อิเล็กตรอนที่หลุดออกมาเป็นสาเหตุให้สารกึ่งตัวนำ นำไฟฟ้าได้เมื่อมีมีสนามไฟฟ้ามาต่อเข้ากับสารนี้ สารกึ่งตัวนำไม่บริสุทธิ์ เป็นสารที่เกิดขึ้นจากการเติมสารเจือปนลงไปในสารกึ่งตัวนำแท้ เช่น ซิลิกอน หรือเยอรมันเนียม เพื่อให้ได้สารกึ่งตัวนำที่มีสภาพการนำไฟฟ้าที่ดีขึ้น สารกึ่งตัวนำไม่บริสุทธิ์นี้แบ่งออกเป็น 2 ประเภทคือ สารกึ่งตัวนำประเภทเอ็น (N-Type) และสารกึ่งตัวนำประเภทพี (P-Type).

ใหม่!!: ไดโอดและสารกึ่งตัวนำ · ดูเพิ่มเติม »

สถิตยศาสตร์ไฟฟ้า

ตยศาสตร์ไฟฟ้า (electrostatics) เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่เกี่ยวข้องกับปรากฏการณ์และคุณสมบัติของประจุไฟฟ้าที่นิ่งหรือเคลื่อนไหวช้า เนื่องจากฟิสิกส์แบบคลาสสิก เป็นที่รู้กันว่าวัสดุบางอย่างเช่นอำพันสามารถดูดอนุภาคน้ำหนักเบาหลังจากมีการขัดถูกัน ในภาษากรีกคำว่าอัมพัน ήλεκτρον หรือ อิเล็กตรอน electron เป็นที่มาของคำว่า 'ไฟฟ้า' ปรากฏการณ์ไฟฟ้าสถิตเกิดขึ้นจากแรงที่ประจุไฟฟ้ากระทำต่อประจุไฟฟ้าอื่น แรงดังกล่าวจะอธิบายได้ตามกฎของคูลอมบ์ แม้ว่าแรงนี้จะถูกเหนี่ยวนำให้เกิดโดยไฟฟ้าสถิต มันดูเหมือนจะค่อนข้างอ่อนแอ ยกตัวอย่างเช่นแรงไฟฟ้​​าสถิตระหว่างอิเล็กตรอนหนึ่งตัวและโปรตอนหนึ่งตัวที่รวมกันขึ้นเป็นอะตอมไฮโดรเจนมีความอ่อนแอ แต่ก็แข็งแกร่งมากกว่าประมาณ 36 แมกนิจูดเป็นเลขสิบยกกำลัง (10-36) เท่าของแรงโน้มถ่วงที่กระทำระหว่างพวกมัน มีตัวอย่างมากมายของปรากฏการณ์ไฟฟ้าสถิต จากพวกที่ง่ายมากเช่นการดึงดูดห่อพลาสติกให้ติดกับมือของคุณหลังจากที่คุณรื้อมันออกจากแพคเกจ และการดึงดูดกระดาษที่ติดกับตาชั่งที่มีประจุ จนถึงการระเบิดที่เกิดขึ้นเองที่เห็นได้ชัดของไซโลข้าว ความเสียหายของชิ้นส่วนอิเล็กทรอนิกส์ในระหว่างการผลิต และการทำงานของเครื่องถ่ายเอกสารและเครื่องพิมพ์เลเซอร์ ไฟฟ้าสถิตเกี่ยวข้องกับการสะสมของประจุบนพื้นผิวของวัตถุเนื่องจากการสัมผัสกับพื้นผิวอื่น แม้ว่าการแลกเปลี่ยนประจุจะเกิดขึ้นเมื่อไรก็ตามที่สองพื้นผิวใด ๆ สัมผัสกันและแยกจากกัน ผลกระทบของการแลกเปลี่ยนประจุมักจะสังเกตเห็นได้เฉพาะเมื่ออย่างน้อยหนึ่งของพื้นผิวมีความต้านทานต่อการไหลของไฟฟ้​​าที่สูง นี้เป็นเพราะประจุที่ถ่ายโอนไปยังหรือมาจากพื้นผิวที่มีความต้านทานสูงจะถูกติดกับมากหรือน้อยอยู่ที่นั่นเป็นเวลานานพอจนมีการสังเกตเห็นผลกระทบนั้น จากนั้นประจุเหล่านี้ยังคงอยู่บนวัตถุจนกว่าพวกมันจะถ่ายเทออกลงดินหรือถูกทำให้เป็นกลางอย่างรวดเร็วโดยปลดปล่อยประจุ: เช่นปรากฏการณ์ที่คุ้นเคยของ 'การช็อก' ไฟฟ้าสถิตที่มีสาเหตุมาจากการวางตัวเป็นกลางของประจุที่สร้างขึ้นในร่างกายจากการสัมผัสกับพื้นผิวที่หุ้มฉนวน.

ใหม่!!: ไดโอดและสถิตยศาสตร์ไฟฟ้า · ดูเพิ่มเติม »

สตรอนเชียม

ตรอนเชียม (Strontium) สตรอนเชียมเป็นโลหะสีขาวเงิน ความถ่วงจำเพาะประมาณ2.5 ใกล้เคียงกับอะลูมิเนียม ซึ่งมีความถ่วงจำเพราะ 2.7 ซึ่งสตรอนเชียมคือธาตุที่มีหมายเลขอะตอม 38 และสัญลักษณ์คือ Sr สตรอนเชียมอยู่ในตารางธาตุหมู่ 2 สทรอนเชียมเป็นโลหะแอลคาไลน์เอิร์ท มีสีขาวเงินหรือสีเหลืองมีเนื้อโลหะอ่อนนุ่มมีความไวต่อปฏิกิริยาเคมีมากจะมีสีเหลืองเมื่อสัมผัสกับอากาศ พบมากในแร่ซีเลสไทต์และสตรอนเชียไนต์ ล.

ใหม่!!: ไดโอดและสตรอนเชียม · ดูเพิ่มเติม »

สนามไฟฟ้า

นามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนานแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง.

ใหม่!!: ไดโอดและสนามไฟฟ้า · ดูเพิ่มเติม »

หลอดสุญญากาศ

อดหลอดสุญญากาศ ไตรโอดหลอดสุญญากาศ ไตรโอดชนิด808หลอดสุญญากาศ เครื่องเสียงหลอดสุญญากาศ mixtubeหลอดสุญญากาศ หลอดสุญญากาศ (vacuum tube) หรือ หลอดอิเล็กตรอน (electron tube: ในอเมริกา) หรือ วาล์วเทอร์มิออนิค (thermionic valve: ในอังกฤษ) ในทางอิเล็กทรอนิกส หมายถึงอุปกรณ์ที่ควบคุมกระแสไฟฟ้าผ่านขั้วอิเล็กโทรดภายในบริเวณที่มีอากาศหรือก๊าซเบาบาง ปรากฏการณ์ ทางฟิสิกส์ที่ใช้อธิบายการนำไฟฟ้าก็คือ ปรากฏการณ์เทอร์มิออนิค อิมิตชัน (thermionic emission) ซึ่งอธิบายว่าเมื่อโลหะถูกทำให้ร้อนจนถึงระดับหนึ่งด้วยการป้อนกระแสไฟฟ้าจะทำให้อิเล็กตรอนหลุดออกมาที่ผิวของโลหะ เมื่อทำการป้อนศักย์ไฟฟ้าเพื่อดึงดูดอิเล็กตรอนที่หลุดออกมาอยู่ที่ผิวด้วยขั้วโลหะอีกขั้วหนึ่งที่อยู่ข้างๆ จะทำให้เกิดการไหลของกระแสได้ เราเรียกหลอดสุญญากาศที่มีขั้วโลหะเพียงสองขั้วนี้ว่า หลอดไดโอด (Diode) โดยขั้วที่ให้อิเล็กตรอนเรียกว่า คาโธด (Cathode) และขั้วที่รับอิเล็กตรอนเรียกว่า อาโนด (Anode) โดยปกติจะมีรูปร่างเป็นแผ่นโลหะธรรมดา บางทีจะเรียกว่า เพลท (Plate) การไหลของกระแสไฟฟ้าของหลอดไดโอดเป็นแบบไม่เป็นเชิงเส้น (Non-linear current) กล่าวคือ เมื่อป้อนศักย์ไฟฟ้าบวกให้กับขั้วอาโนดและศักย์ไฟฟ้าลบให้กับขั้วคาโธดจะทำให้เกิดกระแสไฟฟ้าไหลดังที่ได้อธิบายผ่านมา แต่เมื่อป้อนศักย์ไฟฟ้ากลับทางคือ ป้อนศักย์ไฟฟ้าบวกให้กับคาโธดและป้อนศักย์ไฟฟ้าลบให้กับอาโนดจะทำให้กระแสไฟฟ้าไม่สามารถไหลได้ ซึ่งเป็นผลมาจากอิเล็กตรอนถูกผลักด้วยผลของสนามไฟฟ้านั้นเอง ซึ่งคุณสมบัติข้อนีจึงทำให้สามารถนำหลอดไดโอดไปใช้เป็นอุปกรณ์เรียงกระแส (rectifier) ได้ ต่อมาได้มีการพัฒนาหลอดไดโอดโดยใส่ขั้วโลหะตาข่ายระหว่างขั้วอาโนดและขั้วคาโธด เรียกว่า กริด (Grid) ซึ่งจะมีรูปร่างเป็นตาข่าย เป็นลวดเส้นเล็กๆ พันอยู่รอบๆหลอดสุญญากาศ บางชนิดอาจจะไม่มีขั้วชนิดนี้ หรือจะมีเพียงขั้วเดียว หรืออาจจะมี 2-3 ขั้วขึ้นไป จะทำหน้าที่เป็นส่วนควบคุมปริมาณกระแสให้ไหลมากน้อยได้ตามศักย์ไฟฟ้าที่ป้อนให้กับขั้วกริด อุปกรณ์ที่มีขั้วโลหะ 3 ขั้วนี้เรียกว่า หลอดไตรโอด (Triode) ทำสามารถใช้ทำเป็นเครื่องส่งวิทยุได้.

ใหม่!!: ไดโอดและหลอดสุญญากาศ · ดูเพิ่มเติม »

หลอดไส้ร้อนแบบธรรมดา

หลอดไส้ร้อนแบบธรรมดา หลอดไส้ร้อนแบบธรรมดา หรือ หลอดความร้อน หรือ หลอดไส้ (incandescent light bulb, incandescent lamp หรือ incandescent light globe) ให้แสงสว่างโดยการให้ความร้อนแก่ไส้หลอดที่เป็นลวดโลหะกระทั่งมีอุณหภูมิสูงและเปล่งแสง หลอดแก้วที่เติมแก๊สเฉื่อยหรือเป็นสุญญากาศป้องไม่ให้ไส้หลอดที่ร้อนสัมผัสอากาศ ในหลอดฮาโลเจน กระบวนการทางเคมีคืนให้โลหะเป็นไส้หลอด ซึ่งขยายอายุการใช้งาน หลอดไฟฟ้านี้ได้รับกระแสไฟฟ้าจากเทอร์มินอลต่อสายไฟ (feed-through terminal) หรือลวดที่ฝังในแก้ว หลอดไฟฟ้าส่วนใหญ่ใช้ในเต้ารับซึ่งสนับสนุนหลอดไฟฟ้าทางกลไกและเชื่อมกระแสไฟฟ้าเข้ากับเทอร์มินัลไฟฟ้าของหลอด หลอดไส้ร้อนแบบธรรมดาผลิตออกมาหลายขนาด กำลังส่องสว่าง และอัตราทนความต่างศักย์ ตั้งแต่ 1.5 โวลต์ถึงราว 300 โวลต์ หลอดประเภทนี้ไม่ต้องอาศัยอุปกรณ์ควบคุมภายนอก มีค่าบำรุงรักษาต่ำ และทำงานได้ดีเท่ากันทั้งไฟฟ้ากระแสสลับหรือกระแสตรง ด้วยเหตุนี้ หลอดไส้ร้อนแบบธรรมดาจึงใช้กันอย่างกว้างขวางในครัวเรือนและไฟฟ้าใช้ในเชิงพาณิชย์ ตลอดจนไฟฟ้าแบบพกพา อย่างเช่น ไฟตั้งโต๊ะ ไฟหน้ารถยนต์ และไฟฉาย และไฟฟ้าสำหรับตกแต่งและโฆษณา บ้างใช้ประโยชน์จากใช้ความร้อนที่เกิดขึ้นจากไส้หลอดของหลอดไส้ร้อนแบบธรรมดา อาทิ เครื่องฟักไข่ กล่องฟักไข่สำหรับสัตว์ปีก ไฟความร้อนสำหรับสวนจำลองสภาพแวดล้อม (vivarium) ของสัตว์เลื้อยคลาน การให้ความร้อนอินฟราเรดในกระบวนการให้ความร้อนและอบแห้งในอุตสาหกรรม ความร้อนส่วนเกินนี้เพิ่มพลังงานที่ต้องใช้ในระบบปรับอากาศของอาคาร หลอดไฟฟ้าแบบอื่นค่อย ๆ แทนที่การใช้งานของหลอดไส้ร้อนแบบธรรมดาหลายด้าน อาทิ หลอดฟลูออเรสเซนต์, หลอดคอมแพคฟลูออเรสเซนต์ (หลอดตะเกียบ), หลอดฟลูออเรสเซนต์แคโทดเย็น, หลอดอัดก๊าซความดันสูง และไดโอดเปล่งแสง เทคโนโลยีที่ใหม่กว่าเหล่านี้พัฒนาอัตราส่วนแสงที่มองเห็นได้ต่อการผลิตความร้อน เขตอำนาจบางแห่ง เช่น สหภาพยุโรป อยู่ในระหว่างกระบวนการเลิกใช้หลอดไส้ร้อนแบบธรรมดาและหันไปใช้หลอดไฟที่มีประสิทธิภาพด้านพลังงานมากกว.

ใหม่!!: ไดโอดและหลอดไส้ร้อนแบบธรรมดา · ดูเพิ่มเติม »

ออกไซด์

ออกไซด์ หมายถึง สารประกอบ ที่เกิดจาก ธาตุออกซิเจน รวมกับธาตุอื่นๆ; ออกไซด์ของโลหะ ออกไซด์ของโลหะส่วนใหญ่เป็น สารประกอบไอออนิก และเป็นเบส เช่น แคลเซียมออกไซด์ (CaO) ออกไซด์ของโลหะทรานซิชั่น อาจเรียกว่า สนิม; ออกไซด์ของกึ่งโลหะ รวมถึง ออกไซด์ของโลหะบางชนิด เป็นได้ทั้งกรดและเบส เช่น อะลูมิเนียมออกไซด์ (Al2O3) ฯลฯ; ออกไซด์ของอโลหะ เป็นสารประกอบโควาเลนต์ และเกือบทั้งหมดเป็นกรด เช่น คาร์บอนไดออกไซด์ (CO2).

ใหม่!!: ไดโอดและออกไซด์ · ดูเพิ่มเติม »

อิเล็กทรอนิกส์

อิเล็กทรอนิกส์ (Electronics) เป็นเทคโนโลยีที่เกี่ยวข้องกับวงจรไฟฟ้าที่ประกอบด้วยอุปกรณ์ไฟฟ้าที่เป็น active component เช่นหลอดสูญญากาศ, ทรานซิสเตอร์, ไดโอด และ Integrated Circuit และ ชิ้นส่วน พาสซีฟ (passive component) เช่น ตัวนำไฟฟ้า, ตัวต้านทานไฟฟ้า, ตัวเก็บประจุ และคอยล์ พฤติกรรมไม่เชิงเส้นของ active component และความสามารถในการควบคุมการไหลของอิเล็กตรอนทำให้สามารถขยายสัญญาณอ่อนๆให้แรงขึ้นเพื่อการสื่อสารทางภาพและเสียงเช่นโทรเลข, โทรศัพท์, วิทยุ, โทรทัศน์ เป็นต้น อิเล็กทรอนิกส์ถูกใช้กันอย่างแพร่หลายในการสื่อสารข้อมูลโทรคมนาคม ความสามารถของอุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิทช์ปิดเปิดวงจรถูกนำไปใช้ในวงจร ลอจิกเกต ซึ่งเป็นส่วนสำคัญหลักในระบบคอมพิวเตอร์ นอกจากนั้น วงจรอิเล็กทรอนิกส์ยังถูกนำไปใช้ผลิตเครื่องใช้ไฟฟ้าในครัวเรือน ในการส่งพลังงานไฟฟ้าเป็นระยะทางไกลๆ การผลิตพลังงานทดแทน และอุตสาหกรรมต่างๆอีกมาก อิเล็กทรอนิกส์แตกต่างจากวิทยาศาสตร์ไฟฟ้าและเทคโนโลยีเครื่องกลไฟฟ้า โดยจะเกี่ยวข้องกับการสร้าง, การกระจาย, การสวิทช์, การจัดเก็บและการแปลงพลังงานไฟฟ้าไปและมาจากพลังงานรูปแบบอื่น ๆ โดยใช้สายไฟ, มอเตอร์, เครื่องกำเนิดไฟฟ้า, แบตเตอรี่, สวิตช์, รีเลย์, หม้อแปลงไฟฟ้า ตัวต้านทานและส่วนประกอบที่เป็นพาสซีพอื่นๆ ความแตกต่างนี้เริ่มราวปี 1906 เป็นผลจากการประดิษฐ์ไตรโอดโดยลี เดอ ฟอเรสท์ ซึ่งใช้ขยายสัญญาณวิทยุที่อ่อนๆได้ ทำให้เกิดการออกแบบและพัฒนาระบบการรับส่งสัญญาณเสียงและหลอดสูญญากาศ จึงเรียกสาขานี้ว่า "เทคโนโลยีวิทยุ" จนถึงปี 1950 ปัจจุบัน อุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ ใช้ชิ้นส่วนสารกึ่งตัวนำเพื่อควบคุมการทำงานของอิเล็กตรอน การศึกษาเกี่ยวกับอุปกรณ์สารกึ่งตัวนำและเทคโนโลยีโซลิดสเตต ในขณะที่การออกแบบและการสร้างวงจรอิเล็กทรอนิกส์ในการแก้ปัญหาในทางปฏิบัติอยู่ภายใต้สาขาวิศวกรรมอิเล็กทรอนิกส์ บทความนี้มุ่งเน้นด้านวิศวกรรมของ.

ใหม่!!: ไดโอดและอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: ไดโอดและอิเล็กตรอน · ดูเพิ่มเติม »

จูล

ูล (joule; สัญลักษณ์ J) เป็นหน่วยเอสไอ ของ พลังงาน, หรือ งาน ใช้ชื่อนี้เพื่อเป็นเกียรติแก่นักฟิสิกส์ที่ชื่อ เจมส์ เพรสคอตต์ จูล (James Prescott Joule-พ.ศ. 2361–2432).

ใหม่!!: ไดโอดและจูล · ดูเพิ่มเติม »

ทรานซิสเตอร์

ทรานซิสเตอร์ (transistor) เป็นอุปกรณ์สารกึงตัวนำที่สามารถควบคุมการไหลของอิเล็กตรอนได้ ใช้ทำหน้าที่ ขยายสัญญาณไฟฟ้า, เปิด/ปิดสัญญาณไฟฟ้า, ควบคุมแรงดันไฟฟ้าให้คงที่, หรือกล้ำสัญญาณไฟฟ้า (modulate) เป็นต้น การทำงานของทรานซิสเตอร์เปรียบได้กับวาล์วควบคุมที่ทำงานด้วยสัญญาณไฟฟ้าที่ขาเข้า เพื่อปรับขนาดกระแสไฟฟ้าขาออกที่จ่ายมาจากแหล่งจ่ายไฟ ทรานซิสเตอร์ประกอบด้วยวัสดุเซมิคอนดักเตอร์ที่มีอย่างน้อยสามขั้วไฟฟ้าเพื่อเชื่อมต่อกับวงจร ภายนอก แรงดันหรือกระแสไฟฟ้าที่ป้อนให้กับขั้วทรานซิสเตอร์หนึ่งคู่ จะมีผลให้เกิดการเปลี่ยนแปลงในกระแสที่ไหลผ่านในขั้วทรานซิสเตอร์อีกคู่หนึ่ง เนื่องจากพลังงานที่ถูกควบคุม (เอาต์พุต)จะสูงกว่าพลังงานที่ใช้ในการควบคุม (อินพุท) ทรานซิสเตอร์จึงสามารถขยายสัญญาณได้ ปัจจุบัน บางทรานซิสเตอร์ถูกประกอบขึ้นมาต่างหากแต่ยังมีอีกมากที่พบฝังอยู่ใน แผงวงจรรวม ทรานซิสเตอร์เป็นการสร้างบล็อกพื้นฐานของอุปกรณ์อิเล็กทรอนิกส์ที่ทันสมัย ​​และเป็นที่แพร่หลายในระบบอิเล็กทรอนิกส์สมัยใหม.

ใหม่!!: ไดโอดและทรานซิสเตอร์ · ดูเพิ่มเติม »

ทอมัส เอดิสัน

''A Day with Thomas Edison'' (1922) ทอมัส แอลวา เอดิสัน (Thomas Alva Edison) เป็นนักประดิษฐ์และนักธุรกิจชาวอเมริกัน ผู้ซึ่งประดิษฐ์อุปกรณ์ที่สำคัญต่าง ๆ มากมาย ได้ฉายา "พ่อมดแห่งเมนโลพาร์ก" เป็นหนึ่งในผู้ริเริ่มนำหลักการของ การผลิตจำนวนมาก และ กระบวนการประดิษฐ์ มาประยุกต์รวมกัน ทอมัส เอดิสัน มักจะถูกเข้าใจผิดว่าเป็นผู้คิดค้นหลอดไฟ แต่ในความเป็นจริงเขาเป็นบุคคลแรกที่จดสิทธิบัตรในการประดิษฐ์หลอดไฟจากนักวิทยาศาสตร์กว่า 20 คนที่คิดค้นหลอดไฟ และสามารถนำมาทำเป็นธุรกิจได้ เอดิสันยังคงเป็นหนึ่งในผู้ก่อตั้งบริษัทเจเนอรัลอิเล็กทริก (General Electric) บริษัทเครื่องใช้ไฟฟ้าขนาดใหญ่ของโลก และก่อตั้งอีกหลายบริษัทในด้านไฟฟ้า หนึ่งในบริษัทของเอดิสันยังเป็นผู้คิดค้นเก้าอี้ไฟฟ้าสำหรับประหารชีวิตนักโทษอีกด้วย เอดิสันยังคงเป็นบุคคลสำคัญในสงครามกระแสไฟฟ้า (War of Currents) โดยเอดิสันพยายามผลักดันระบบไฟฟ้ากระแสตรงของบริษัท แข่งกับระบบไฟฟ้ากระแสสลับของจอร์จ เวสติงเฮาส์ (George Westinghouse) โดยพนักงานในบริษัทของเขาได้โฆษณาชวนเชื่อความอันตรายของไฟฟ้ากระแสสลับโดยการฆ่าหมาแมวเป็นจำนวนหลายตัว.

ใหม่!!: ไดโอดและทอมัส เอดิสัน · ดูเพิ่มเติม »

ทังสเตน

|- | 182W || 26.50% || > 1 E21 y | α || colspan.

ใหม่!!: ไดโอดและทังสเตน · ดูเพิ่มเติม »

คลื่นวิทยุ

ลื่นวิทยุ เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งที่เกิดขึ้นในช่วงความถี่วิทยุบนเส้นสเปกตรัมแม่เหล็กไฟฟ้า คลื่นวิทยุไม่ต้องอาศัยตัวกลางในการเคลื่อนที่ ใช้ในการสื่อสารมี 2 ระบบคือ A.M. และ F.M. ความถี่ของคลื่น หมายถึง จำนวนรอบของการเปลี่ยนแปลงของคลื่น ในเวลา 1 วินาที คลื่นเสียงมีความถี่ช่วงที่หูของคนรับฟังได้ คือ ตั้งแต่เริ่มมีเพศสัมพัน คลื่นวิทยุแต่ละช่วงความถี่จะถูกกำหนดให้ใช้งานด้านต่างๆ ตามความเหมาะสม ส่วนประกอบของคลื่น 1.

ใหม่!!: ไดโอดและคลื่นวิทยุ · ดูเพิ่มเติม »

ตัวต้านทาน

ตัวต้านทานแบบมีขาออกทางปลายแบบหนึ่ง ตัวต้านทาน หรือ รีซิสเตอร์ (resistor) เป็นอุปกรณ์ไฟฟ้าชนิดหนึ่งที่มีคุณสมบัติในการต้านการไหลผ่านของกระแสไฟฟ้า ทำด้วยลวดต้านทานหรือถ่านคาร์บอน เป็นต้น นั่นคือ ถ้าอุปกรณ์นั้นมีความต้านทานมาก กระแสไฟฟ้าที่ไหลผ่านจะน้อยลง เป็นอุปกรณ์ไฟฟ้าชนิดพาสซีฟสองขั้ว ที่สร้างความต่างศักย์ไฟฟ้าคร่อมขั้วทั้งสอง (V) โดยมีสัดส่วนมากน้อยตามปริมาณกระแสไฟฟ้าที่ไหลผ่าน (I) อัตราส่วนระหว่างความต่างศักย์ และปริมาณกระแสไฟฟ้า ก็คือ ค่าความต้านทานทางไฟฟ้า หรือค่าความต้านทานของตัวนำมีหน่วยเป็นโอห์ม (สัญลักษณ์: Ω) เขียนเป็นสมการตามกฏของโอห์ม ดังนี้ ค่าความต้านทานนี้ถูกกำหนดว่าเป็นค่าคงที่สำหรับตัวต้านทานธรรมดาทั่วไปที่ทำงานภายในค่ากำลังงานที่กำหนดของตัวมันเอง ตัวต้านทานทำหน้าที่ลดการไหลของกระแสและในเวลาเดียวกันก็ทำหน้าที่ลดระดับแรงดันไฟฟ้าภายในวงจรทั่วไป Resistors อาจเป็นแบบค่าความต้านทานคงที่ หรือค่าความต้านทานแปรได้ เช่นที่พบใน ตัวต้านทานแปรตามอุณหภูมิ(thermistor), ตัวต้านทานแปรตามแรงดัน(varistor), ตัวหรี่ไฟ(trimmer), ตัวต้านทานแปรตามแสง(photoresistor) และตัวต้านทานปรับด้วยมือ(potentiometer) ตัวต้านทานเป็นชิ้นส่วนธรรมดาของเครือข่ายไฟฟ้าและวงจรอิเล็กทรอนิกส์ และเป็นที่แพร่หลาย ในอุปกรณ์อิเล็กทรอนิกส์ ตัวต้านทานในทางปฏิบัติจะประกอบด้วยสารประกอบและฟิล์มต่างๆ เช่นเดียวกับ สายไฟต้านทาน (สายไฟที่ทำจากโลหะผสมความต้านทานสูง เช่น นิกเกิล-โครเมี่ยม) Resistors ยังถูกนำไปใช้ในวงจรรวม โดยเฉพาะอย่างยิ่งในอุปกรณ์แอนะล็อก และยังสามารถรวมเข้ากับวงจรไฮบริดและวงจรพิมพ์ ฟังก์ชันทางไฟฟ้าของตัวต้านทานจะถูกกำหนดโดยค่าความต้านทานของมัน ตัวต้านทานเชิงพาณิชย์ทั่วไปถูกผลิตในลำดับที่มากกว่าเก้าขั้นของขนาด เมื่อทำการระบุว่าตัวต้านทานจะถูกใช้ในการออกแบบทางอิเล็กทรอนิกส์ ความแม่นยำที่จำเป็นของความต้านทานอาจต้องให้ความสนใจในการสร้างความอดทนของตัวต้านทานตามการใช้งานเฉพาะของมัน นอกจากนี้ค่าสัมประสิทธิ์อุณหภูมิของความต้านทานยังอาจจะมีความกังวลในการใช้งานบางอย่างที่ต้องการความแม่นยำ ตัวต้านทานในทางปฏิบัติยังถูกระบุถึงว่ามีระดับพลังงานสูงสุดซึ่งจะต้องเกินกว่าการกระจายความร้อนของตัวต้านทานที่คาดว่าจะเกิดขึ้นในวงจรเฉพาะ สิ่งนี้เป็นความกังวลหลักในการใช้งานกับอิเล็กทรอนิกส์กำลัง ตัวต้านทานที่มีอัตรากำลังที่สูงกว่าก็จะมีขนาดที่ใหญ่กว่าและอาจต้องใช้ heat sink ในวงจรไฟฟ้าแรงดันสูง บางครั้งก็ต้องให้ความสนใจกับอัตราแรงดันการทำงานสูงสุดของตัวต้านทาน ถ้าไม่ได้พิจารณาถึงแรงดันไฟฟ้าในการทำงานขั้นต่ำสุดสำหรับตัวต้านทาน ความล้มเหลวอาจก่อให้เกิดการเผาใหม้ของตัวต้านทาน เมื่อกระแสไหลผ่านตัวมัน ตัวต้านทานในทางปฏิบัติมีค่าการเหนี่ยวนำต่ออนุกรมและค่าการเก็บประจุขนาดเล็กขนานอยู่กับมัน ข้อกำหนดเหล่านี้จะมีความสำคัญในการใช้งานความถี่สูง ในตัวขยายสัญญาณเสียงรบกวนต่ำหรือพรีแอมป์ ลักษณะการรบกวนของตัวต้านทานอาจเป็นประเด็น การเหนี่ยวนำที่ไม่ต้องการ, เสียงรบกวนมากเกินไปและค่าสัมประสิทธิ์อุณหภูมิ เหล่านี้จะขึ้นอยู่กับเทคโนโลยีที่ใช้ ในการผลิตตัวต้านทาน ปกติพวกมันจะไม่ได้ถูกระบุไว้เป็นรายต้วของตัวต้านทานที่ถูกผลิตโดยใช้เทคโนโลยีอย่างใดอย่างหนึ่ง.

ใหม่!!: ไดโอดและตัวต้านทาน · ดูเพิ่มเติม »

ตัวเรียงกระแส

ตัวเรียงกระแส (Rectifier) เป็นชิ้นส่วนอิเล็กทรอนิกส์ที่เปลี่ยนไฟฟ้ากระแสสลับให้เป็นไฟฟ้ากระแสตรง.

ใหม่!!: ไดโอดและตัวเรียงกระแส · ดูเพิ่มเติม »

ซิลิคอน

ซิลิคอน (Silicon) เป็นธาตุเคมีในตารางธาตุ ที่มีสัญลักษณ์ Si และเลขอะตอม 14 เป็นธาตุกึ่งโลหะแบบเตตระวาเลนต์ (คือมีวาเลนซ์เป็น 4) ซิลิคอนทำปฏิกิริยาน้อยกว่าธาตุที่คล้ายกันคือคาร์บอน เป็นธาตุที่มีมากที่สุดในเปลือกโลกเป็นอันดับ 2 มีปริมาตร 25.7% โดยน้ำหนัก ปรากฏในดินเหนียว เฟลด์สปาร์ (feldspar) หินแกรนิต ควอตซ์ และทราย ส่วนใหญ่จะอยู่ในรูปของซิลิคอน ไดออกไซด์ (หรือซิลิกา) และซิลิเกต (สารประกอบที่ประกอบจากซิลิคอน ออกซิเจน และ โลหะ) ซิลิคอน เป็นส่วนประกอบหลักของแก้ว ซีเมนต์ เซรามิก, อุปกรณ์สารกึ่งตัวนำ ส่วนใหญ่ และซิลิโคน (สารพลาสติกที่มักจะสับสนกับซิลิคอน) ซิลิคอนใช้เป็นสารกึ่งตัวนำอย่างแพร่หลาย เนื่องจาก สารกึ่งตัวนำเจอร์เมเนียมมีปัญหาเกี่ยวกับการไหลของกระแสไหลย้อนกลับ (reverse leakage current).

ใหม่!!: ไดโอดและซิลิคอน · ดูเพิ่มเติม »

ซีเนอร์ไดโอด

ซีเนอร์ไดโอด (Zener diode) เป็นอุปกรณ์สารกึ่งตัวนำจัดอยู่ในจำพวกไดโอด แต่ใช้งานเพื่อนำกระแสเมื่อได้รับไบอัสกลับ และระดับแรงดันไบอัสกลับที่นำซีเนอร์ไดโอดไปใช้งานได้เรียกว่า ระดับแรงดันพังทลายซีเนอร์ (Zener Breakdown Voltage; Vz) ซีเนอร์ไดโอดจะมีแรงดันไบอัสกลับ (Vr) น้อยกว่า Vz เล็กน้อย ไดโอดประเภทนี้เหมาะที่จะนำไปใช้ควบคุมแรงดันที่โหลดหรือวงจรที่ต้องการแรงดันคงที่ เช่น ประกอบอยู่ในแหล่งจ่ายไฟเลี้ยง หรือโวลเทจเรกูเลเตอร์ หมวดหมู่:ไดโอด.

ใหม่!!: ไดโอดและซีเนอร์ไดโอด · ดูเพิ่มเติม »

ประจุไฟฟ้า

นามไฟฟ้า ของประจุไฟฟ้าบวกและลบหนึ่งจุด ประจุไฟฟ้า เป็น คุณสมบัติทางฟิสิกส์ ของ สสาร ที่เป็นสาเหตุให้มันต้องประสบกับ แรง หนึ่งเมื่อมันถูกวางอยู่ใน สนามแม่เหล็กไฟฟ้า ประจุไฟฟ้าแบ่งออกเป็นสองประเภท: บวก และ ลบ ประจุเหมือนกันจะผลักกัน ประจุต่างกันจะดึงดูดกัน วัตถุจะมีประจุลบถ้ามันมี อิเล็กตรอน เกิน, มิฉะนั้นจะมีประจุบวกหรือไม่มีประจุ มีหน่วย SI เป็น คูลอมบ์ (C) ในสาขาวิศวกรรมไฟฟ้า, มันเป็นธรรมดาที่จะใช้ แอมแปร์-ชั่วโมง (Ah) และใน สาขาเคมี มันเป็นธรรมดาที่จะใช้ ประจุมูลฐาน (e) เป็นหน่วย สัญลักษณ์ Q มักจะหมายถึงประจุ ความรู้ช่วงต้นว่าสสารมีปฏิสัมพันธ์กันอย่างไรในขณะนี้ถูกเรียกว่า ไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) และยังคงถูกต้องสำหรับปัญหาที่ไม่จำเป็นต้องมีการพิจารณาถึง ผลกระทบควอนตัม ประจุไฟฟ้า เป็น คุณสมบัติแบบอนุรักษ์ พื้นฐานของ อนุภาคย่อยของอะตอม บางตัวที่กำหนด ปฏิสัมพันธ์ทางแม่เหล็กไฟฟ้า ของพวกมัน สสารที่มีประจุไฟฟ้าจะได้รับอิทธิพลจาก สนามแม่เหล็กไฟฟ้า และก็ผลิตสนามแม่เหล็กไฟฟ้าขึ้นเองได้ ปฏิสัมพันธ์ระหว่างประจุไฟฟ้าที่เคลื่อนที่ได้กับสนามแม่เหล็กไฟฟ้าจะเป็นแหล่งที่มาของ แรงแม่เหล็กไฟฟ้า ซึ่งเป็นหนึ่งในสี่ แรงพื้นฐาน (อ่านเพิ่มเติมที่: สนามแม่เหล็ก) การทดลองเรื่องหยดน้ำมัน ในศตวรรษที่ยี่สิบได้แสดงให้เห็นว่า ประจุจะถูก quantized; นั่นคือ ประจุของวัตถุใด ๆ จะมีค่าเป็นผลคูณที่เป็นจำนวนเต็มของหน่วยเล็ก ๆ แต่ละตัวที่เรียกว่า ประจุมูลฐาน หรือค่า e (เช่น 0e, 1e, 2e แต่ไม่ใช่ 1/2e หรือ 1/3e) e มีค่าประมาณเท่ากับ (ยกเว้นสำหรับอนุภาคที่เรียกว่า ควาร์ก ซึ่งมีประจุที่มีผลคูณที่เป็นจำนวนเต็มของ e/3) โปรตอน มีประจุเท่ากับ +e และ อิเล็กตรอน มีประจุเท่ากับ -e การศึกษาเกี่ยวกับอนุภาคที่มีประจุและการปฏิสัมพันธ์ของพวกมันจะถูกไกล่เกลี่ยโดย โฟตอน ได้อย่างไรจะเรียกว่า ไฟฟ้าพลศาสตร์ควอนตัม.

ใหม่!!: ไดโอดและประจุไฟฟ้า · ดูเพิ่มเติม »

แบเรียม

แบเรียม (Barium) คือธาตุที่มีหมายเลขอะตอม 56 และสัญลักษณ์คือ Ba แบเรียมเป็นธาตุโลหะแอลคาไลน์เอิร์ทมีลักษณะเป็นสีเงินอ่อนนุ่มหลอมเหลวที่อุณหภูมิสูงมาก อ๊อกไซด์ของมันเรียกแบริตา (baryta) ตามธรรมชาติพบในแร่แบไรต์ไม่พบในสภาพบริสุทธิ์เพราะไวต่อปฏิกิริยาเคมีกับอาก.

ใหม่!!: ไดโอดและแบเรียม · ดูเพิ่มเติม »

แหล่งจ่ายไฟ

รูปแสดงแหล่งจ่ายไฟแบบหลอดสูญญากาศ แขวนบนแร็ค ปรับได้ ทำงานที่ +/- 1500 volts DC, 0 to 100mA output, สามารถจำกัดกระแสได้ แหล่งจ่ายไฟ (Power supply)เป็นอุปกรณ์ที่จ่ายพลังงานไฟฟ้าให้กับโหลดไฟฟ้.

ใหม่!!: ไดโอดและแหล่งจ่ายไฟ · ดูเพิ่มเติม »

โลหะแอลคาไลน์เอิร์ท

ลหะแอลคาไลน์เอิร์ท (Alkaline earth metal) เป็นอนุกรมเคมี ในตารางธาตุ ประกอบด้วยธาตุเคมี ใน หมู่ที่ 2 ได้แก.

ใหม่!!: ไดโอดและโลหะแอลคาไลน์เอิร์ท · ดูเพิ่มเติม »

ไบอัส

การให้ไบอัส หรือ (biasing) ในอิเล็กทรอนิกส์เป็นวิธีการของการสร้างแรงดันหรือกระแสไฟฟ้าที่กำหนดไว้ที่จุดต่างๆของวงจรอิเล็กทรอนิกส์เพื่อจุดประสงค์ของการสร้างสภาวะการทำงานที่เหมาะสมของชิ้นส่วนอิเล็กทรอนิกส์ อุปกรณ์อิเล็กทรอนิกส์จำนวนมากที่ฟังก์ชันของมันคือการประมวลสัญญาณ (AC) ที่เปลี่ยนแปลงตามเวลา ก็ยังต้องการกระแสหรือแรงดัน (DC) ที่คงที่ในการดำเนินการอย่างถูกต้อง สัญญาณ AC ที่ถูกป้อนให้พวกเขาจะขี่อยู่บนกระแสหรือแรงดันไบอัส DC นี้ อุปกรณ์ประเภทอื่นๆ เช่นหัวบันทึกแม่เหล็ก ต้องการสัญญาณ(AC) ที่เปลี่ยนแปลงตามเวลาเป็นไบอัส จุดปฏิบัติการของอุปกรณ์หนึ่งๆที่เรียกว่าเป็น จุดไบอัส, จุดนิ่ง(quiescent point) หรือ Q-point เป็นแรงดันหรือกระแสไฟฟ้าสภาวะคงที่ ที่ขาใดขาหนึ่งที่ระบุของอุปกรณ์แอคทีฟ (ทรานซิสเตอร์หรือหลอดสูญญากาศ) โดยที่ไม่มีสัญญาณอินพุทป้อนเข้าม.

ใหม่!!: ไดโอดและไบอัส · ดูเพิ่มเติม »

ไดโอดเปล่งแสง

อดเปล่งแสงสีต่าง ๆ ไดโอดเปล่งแสง (light-emitting diode หรือย่อว่า LED) เป็นอุปกรณ์สารกึ่งตัวนำอย่างหนึ่ง จัดอยู่ในจำพวกไดโอด ที่สามารถเปล่งแสงในช่วงสเปกตรัมแคบ เมื่อถูกไบอัสทางไฟฟ้าในทิศทางไปข้างหน้า ปรากฏการณ์นี้อยู่ในรูปของ electroluminescence สีของแสงที่เปล่งออกมานั้นขึ้นอยู่กับองค์ประกอบทางเคมีของวัสดุกึ่งตัวนำที่ใช้ และเปล่งแสงได้ใกล้ช่วงอัลตราไวโอเลต ช่วงแสงที่มองเห็น และช่วงอินฟราเรด ผู้พัฒนาไดโอดเปล่งแสงขึ้นเป็นคนแรก คือ นิก โฮโลยัก (Nick Holonyak Jr.) (เกิด ค.ศ. 1928) แห่งบริษัทเจเนรัล อิเล็กทริก (General Electric Company) โดยได้พัฒนาไดโอดเปล่งแสงในช่วงแสงที่มองเห็น และสามารถใช้งานได้ในเชิงปฏิบัติเป็นครั้งแรก เมื่อ ค.ศ. 1962.

ใหม่!!: ไดโอดและไดโอดเปล่งแสง · ดูเพิ่มเติม »

เจอร์เมเนียม

อร์เมเนียม (Germanium) เป็นธาตุที่อยู่ระหว่างซิลิคอน (Si) และดีบุก (Sn) สัญลักษณ์คือ Ge ในกลุ่ม IVa ของตารางธาตุ เป็นพวกเมทัลลอยด์สีเทาเงิน มีคุณสมบัติก้ำกึ่งระหว่างโลหะและอโลห.

ใหม่!!: ไดโอดและเจอร์เมเนียม · ดูเพิ่มเติม »

เคลวิน

ลวิน (kelvin, สัญลักษณ์: K) เป็นหน่วยวัดอุณหภูมิหนึ่ง และเป็นหน่วยพื้นฐานหนึ่งในเจ็ดของระบบเอสไอ นิยามให้เท่ากับ 1/273.16 เท่าของอุณหภูมิเทอร์โมไดนามิกของจุดสามสถานะของน้ำ เคลวินตั้งชื่อเพื่อเป็นเกียรติแต่นักฟิสิกส์และวิศวกรชาวอังกฤษ วิลเลียม ทอมสัน บารอนที่หนึ่งแห่ง เคลวิน (William Thomson, 1st Baron Kelvin) ซึ่งชื่อบรรดาศักดิ์นี้ตั้งตามชื่อ แม่น้ำเคลวิน อีกทีหนึ่ง แม่น้ำสายนี้ตัดผ่านมหาวิทยาลัยกลาสโกว์ สกอตแลนด์ เคลวิน เป็นหน่วยของหน่วยวัดอุณหภูมิหนึ่ง ที่ลอร์เควิน ได้พัฒนาคิดสเกลขึ้นใหม่ โดยหาความสัมพันธ์ระหว่างอุณหภูมิและความเร็วของอิเล็กตรอนที่เคลื่อนที่รอบนิวเคลียส โดยสังเกตว่าถ้าให้ความร้อนกับสสารมากขึ้น อิเล็กตรอนจะมีพลังงานมากขึ้น ทำให้เคลื่อนที่มีความเร็วมากขึ้น ในทางกลับกันถ้าลดความร้อนให้กับสสาร อิเล็กตรอนก็จะมีพลังงานน้อยลง ทำให้การเคลื่อนที่ลดลง และถ้าสามารถลดอุณหภูมิลงจนถึงจุดที่อิเล็กตรอนหยุดการเคลื่อนที่ ณ จุดนั้น จะไม่มีอุณหภูมิหรือพลังงานในสสารเลย และจะไม่มีการแผ่รังสีความร้อนจากวัตถุ จึงเรียกอุณหภูมิ ณ จุดนี้ว่า ศูนย์สัมบูรณ์ (0 K) หมวดหมู่:หน่วยฐานเอสไอ หมวดหมู่:หน่วยวัดอุณหภูมิ.

ใหม่!!: ไดโอดและเคลวิน · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »