โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

รางวัลโนเบลสาขาฟิสิกส์

ดัชนี รางวัลโนเบลสาขาฟิสิกส์

หรียญรางวัลโนเบล รางวัลโนเบลสาขาฟิสิกส์ (Nobelpriset i fysik, Nobel Prize in Physics) เป็นรางวัลโนเบลหนึ่งใน 5 สาขา ริเริ่มโดยอัลเฟรด โนเบล ตั้งแต่ปี ค.ศ. 1895 โดยสถาบัน Royal Swedish Academy of Sciences แห่งประเทศสวีเดน เป็นผู้คัดเลือกผู้รับรางวัล ซึ่งมีผลงานวิจัยด้านฟิสิกส์อย่างโดดเด่น มีพิธีมอบเป็นครั้งแรก เมื่อ ค.ศ. 1901 พิธีมอบรางวัลมีขึ้นในวันที่ 10 ธันวาคมของทุกปี ซึ่งตรงกับวันคล้ายวันเสียชีวิตของอัลเฟรด โนเบล ที่กรุงสตอกโฮล์ม.

127 ความสัมพันธ์: ฟร็องซัว อ็องแกลร์ฟิสิกส์ฟิสิกส์ทฤษฎีฟิสิกส์ดาราศาสตร์พ.ศ. 2438พ.ศ. 2444พ.ศ. 2445พ.ศ. 2446พ.ศ. 2447พ.ศ. 2448พ.ศ. 2449พ.ศ. 2450พ.ศ. 2451พ.ศ. 2452พ.ศ. 2453พ.ศ. 2454พ.ศ. 2455พ.ศ. 2456พ.ศ. 2457พ.ศ. 2458พ.ศ. 2459พ.ศ. 2460พ.ศ. 2461พ.ศ. 2462พ.ศ. 2463พ.ศ. 2464พ.ศ. 2465พ.ศ. 2466พ.ศ. 2467พ.ศ. 2468พ.ศ. 2477พ.ศ. 2478พ.ศ. 2479พ.ศ. 2481พ.ศ. 2483พ.ศ. 2484พ.ศ. 2485พ.ศ. 2499พ.ศ. 2501พ.ศ. 2508พ.ศ. 2509พ.ศ. 2510พ.ศ. 2514พ.ศ. 2515พ.ศ. 2522พ.ศ. 2524พ.ศ. 2532พ.ศ. 2540พ.ศ. 2543พ.ศ. 2544...พ.ศ. 2545พ.ศ. 2546พ.ศ. 2547พ.ศ. 2548พ.ศ. 2549พ.ศ. 2550พ.ศ. 2551พ.ศ. 2552พ.ศ. 2553พ.ศ. 2554พ.ศ. 2555พ.ศ. 2556พ.ศ. 2557พ.ศ. 2558พ.ศ. 2559พ.ศ. 2560พอล ดิแรกกลศาสตร์ควอนตัมการกระเจิงของแสงการสลายให้กัมมันตรังสีการเลี้ยวเบนกาเบรียล ลิพพ์มานน์มวลมักซ์ บอร์นมักซ์ พลังค์มารี กูว์รีรังสีคอสมิกรังสีเอกซ์รางวัลโนเบลริชาร์ด ไฟน์แมนวิลเฮล์ม วีนวิลเฮล์ม คอนราด เรินต์เกนว็อล์ฟกัง เพาล์สต็อกโฮล์มอะตอมอัลเบิร์ต ไอน์สไตน์อัลเฟรด โนเบลอาร์กอนอาร์เธอร์ แมคโดนัลด์อาลแบร์ แฟร์อาเธอร์ ลีโอนาร์ด ชอว์โลว์อิซิโดร์ ไอแซก ราบีอิเล็กตรอนองค์การวิจัยนิวเคลียร์ยุโรปอนุภาคอ็องตวน อ็องรี แบ็กแรลฮันส์ เบเทอฮิกส์โบซอนผลึกจอร์จ สมูททรานซิสเตอร์ทฤษฎีอะตอมทะกะอะกิ คะจิตะดาวฤกษ์คลื่นความโน้มถ่วงคาร์ล เฟอร์ดินานด์ บรอนค่าคงตัวของพลังค์ประเทศสวีเดนปรากฏการณ์โฟโตอิเล็กทริกปีแยร์ กูว์รีปีเตอร์ กรึนแบร์กปีเตอร์ ฮิกส์นิวทริโนนิวตรอนนีลส์ บอร์แอร์วิน ชเรอดิงเงอร์โพซิตรอนโรเบิร์ต วูดโรว์ วิลสันโทรเลขไลโกไฮเกอ กาเมอร์ลิง โอนเนิสไดโอดเปล่งแสงเอนรีโก แฟร์มีเจ. เจ. ทอมสันเดนนิส กาบอร์เครื่องชนอนุภาคแฮดรอนขนาดใหญ่10 ธันวาคม ขยายดัชนี (77 มากกว่า) »

ฟร็องซัว อ็องแกลร์

ฟร็องซัว อ็องแกลร์ (François Englert; เกิด 6 พฤศจิกายน ค.ศ. 1932) เป็นนักฟิสิกส์เชิงทฤษฎีชาวเบลเยียม โดยได้รับรางวัลโนเบลสาขาฟิสิกส์ร่วมกับปีเตอร์ ฮิกส์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฟร็องซัว อ็องแกลร์ · ดูเพิ่มเติม »

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฟิสิกส์ · ดูเพิ่มเติม »

ฟิสิกส์ทฤษฎี

ฟิสิกส์ทฤษฎี คือ สาขาวิชาฟิสิกส์แขนงหนึ่งที่นำแบบจำลองทางคณิตศาสตร์ ความคิดเชิงนามธรรมของวัตถุเชิงกายภาพและระบบต่าง ๆ ให้อยู่ในหลักการเหตุผล อธิบายและทำนายปรากฏการณ์ทางธรรมชาติ ซึ่งแตกต่างจากฟิสิกส์ทดลองจากการใช้อุปกรณ์การทดลองที่จะตรวจหาปรากฏการณ์เหล่านี้ ความก้าวหน้าทางวิทยาศาสตร์มักจะมาจากอิทธิพลระหว่างการเรียนรู้จากการทดลองและทฤษฎีโดยปกติ แต่ฟิสิกส์ทฤษฎียึดติดกับความเคร่งครัดทางคณิตศาสตร์ ซึ่งได้ให้ความสำคัญกับการทดลองและการสังเกตค่อนข้างน้อยในบางกรณี อาทิ ในขณะที่พัฒนาทฤษฎีสัมพัทธภาพพิเศษ อัลเบิร์ต ไอน์สไตน์ได้พิจารณาถึงการแปลงลอเรนซ์ซึ่งทำให้สมการของแมกซ์เวลล์ไม่เปลี่ยนแปลง แต่ไม่ได้สนใจถึงการทดลองของมิเชลสัน-มอร์ลีย์ที่ทำเกี่ยวกับอีเธอร์ที่มีผลต่อการเคลื่อนของโลก ในทางกลับกัน ไอน์สไตน์ได้รับรางวัลโนเบลสำหรับการอธิบายปรากฏการณ์โฟโตอิเล็กทริกซึ่งไม่มีการอ้างอิงในเชิงทฤษฎีใด ๆ ทั้งสิ้น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฟิสิกส์ทฤษฎี · ดูเพิ่มเติม »

ฟิสิกส์ดาราศาสตร์

ฟิสิกส์ดาราศาสตร์ (อังกฤษ: Astrophysics) เป็นแขนงวิชาทางดาราศาสตร์ ว่าด้วยสมบัติทางกายภาพของวัตถุในอวกาศ ไม่ว่าจะเป็นดาวฤกษ์ ดาราจักร และเอกภพทั้งหลายทั้งมวล จะเน้นศึกษาแขนงวิชาที่กว่ามาข้างต้น มากกว่าศึกษาตำแหน่งหรือการเคลื่อนที่ของวัถตุต่าง ๆ ในอวกาศ วิชาฟิสิกส์ดาราศาสตร์จะศึกษาเกี่ยวกับดวงอาทิตย์, ดาวฤกษ์ต่าง ๆ, กาแล็กซีต่าง ๆ, ดาวเคราะห์นอกระบบ, มวลสารระหว่างดาว, รังสีไมโครเวฟพื้นหลังของจักรวาล สาขาวิชานี้จะตรวจสอบและศึกษาอย่างละเอียดเกี่ยวกับสเปกตรัมแม่เหล็กไฟฟ้า และปัจจัยต่าง ๆ อาทิ ความเข้มแสง, ความหนาแน่น, อุณหภูมิ และสารประกอบเคมี เนื่องจากวิชาฟิสิกส์ดาราศาสตร์นั้นครอบคลุมเนื้อหาและแขนงวิชาต่าง ๆ ในบริเวณกว้าง จึงสามารถรวมอีกหลายแขนงวิชาเข้ามาในวิชาฟิสิกส์ดาราศาสตร์นี้ได้ด้วย อาทิ กลศาสตร์, การศึกษาแรงแม่เหล็กไฟฟ้า, กลศาสตร์สถิติ, อุณหพลศาสตร์, กลศาสตร์ควอนตัม, ทฤษฎีสัมพันธภาพ, ฟิสิกส์นิวเคลียร์, ฟิสิกส์อะตอม โมเลกุล และทัศนศาสตร.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฟิสิกส์ดาราศาสตร์ · ดูเพิ่มเติม »

พ.ศ. 2438

ทธศักราช 2438 ตรงกับปีคริสต์ศักราช 1895 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2438 · ดูเพิ่มเติม »

พ.ศ. 2444

ทธศักราช 2444 ตรงกับปีคริสต์ศักราช 1901 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2444 · ดูเพิ่มเติม »

พ.ศ. 2445

ทธศักราช 2445 ตรงกับปีคริสต์ศักราช 1902 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2445 · ดูเพิ่มเติม »

พ.ศ. 2446

ทธศักราช 2446 ตรงกับปีคริสต์ศักราช 1903 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2446 · ดูเพิ่มเติม »

พ.ศ. 2447

ทธศักราช 2447 ตรงกับปีคริสต์ศักราช 1904 เป็นปีอธิกสุรทินที่วันแรกเป็นวันศุกร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2447 · ดูเพิ่มเติม »

พ.ศ. 2448

ทธศักราช 2448 ตรงกับปีคริสต์ศักราช 1905 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิต.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2448 · ดูเพิ่มเติม »

พ.ศ. 2449

ทธศักราช 2449 ตรงกับปีคริสต์ศักราช 1906 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2449 · ดูเพิ่มเติม »

พ.ศ. 2450

ทธศักราช 2450 ตรงกับปีคริสต์ศักราช 1907 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2450 · ดูเพิ่มเติม »

พ.ศ. 2451

ทธศักราช 2451 ตรงกับปีคริสต์ศักราช 1908 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2451 · ดูเพิ่มเติม »

พ.ศ. 2452

ื พุทธศักราช 2452 ตรงกับปีคริสต์ศักราช 1909 เป็ๆนปีปกติสุรทินที่วันแรกเป็นวันศุกร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2452 · ดูเพิ่มเติม »

พ.ศ. 2453

ทธศักราช 2453 ตรงกับปีคริสต์ศักราช 1910 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2453 · ดูเพิ่มเติม »

พ.ศ. 2454

ทธศักราช 2454 ตรงกับปีคริสต์ศักราช 1911 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2454 · ดูเพิ่มเติม »

พ.ศ. 2455

ทธศักราช 2455 ตรงกับปีคริสต์ศักราช 1912 เป็นปีอธิกสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2455 · ดูเพิ่มเติม »

พ.ศ. 2456

ทธศักราช 2456 ตรงกับปีคริสต์ศักราช 1913 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2456 · ดูเพิ่มเติม »

พ.ศ. 2457

ทธศักราช 2457 ตรงกับปีคริสต์ศักราช 1914 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2457 · ดูเพิ่มเติม »

พ.ศ. 2458

ทธศักราช 2458 ตรงกับปีคริสต์ศักราช 1915 เป็นปีปกติสุรทินที่วันแรกเป็นวันศุกร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2458 · ดูเพิ่มเติม »

พ.ศ. 2459

ทธศักราช 2459 ตรงกับปีคริสต์ศักราช 1916 เป็นปีอธิกสุรทินแรกของไทย ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2459 · ดูเพิ่มเติม »

พ.ศ. 2460

ทธศักราช 2460 ตรงกับปีคริสต์ศักราช 1917 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน หรือ ปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินจูเลียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2460 · ดูเพิ่มเติม »

พ.ศ. 2461

ทธศักราช 2461 ตรงกับปีคริสต์ศักราช 1918 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน หรือ ปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินจูเลียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2461 · ดูเพิ่มเติม »

พ.ศ. 2462

ทธศักราช 2462 ตรงกับปีคริสต์ศักราช 1919 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2462 · ดูเพิ่มเติม »

พ.ศ. 2463

ทธศักราช 2463 ตรงกับปีคริสต์ศักราช 1920 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2463 · ดูเพิ่มเติม »

พ.ศ. 2464

ทธศักราช 2464 ตรงกับปีคริสต์ศักราช 1921 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2464 · ดูเพิ่มเติม »

พ.ศ. 2465

ทธศักราช 2465 ตรงกับปีคริสต์ศักราช 1922 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2465 · ดูเพิ่มเติม »

พ.ศ. 2466

ทธศักราช 2466 ตรงกั.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2466 · ดูเพิ่มเติม »

พ.ศ. 2467

ทธศักราช 2467 ตรงกับปีคริสต์ศักราช 1924 เป็นปีอธิกสุรทินที่วันแรกเป็นวันอังคาร ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2467 · ดูเพิ่มเติม »

พ.ศ. 2468

ทธศักราช 2468 ตรงกับปีคริสต์ศักราช 1925 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2468 · ดูเพิ่มเติม »

พ.ศ. 2477

ทธศักราช 2477 ตรงกับปีคริสต์ศักราช 1934ยวห.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2477 · ดูเพิ่มเติม »

พ.ศ. 2478

ทธศักราช 2478 ตรงกับปีคริสต์ศักราช 1935.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2478 · ดูเพิ่มเติม »

พ.ศ. 2479

ทธศักราช 2479 ตรงกับปีคริสต์ศักราช 1936.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2479 · ดูเพิ่มเติม »

พ.ศ. 2481

ทธศักราช 2481 ตรงกับปีคริสต์ศักราช 1938.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2481 · ดูเพิ่มเติม »

พ.ศ. 2483

ทธศักราช 2483 ตรงกับปีคริสต์ศักราช 1940 เป็นปีอธิกสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2483 · ดูเพิ่มเติม »

พ.ศ. 2484

ทธศักราช 2484 ตรงกับปีคริสต์ศักราช 1941 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2484 · ดูเพิ่มเติม »

พ.ศ. 2485

ทธศักราช 2485 ตรงกับปีคริสต์ศักราช 1942 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดีตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2485 · ดูเพิ่มเติม »

พ.ศ. 2499

ทธศักราช 2499 ตรงกับปีคริสต์ศักราช 1956 เป็นปีอธิกสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2499 · ดูเพิ่มเติม »

พ.ศ. 2501

ทธศักราช 2501 ตรงกับปีคริสต์ศักราช 1958 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2501 · ดูเพิ่มเติม »

พ.ศ. 2508

ทธศักราช 2508 ตรงกับปีคริสต์ศักราช 1965 เป็นปีปกติสุรทินที่วันแรกเป็นวันศุกร์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2508 · ดูเพิ่มเติม »

พ.ศ. 2509

ทธศักราช 2509 ตรงกับปีคริสต์ศักราช 1966 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2509 · ดูเพิ่มเติม »

พ.ศ. 2510

ทธศักราช 2510 ตรงกับปีคริสต์ศักราช 1967 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2510 · ดูเพิ่มเติม »

พ.ศ. 2514

ทธศักราช 2514 ตรงกับปีคริสต์ศักราช 1971 เป็นปีปกติสุรทินที่วันแรกเป็นวันศุกร์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2514 · ดูเพิ่มเติม »

พ.ศ. 2515

ทธศักราช 2515 ตรงกับปีคริสต์ศักราช 1972 เป็นปีอธิกสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2515 · ดูเพิ่มเติม »

พ.ศ. 2522

ทธศักราช 2522 ตรงกับปีคริสต์ศักราช 1979 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2522 · ดูเพิ่มเติม »

พ.ศ. 2524

ทธศักราช 2524 ตรงกับปีคริสต์ศักราช 1981 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดี ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2524 · ดูเพิ่มเติม »

พ.ศ. 2532

ทธศักราช 2532 ตรงกับปีคริสต์ศักราช 1989 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2532 · ดูเพิ่มเติม »

พ.ศ. 2540

ทธศักราช 2540 ตรงกับปีคริสต์ศักราช 1997 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2540 · ดูเพิ่มเติม »

พ.ศ. 2543

ทธศักราช 2543 ตรงกับปีคริสต์ศักราช 2000 เป็นปีอธิกสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2543 · ดูเพิ่มเติม »

พ.ศ. 2544

ทธศักราช 2544 ตรงกับปีคริสต์ศักราช 2001 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ ตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2544 · ดูเพิ่มเติม »

พ.ศ. 2545

ทธศักราช 2545 V 2002 ตรงกับปีคริสต์ศักราช 2002 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคารตามปฏิทินเกรกอเรียน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2545 · ดูเพิ่มเติม »

พ.ศ. 2546

ทธศักราช 2546 ตรงกับปีคริสต์ศักราช 2003 เป็นปีปกติสุรทินที่วันแรกเป็นวันพุธตามปฏิทินเกรกอเรียน และกำหนดให้เป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2546 · ดูเพิ่มเติม »

พ.ศ. 2547

ทธศักราช 2547 ตรงกับปีคริสต์ศักราช 2004 เป็นปีอธิกสุรทินที่วันแรกเป็นวันพฤหัสบดีตามปฏิทินเกรกอเรียน เป็นปีอธิกมาส ปกติวาร ตามปฏิทินไทยจันทรคติ และกำหนดให้เป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2547 · ดูเพิ่มเติม »

พ.ศ. 2548

ทธศักราช 2548 ตรงกับปีคริสต์ศักราช 2005 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรโกเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2548 · ดูเพิ่มเติม »

พ.ศ. 2549

ทธศักราช 2549 ตรงกับปีคริสต์ศักราช 2006 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2549 · ดูเพิ่มเติม »

พ.ศ. 2550

ทธศักราช 2550 ตรงกับปีคริสต์ศักราช 2007 เป็นปีปกติสุรทินที่วันแรกเป็นวันจันทร์ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2550 · ดูเพิ่มเติม »

พ.ศ. 2551

ทธศักราช 2551 ตรงกับปีคริสต์ศักราช 2008 เป็นปีอธิกสุรทินที่วันแรกเป็นวันอังคารตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2551 · ดูเพิ่มเติม »

พ.ศ. 2552

ทธศักราช 2552 ตรงกับปีคริสต์ศักราช 2009 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดีตามปฏิทินเกรกอเรียน และเป็นปีสุดท้ายในคริสต์ทศวรรษ 2000.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2552 · ดูเพิ่มเติม »

พ.ศ. 2553

ทธศักราช 2553 ตรงกับปีคริสต์ศักราช 2010 เป็นปีปกติสุรทินที่วันแรกเป็นวันศุกร์ตามปฏิทินเกรกอเรียน และเป็นปีแรกในคริสต์ทศวรรษที่ 2010.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2553 · ดูเพิ่มเติม »

พ.ศ. 2554

ทธศักราช 2554 ตรงกับปีคริสต์ศักราช 2011 เป็นปีปกติสุรทินที่วันแรกเป็นวันเสาร์ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2554 · ดูเพิ่มเติม »

พ.ศ. 2555

ทธศักราช 2555 ตรงกับปีคริสต์ศักราช 2012 เป็นปีอธิกสุรทินที่วันแรกเป็นวันอาทิตย์ตามปฏิทินเกรกอเรียน และเป็นปีมะโรง จัตวาศก จุลศักราช 1374 (วันที่ 15 เมษายน เป็นวันเถลิงศก) สมัชชาใหญ่แห่งสหประชาชาติประกาศให้..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2555 · ดูเพิ่มเติม »

พ.ศ. 2556

ทธศักราช 2556 ตรงกับปีคริสต์ศักราช 2013 เป็นปีปกติสุรทินที่วันแรกเป็นวันอังคารตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2556 · ดูเพิ่มเติม »

พ.ศ. 2557

ทธศักราช 2557 ตรงกับปีคริสต์ศักราช 2014 วันแรกของปีตรงกับวันพุธตามปฏิทินเกรกอเรียน นับเป็นปีที่ 2014 ตามกำหนดสากลศักราช และปีที่ 2557 ตามกำหนดพุทธศักร.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2557 · ดูเพิ่มเติม »

พ.ศ. 2558

ทธศักราช 2558 ตรงกับปีคริสต์ศักราช 2015 เป็นปีปกติสุรทินที่วันแรกเป็นวันพฤหัสบดีตามปฏิทินเกรกอเรียน นับเป็นปีที่ 2015 ตามกำหนดสากลศักร.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2558 · ดูเพิ่มเติม »

พ.ศ. 2559

ทธศักราช 2559 ตรงกับปีคริสต์ศักราช 2016 เป็นปีอธิกสุรทินที่วันแรกเป็นวันศุกร์ และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2559 · ดูเพิ่มเติม »

พ.ศ. 2560

ทธศักราช 2560 ตรงกับปีคริสต์ศักราช 2017 เป็นปีปกติสุรทินที่วันแรกเป็นวันอาทิตย์ (ลิงก์ไปยังปฏิทิน) ตามปฏิทินเกรกอเรียน และเป็น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพ.ศ. 2560 · ดูเพิ่มเติม »

พอล ดิแรก

อล ดิแรก พอล เอเดรียน มัวริซ ดิแรก (Paul Adrien Maurice Dirac; 8 สิงหาคม 2445 -20 ตุลาคม 2527) เป็นนักฟิสิกส์ทฤษฎีชาวอังกฤษ หนึ่งในผู้ก่อตั้งฟิสิกส์สาขากลศาสตร์ควอนตัม เขาดำรงตำแหน่งศาสตราจารย์ลูคาเซียนที่มหาวิทยาลัยเคมบริดจ์ ก่อนจะไปใช้ชีวิตในช่วงสิบปีสุดท้ายของชีวิตที่มหาวิทยาลัยฟลอริดาสเตต เขาเป็นผู้สร้าง "สมการดิแรก" เพื่อใช้อธิบายพฤติกรรมของแฟร์มิออน นำไปสู่การคาดการณ์ถึงการดำรงอยู่ของปฏิสสาร เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี 2476 ร่วมกับ เออร์วิน ชเรอดิงเงอร์ สำหรับการ "ค้นพบรูปแบบใหม่ของทฤษฎีอะตอม".

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และพอล ดิแรก · ดูเพิ่มเติม »

กลศาสตร์ควอนตัม

'''ฟังชันคลื่น''' (Wavefunction) ของอิเล็กตรอนในอะตอมของไฮโดรเจนที่ทรงพลังงานกำหนดแน่ (ที่เพิ่มลงล่าง ''n''.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และกลศาสตร์ควอนตัม · ดูเพิ่มเติม »

การกระเจิงของแสง

การกระเจิงของแสง (Light scattering) เป็นการกระเจิงประเภทหนึ่ง เมื่อแสงอยู่ในรูปของพลังงานที่สามารถกระจายออกไปได้ การกระเจิงของแสงสามารถถูกจัดว่าเป็นการหักเหของรังสีที่เป็นเส้นตรง ตัวอย่างของการกระเจิงแสง เช่น การที่แสงอาทิตย์มากระทบกับโมเลกุลของอาก.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และการกระเจิงของแสง · ดูเพิ่มเติม »

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การเลี้ยวเบน

กไปจะมีขนาดเท่ากับรูนั้น การเลี้ยวเบนของคลื่นเกิดขึ้นได้ เมื่อคลื่นจากแหล่งกำเนิดเดินทางไปพบสิ่งกีดขวางที่มีลักษณะเป็นขอบหรือช่อง ทำให้คลื่นเคลื่อนที่เลี้ยวอ้อมผ่านสิ่งกีดขวางไปได้  อธิบายได้โดยใช้ เบน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และการเลี้ยวเบน · ดูเพิ่มเติม »

กาเบรียล ลิพพ์มานน์

กาเบรียล ลิพพ์มานน์ (Jonas Ferdinand Gabriel Lippmann 16 สิงหาคม ค.ศ. 1845 -- 13 กรกฎาคม ค.ศ. 1921) เป็นนักฟิสิกส์ชาวฝรั่งเศส-ลักเซมเบิร์ก และนักประดิษฐ์ผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์สำหรับวิธีการของเขาทำสีตามถ่ายรูปกับปรากฏการณ์ของการแทรกสอด หมวดหมู่:บุคคลที่เกิดในปี พ.ศ. 2388 หมวดหมู่:นักฟิสิกส์ชาวฝรั่งเศส หมวดหมู่:ผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และกาเบรียล ลิพพ์มานน์ · ดูเพิ่มเติม »

มวล

มวล เป็นคุณสมบัติหนึ่งของวัตถุ ที่บ่งบอกปริมาณ ของสสารที่วัตถุนั้นมี มวลเป็นแนวคิดหลักอันเป็นหัวใจของกลศาสตร์แบบดั้งเดิม รวมไปถึงแขนงวิชาที่เกี่ยวข้อง หากแจกแจงกันโดยละเอียดแล้ว จะมีปริมาณอยู่ 3 ประเภทที่ถูกนิยามว่า มวล ได้แก.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และมวล · ดูเพิ่มเติม »

มักซ์ บอร์น

มักซ์ บอร์น (Max Born, 11 ธันวาคม ค.ศ. 1882 - 5 มกราคม ค.ศ. 1970) เป็นนักฟิสิกส์ผู้มีส่วนพัฒนาทฤษฎีด้านกลศาสตร์ควอนตัม และได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และมักซ์ บอร์น · ดูเพิ่มเติม »

มักซ์ พลังค์

มักซ์ คาร์ล แอนสท์ ลุดวิจ พลังค์ เป็นนักฟิสิกส์ชาวเยอรมัน ผู้บุกเบิกการศึกษาทฤษฎีควอนตัม อันเป็นส่วนสำคัญในการศึกษาฟิสิกส์สมัยใหม่ แม้ในชีวิตตอนแรกของเขาจะดูราบรื่น โดยเขามีความสามารถทั้งทางดนตรีและฟิสิกส์ แต่เขากลับเดินไปในเส้นทางแห่งนักฟิสิกส์ทฤษฎี จนเขาได้ตั้งทฤษฎีทางฟิสิกส์ที่สำคัญต่อฟิสิกส์สมัยใหม่ นั่นคือ กฎการแผ่รังสีของวัตถุดำของพลังค์ รวมถึงค่าคงตัวของพลังค์ ซึ่งนับว่าขาดไม่ได้เลยสำหรับการศึกษากลศาสตร์ควอนตัม ทว่าบั้นปลายกลับเต็มไปด้วยความสิ้นหวังจากภัยสงคราม เขาต้องสูญเสียภรรยาคนแรก และบุตรที่เกิดกับภรรยาคนแรกไปทั้งหมด จนเหลือเพียงตัวเขา ภรรยาคนที่สอง และบุตรชายที่เกิดกับภรรยาคนที่สองเพียงคนเดียว ถึงกระนั้น พลังค์ก็ยังไม่ออกจากประเทศเยอรมนีอันเป็นบ้านเกิดของเขาไปยังดินแดนอื่น พลังค์ได้รับรางวัลโนเบล สาขาฟิสิกส์ ประจำปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และมักซ์ พลังค์ · ดูเพิ่มเติม »

มารี กูว์รี

มารี สกวอดอฟสกา-กูว์รี (Marie Skłodowska-Curie) มีชื่อแต่แรกเกิดว่า มาเรีย ซาลอแมอา สกวอดอฟสกา (Marya Salomea Skłodowska;; 7 พฤศจิกายน พ.ศ. 2410 - 4 กรกฎาคม พ.ศ. 2477) เป็นนักเคมีผู้ค้นพบรังสีเรเดียม ที่ใช้ยับยั้งการขยายตัวของมะเร็ง ซึ่งเป็นโรคร้ายที่ไม่สามารถรักษาให้หายขาดได้ แต่มีอัตราการตายของคนไข้เป็นอันดับหนึ่งมาทุกยุคสมัย ด้วยผลงานที่มีความสำคัญต่อมนุษยชาติเหล่านี้ ทำให้มารี กูว์รีได้รับรางวัลโนเบลถึง 2 ครั้งด้วยกัน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และมารี กูว์รี · ดูเพิ่มเติม »

รังสีคอสมิก

ฟลักซ์รังสีคอสมิกเทียบกับพลังงานอนุภาค รังสีคอสมิก (cosmic ray) เป็นรังสีพลังงานสูงอย่างยิ่งที่ส่วนใหญ่กำเนิดนอกระบบสุริยะ อาจทำให้เกิดการสาดอนุภาครองซึ่งทะลุทะลวงและมีผลกระทบต่อบรรยากาศของโลกและบ้างมาถึงผิวโลกได้ รังสีคอสมิกประกอบด้วยโปรตอนและนิวเคลียสอะตอมพลังงานสูงเป็นหลัก มีที่มาลึกลับ ข้อมูลจากกล้องโทรทรรศน์อวกาศแฟร์มี (2556) ถูกตีความว่าเป็นหลักฐานว่าส่วนสำคัญของรังสีคอสมิกปฐมภูมิกำเนิดจากมหานวดารา(supernova) ของดาวฤกษ์ขนาดยักษ์ ทว่า คาดว่ามหานวดารามิใช่แหล่งเดียวของรังสีคอสมิก นิวเคลียสดาราจักรกัมมันต์อาจผลิตรังสีคอสมิกด้วย รังสีคอสมิกถูกเรียกว่า "รังสี" เพราะทีแรกเข้าใจผิดว่าเป็นคลื่นแม่เหล็กไฟฟ้า ในการใช้ทางวิทยาศาสตร์ทั่วไป อนุภาคพลังงานสูงที่มีมวลในตัว เรียก รังสี "คอสมิก" และโฟตอน ซึ่งเป็นควอนตัมของรังสีแม่เหล็กไฟฟ้า (จึงไม่มีมวลในตัว) ถูกเรียกด้วยชื่อสามัญ เช่น "รังสีแกมมา" หรือ "รังสีเอ็กซ์" ขึ้นกับความถี่ รังสีคอสมิกดึงดูดความสนใจอย่างมากในทางปฏิบัติ เนื่องจากความเสียหายที่รังสีกระทำต่อไมโครอิเล็กทรอนิกส์ และชีวิตนอกเหนือการป้องกันจากบรรยากาศและสนามแม่เหล็ก และในทางวิทยาศาสตร์ เพราะมีการสังเกตว่า พลังงานของรังสีคอสมิกพลังงานสูงอย่างยิ่ง (ultra-high-energy cosmic rays, UHECRs) ที่มีพลังงานมากที่สุดเฉียด 3 × 1020 eV หรือเกือบ 40 ล้านเท่าของพลังงานของอนุภาคที่ถูกเครื่องเร่งอนุภาคขนาดใหญ่เร่ง ที่ 50 จูล รังสีคอสมิกพลังงานสูงอย่างยิ่งมีพลังงานเทียบเท่ากับพลังงานจลน์ของลูกเบสบอลความเร็ว 90 กิโลเมตรต่อชั่วโมง ด้วยผลการค้นพบเหล่านี้ จึงมีความสนใจสำรวจรังสีคอสมิกเพื่อหาพลังงานที่สูงกว่านี้ ทว่า รังสีคอสมิกส่วนมากไม่มีพลังงานสูงสุดขีดเช่นนั้น การกระจายพลังงานของรังสีคอสมิกสูงสุดที่ 0.3 กิกะอิเล็กตรอนโวลต์ (4.8×10−11 J) ในบรรดารังสีคอสมิกปฐมภูมิซึ่งกำเนิดนอกบรรยากาศของโลก ราว 99% ของนิวเคลียส (ซึ่งหลุดจากเปลือกอิเล็กตรอนของมัน) เป็นอะตอมที่ทราบกันดี และราว 1% เป็นอิเล็กตรอนเดี่ยว (คล้ายอนุภาคบีตา) ในจำนวนนิวเคลียส ราว 90% เป็นโปรตอน คือ นิวเคลียสไฮโดรเจน 9% เป็นอนุภาคแอลฟา และ 1% เป็นนิวเคลียสของธาตุหนักกว่า ส่วนน้อยมากเป็นอนุภาคปฏิสสารที่เสถียร เช่น โพสิตรอนและแอนติโปรตอน ธรรมชาติที่แน่ชัดของส่วนที่เหลือนี้เป็นขอบเขตการวิจัยที่กำลังดำเนินอยู่ การแสวงอนุภาคอย่างแข็งขันจากวงโคจรโลกยังไม่พบแอนติแอลฟ.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และรังสีคอสมิก · ดูเพิ่มเติม »

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และรังสีเอกซ์ · ดูเพิ่มเติม »

รางวัลโนเบล

หรียญรางวัลโนเบล รางวัลโนเบล (Nobelpriset; Nobel Prize) เป็นรางวัลประจำปีระดับนานาชาติ ซึ่งจัดโดยคณะกรรมการสแกนดิเนเวีย พิจารณาผลงานวิจัยหรือความอัจฉริยะและความเชี่ยวชาญที่โดดเด่น หรือสร้างคุณประโยชน์ให้กับมนุษยชาติ ทั้งในด้านวิทยาศาสตร์และวัฒนธรรม ตามเจตจำนงของอัลเฟรด โนเบล นักเคมีชาวสวีเดน ผู้ประดิษฐ์ไดนาไมท์ โดยก่อตั้งขึ้นครั้งแรกในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และรางวัลโนเบล · ดูเพิ่มเติม »

ริชาร์ด ไฟน์แมน

ริชาร์ด ฟิลลิปส์ ไฟน์แมน (Richard Phillips Feynman) นักฟิสิกส์ชาวอเมริกัน เกิดเมื่อวันที่ 11 พฤษภาคม ค.ศ. 1918 เสียชีวิต 15 กุมภาพันธ์ ค.ศ. 1988 เป็นหนึ่งในนักฟิสิกส์ ที่ทรงคุณค่าและมีอิทธิพลมากที่สุดของคริสต์ศตวรรษที่ 20 ในการจัดอันดับนักฟิสิกส์ยอดเยี่ยมตลอดกาลของโลก โดยสำนักข่าวบีบีซี ที่ให้นักฟิสิกส์ชั้นนำของโลกร่วม 100 คนช่วยกันตัดสิน ไฟน์แมน เป็นนักฟิสิกส์สมัยใหม่เพียงคนเดียว ที่ชนะใจเหล่านักฟิสิกส์ชั้นนำทั่วโลก โดยติดอันดับ 10 คนแรกของโลก (สมัยใหม่ในที่นี้ คือนับหลังจากยุคทองของทฤษฎีควอนตัม คือในช่วงครึ่งหลังของคริสต์ศตวรรษที่ 20 ถึงปัจจุบัน ค.ศ. 2005) แม้แต่นักฟิสิกส์ผู้โด่งดังอย่างสตีเฟ่น ฮอว์คิง ก็ยังได้เพียงอันดับ 16 ในผลโหวต แน่นอนผลโหวตนี้ไม่สามารถตัดสินอะไรได้ แต่ก็เป็นเครื่องบ่งชี้อย่างดีว่า ไฟน์แมนมีอิทธิพลต่อวงการฟิสิกส์ยุคปัจจุบันแค่ไหน ทั้งในแง่ผลงานทางวิชาการ การสอนหนังสือ และการใช้ชีวิต ผลงานของไฟน์แมนมีมากมาย เช่น การขยายทฤษฎีพลศาสตร์ไฟฟ้าควอนตัมให้กว้างใหญ่ขึ้นมาก ซึ่งนำไปสู่รางวัลโนเบลสาขาฟิสิกส์ เมื่อปี ค.ศ. 1965 ซึ่งเขาได้ร่วมกับจูเลียน ชวิงเกอร์ และโทะโมะนะกะ ชินอิจิโร ไฟน์แมนปฏิเสธตำแหน่งนักวิจัยที่มหาวิทยาลัยพรินซ์ตัน ที่ที่ไอน์สไตน์อยู่, เพียงเพราะเขาต้องการสอนหนังสือให้กับเด็ก ครั้งหนึ่งเขาเคยพูดว่า "ผมอยากสอน เพราะในตอนที่ผมไม่มีไอเดียอะไรใหม่ ๆ ในงานวิจัย ผมก็ยังสามารถให้อะไรกับสังคมได้" ไฟน์แมนตัดสินใจรับตำแหน่งที่สถาบันเทคโนโลยีแคลิฟอร์เนีย (แคลเทค) สร้างยุคทองของมหาวิทยาลัย ร่วมกับเมอเรย์ เกลมานน์ ผู้คิดค้นทฤษฎีควาร์ก, ไลนัส พอลลิง หนึ่งในนักเคมีที่ยิ่งใหญ่ที่สุดในศตวรรษที่ 20 หนึ่งในผู้คิดค้นทฤษฎีควอนตัมเคมี และนักวิทยาศาสตร์ชั้นนำท่านอื่นๆ ในแง่ของการเป็นอาจารย์ เขาได้เขียนคำบรรยายฟิสิกส์ของไฟน์แมน (Feynman Lectures on Physics) อันโด่งดัง ซึ่งเป็นแรงบันดาลใจให้กับผู้สอนวิชาฟิสิกส์เป็นจำนวนมาก ทั้งในแง่เนื้อหาและการนำเสนอ เป็นการพลิกการเรียนการสอนฟิสิกส์แบบเก่า ๆ ให้เข้าใจง่าย นอกจากนั้นเขายังเป็นหนึ่งในผู้พัฒนาระเบิดนิวเคลียร์ลูกแรกของโลก ในโครงการแมนฮัตตัน เป็นหนึ่งในผู้ตรวจสอบการระเบิดของกระสวยอวกาศแชลเลนเจอร์ และเป็นผู้ริเริ่มเสนอแนวคิดของนาโนเทคโนโลยี.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และริชาร์ด ไฟน์แมน · ดูเพิ่มเติม »

วิลเฮล์ม วีน

วิลเฮล์ม คาร์ล แวร์เนอร์ ออทโท ฟริทซ์ ฟรานซ์ วีน (Wilhelm Carl Werner Otto Fritz Franz Wien (13 มกราคม พ.ศ. 2407 -- 30 สิงหาคม พ.ศ. 2471)เป็นนักฟิสิกส์ชาวเยอรมัน ผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์ประจำปี พ.ศ. 2454 เขาเป็นผู้รวมทฤษฎีความร้อนและการแผ่รังสีแม่เหล็กไฟฟ้าเข้าด้วยกัน ได้เป็นกฎการกระจัดของวีน ซึ่งว่า ความยาวคลื่นของการแผ่รังสีแม่เหล็กไฟฟ้าแปรผกผันกับอุณหภูมิ วิลเฮล์มเป็นญาติกับมักซ์ วีน นักอิเล็กทรอนิกส์ผู้ประดิษฐ์วงจรบริดจ์ของวีน (Wien Bridge).

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และวิลเฮล์ม วีน · ดูเพิ่มเติม »

วิลเฮล์ม คอนราด เรินต์เกน

วิลเฮล์ม คอนราด เรินต์เกน วิลเฮล์ม คอนราด เรินต์เกน (Wilhelm Conrad Röntgen - 27 มีนาคม พ.ศ. 2388 — 10 กุมภาพันธ์ พ.ศ. 2466) นักฟิสิกส์ชาวเยอรมัน ประจำมหาวิทยาลัยเวิร์ซแบร์ก ผู้ค้นพบและสร้าง รังสีแม่เหล็กไฟฟ้า ที่มี ช่วงคลื่น ขนาดที่รู้จักในปัจจุบันว่า รังสีเอกซ์ (x-rays) หรือ รังสีเรนต์เกน เมื่อวันที่ 8 พฤศจิกายน พ.ศ. 2438ความสำเร็จที่ทำให้เรินต์เกนได้รับรางวัลโนเบลรางวัลแรก เมื่อ..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และวิลเฮล์ม คอนราด เรินต์เกน · ดูเพิ่มเติม »

ว็อล์ฟกัง เพาล์

ว็อล์ฟกัง เพาล์ (Wolfgang Paul; 10 สิงหาคม ค.ศ. 1913 – 7 ธันวาคม ค.ศ. 1993) เป็นนักฟิสิกส์ชาวเยอรมัน เกิดที่เมืองโลเร็นทซ์เคียร์ชในแซกโซนี เป็นบุตรคนที่ 4 จากทั้งหมด 6 คนของทีโอดอร์และอลิซาเบธ (นามสกุลเดิม รัปเปิล) เพาล์ เพาล์เติบโตที่เมืองมิวนิกและเรียนที่มหาวิทยาลัยเทคโนโลยีแห่งมิวนิก ก่อนจะย้ายไปเรียนที่มหาวิทยาลัยเทคนิคแห่งเบอร์ลินและตามฮันส์ ค็อพเฟอร์มันน์ ที่ปรึกษาระดับปริญญาเอกไปที่มหาวิทยาลัยคีล เพาล์เรียนจบปริญญาเอกจากมหาวิทยาลัยเทคนิคแห่งเบอร์ลินในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และว็อล์ฟกัง เพาล์ · ดูเพิ่มเติม »

สต็อกโฮล์ม

ต็อกโฮล์ม (Stockholm) เป็นเมืองหลวงและเมืองใหญ่ที่สุดของประเทศสวีเดน ตั้งอยู่ริมชายฝั่งทะเลทิศตะวันออกของประเทศสวีเดน มีประชากรในเขตเทศบาลสต็อกโฮล์ม 909,000 คน ถ้านับเขตที่อยู่อาศัยโดยรอบทั้งหมดจะมีประชากรประมาณ 2.2 ล้านคน สต็อกโฮล์มเป็นที่ตั้งของรัฐบาลสวีเดน และที่ประทับของสมเด็จพระราชาธิบดีคาร์ลที่ 16 กุสตาฟ พระมหากษัตริย์องค์ปัจจุบันของสวีเดน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และสต็อกโฮล์ม · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอะตอม · ดูเพิ่มเติม »

อัลเบิร์ต ไอน์สไตน์

แอลเบิร์ต ไอน์สไตน์ (Albert Einstein, อัลแบร์ท ไอน์ชไตน์; 14 มีนาคม พ.ศ. 2422 – 18 เมษายน พ.ศ. 2498) เป็นนักฟิสิกส์ทฤษฎี ในวันที่ 15 กุมภาพันธ์ 2428 ชาวเยอรมันเชื้อสายยิว (ตามลำดับ) ซึ่งเป็นที่ยอมรับกันอย่างกว้างขวางว่าเป็นนักวิทยาศาสตร์ที่ยิ่งใหญ่ที่สุดในคริสต์ศตวรรษที่ 20 เขาเป็นผู้เสนอทฤษฎีสัมพัทธภาพ และมีส่วนร่วมในการพัฒนากลศาสตร์ควอนตัม สถิติกลศาสตร์ และจักรวาลวิทยา เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ใน..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอัลเบิร์ต ไอน์สไตน์ · ดูเพิ่มเติม »

อัลเฟรด โนเบล

อัลเฟร็ด เบิร์นฮาร์ท โนเบล (21 ตุลาคม พ.ศ. 2376, สตอกโฮล์ม ประเทศสวีเดน - 10 ธันวาคม พ.ศ. 2439, ซานเรโม ประเทศอิตาลี) นักเคมีชาวสวีเดน วิศวกร นักประดิษฐ์ ผู้ผลิตอาวุธและผู้คิดค้นดินระเบิดไดนาไมท์ เขาเป็นเจ้าของบริษัทโบโฟรส์ (Bofors) ซึ่งเป็นผู้ผลิตอาวุธรายใหญ่ โดยเขาได้เปลี่ยนแปลงบทบาทของโรงงานจากเดิมที่เป็นโรงงานเหล็กและเหล็กกล้า มาเป็นโรงผลิตปืนใหญ่ และอาวุธต่างๆ ในพินัยกรรมของเขา เขาได้ยกทรัพย์สมบัติจำนวนมหาศาลได้จากการผลิตอาวุธให้แก่สถาบันรางวัลโนเบล เพื่อมอบรางวัลแก่บุคคลที่สร้างคุณประโยชน์แก่มนุษยชาติ เรียกว่า รางวัลโนเบล และในโอกาสที่มีการสังเคราะห์ธาตุชนิดใหม่ขึ้น นักวิทยาศาสตร์ได้ตั้งชื่อธาตุนั้นตามชื่อของเขา เพื่อเป็นการให้เกียรติ ว่า โนเบเลียม (Nobelium).

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอัลเฟรด โนเบล · ดูเพิ่มเติม »

อาร์กอน

อาร์กอน (Argon) เป็นธาตุเคมีในตารางธาตุที่มีสัญลักษณ์ Ar และเลขอะตอม 18 เป็นก๊าซมีตระกูล ตัวที่ 3 อยู่ในกลุ่ม 18 ก๊าซอาร์กอนประกอบเป็น 1% ของบรรยากาศของโลก ชื่ออาร์กอน มาจากภาษากรีกจากคำว่า αργον แปลว่า ไม่ว่องไว (inactive) ในขณะที่มีการอ้างอิงถึงความจริงที่ว่าองค์ประกอบเกือบจะไม่มีปฏิกิริยาทางเคมี ออคเต็ต สมบูรณ์ (ครบ8อิเล็กตรอน) ในเปลือกนอกทำให้อะตอมอาร์กอนที่มีความเสถียรภาพและความทนทานต่อพันธะกับองค์ประกอบอื่นๆที่อุณหภูมิสามจุดเท่ากับ 83.8058K เป็นจุดคงที่ที่กำหนดในอุณหภูมิระดับนานาชาติปี1990 อาร์กอนที่ผลิตโดยอุตสาหกรรมการกลั่นลำดับส่วนของอากาศและของเหลว อาร์กอนส่วนใหญ่จะใช้เป็นก๊าซเฉื่อยในการเชื่อมและกระบวนการทางอุตสาหกรรมที่อุณหภูมิสูงมีสารอื่นๆที่ปกติจะไม่ทำปฏิกิริยากลายเป็นทำปฏิกิริยา ตัวอย่างเช่น ชั้นบรรยากาศอาร์กอนนอกจากนี้ยังมีการปลดปล่อยก๊าซหลอด อาร์กอนทำให้ก๊าซสีเขียว-สีฟ้า โดเด่นด้วยแสงเลเซอร์ นอกจากนั่นอาร์กอนยังใช้ในการริเริ่มการเรืองแสงอีกด้ว.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอาร์กอน · ดูเพิ่มเติม »

อาร์เธอร์ แมคโดนัลด์

อาร์เธอร์ บรูซ แมคโดนัลด์ (Arthur Bruce McDonald) เกิดเมื่อวันที่ 29 ตุลาคม..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอาร์เธอร์ แมคโดนัลด์ · ดูเพิ่มเติม »

อาลแบร์ แฟร์

อาลแบร์ แฟร์ (Albert Fert) เกิดเมื่อวันที่ 7 มีนาคม 2481 ณ เมืองการ์กาซอน ประเทศฝรั่งเศส เขาเป็นหนึ่งในนักฟิสิกส์ที่ค้นพบปรากฏการณ์ความต้านทานแม่เหล็กอย่างใหญ่ (Giant magnetoresistive effect) อันเป็นผลให้เกิดการเปลี่ยนแปลงขนานใหญ่ในการสร้างฮาร์ดดิสก์ความจุระดับจิกะไบต์ ปัจจุบันเขาเป็นศาสตราจารย์ที่มหาวิทยาลัยปารี-ซูด ในออร์แซ และเป็นผู้อำนวยการวิทยาศาสตร์ของห้องวิจัยร่วมทางฟิสิกส์ (Unité mixte de physique) ระหว่างศูนย์วิจัยวิทยาศาสตร์แห่งชาติ (ฝรั่งเศส) กับกลุ่มเธเลส (Thales Group) เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี 2550 ร่วมกับปีเตอร์ กรุนเบอร์ก นักฟิสิกส์ชาวเยอรมัน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอาลแบร์ แฟร์ · ดูเพิ่มเติม »

อาเธอร์ ลีโอนาร์ด ชอว์โลว์

อาเธอร์ ลีโอนาร์ด ชอว์โลว์ (5 พฤษภาคม – 28 เมษายน) นักฟิสิกส์ชาวอเมริกัน ที่เป็นที่รู้จักกันดีในฐานะผู้ให้แนวคิดคนแรกๆ ในการประดิษฐ์เมเซอร์ในย่านความถี่ของแสง, ในฐานะผู้ให้แนวคิดในการกักอะตอมด้วยแสงเลเซอร์ และ จากผลงานการศึกษาวัดค่าความถี่จำเพาะของโมเลกุลด้วยเลเซอร์ ผลงานหลังนี้ส่งผลให้เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอาเธอร์ ลีโอนาร์ด ชอว์โลว์ · ดูเพิ่มเติม »

อิซิโดร์ ไอแซก ราบี

อิสิดอร์ อิซาค ราบี (29 กรกฎาคม พ.ศ. 2441 - 11 มกราคม พ.ศ. 2531) เป็นนักฟิสิกส์ ผู้มีถิ่นกำเนิดจากออสเตรีย และได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี พ.ศ. 2487 ราบีถือกำเนิดใน หมู่บ้าน Rymanów เมือง Galicia อาณาจักรออสเตรีย (ปัจจุบันเป็นประเทศโปแลนด์) และ ถูกพามาที่สหรัฐอเมริกาหลังจากถือกำเนิดขึ้นได้เพียง 1 ปี เขาได้รับ ปริญญาทางวิทยาศาสตร์บัณฑิต (ปริญญาตรี) ทางเคมี จาก มหาวิทยาลัยคอร์เนลล์ ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอิซิโดร์ ไอแซก ราบี · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอิเล็กตรอน · ดูเพิ่มเติม »

องค์การวิจัยนิวเคลียร์ยุโรป

องค์การวิจัยนิวเคลียร์ยุโรป (European Organization for Nuclear Research; CERN; Organisation européenne pour la recherche nucléaire) เรียกโดยทั่วไปว่า "เซิร์น" เป็นองค์การความร่วมมือระหว่างประเทศในทวีปยุโรปเพื่อวิจัยและพัฒนาทางด้านนิวเคลียร์ ก่อตั้งเมื่อวันที่ 29 กันยายน พ.ศ. 2497 โดยมีประเทศสมาชิกก่อตั้ง 12 ประเทศ มีสำนักงานใหญ่อยู่ที่กรุงเจนีวา สวิตเซอร์แลนด์ เมื่อแรกก่อตั้ง เซิร์น มีชื่อว่า "สภาวิจัยนิวเคลียร์ยุโรป" หรือ Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Research) ซึ่งเป็นที่มาของชื่อย่อ CERN บทบาทหลักของเซิร์นคือ การจัดเตรียมเครื่องเร่งอนุภาคและโครงสร้างอื่นๆที่จำเป็นต่อการวิจัยด้านฟิสิกส์อนุภาค เซิร์นเป็นสถานที่ทำการทดลองมากมายที่เกิดจากความร่วมมือระหว่างประเทศเพื่อนำไปใช้ให้เกิดประโยชน์ และยังมีชื่อเสียงในฐานะเป็นต้นกำเนิดของเวิลด์ไวด์เว็บ สำนักงานหลักที่เขตเมแร็ง มีศูนย์คอมพิวเตอร์ขนาดใหญ่ที่มีอุปกรณ์ประมวลผลข้อมูลที่มีประสิทธิภาพสูงมากเพื่อการวิเคราะห์ข้อมูลจากการทดลอง และเนื่องจากจำเป็นต้องทำให้นักวิจัยในสถานที่อื่นสามารถนำข้อมูลเหล่านี้ไปใช้ได้ จึงต้องมีฮับสำหรับข่ายงานบริเวณกว้างอีกด้วย ในฐานะที่เป็นองค์การระหว่างประเทศ สถานที่ของเซิร์นจึงไม่อยู่ภายใต้อำนาจทางกฎหมายของทั้งสวิตเซอร์แลนด์และฝรั่งเศส ใน..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และองค์การวิจัยนิวเคลียร์ยุโรป · ดูเพิ่มเติม »

อนุภาค

อนุภาค หมายถึงสสารที่มีปริมาณน้อยมากหรือเล็กมาก อาจหมายถึง; ในเคมี.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอนุภาค · ดูเพิ่มเติม »

อ็องตวน อ็องรี แบ็กแรล

อ็องรี แบ็กแรล นักฟิสิกส์ชาวฝรั่งเศส อ็องตวน อ็องรี แบ็กแรล (Antoine Henri Becquerel,; 15 ธันวาคม พ.ศ. 2395 – 25 สิงหาคม พ.ศ. 2451) นักฟิสิกส์ชาวฝรั่งเศส เกิดในตระกูลที่มีนักวิทยาศาสตร์ถึง 4 รุ่น ตั้งแต่รุ่นปู่จนกระทั่งรุ่นลูก เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และอ็องตวน อ็องรี แบ็กแรล · ดูเพิ่มเติม »

ฮันส์ เบเทอ

ันส์ อัลเบร็คท์ เบเทอ (Hans Albrecht Bethe) เป็นนักฟิสิกส์นิวเคลียร์สัญชาติเยอรมัน-อเมริกัน เขาเป็นบุคคลสำคัญของวงการฟิสิกส์ดาราศาสตร์ พลศาสตร์ไฟฟ้าควอนตัม และฟิสิกส์ของแข็ง เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฮันส์ เบเทอ · ดูเพิ่มเติม »

ฮิกส์โบซอน

การทดลองการชนระหว่างอนุภาคโปรตอนสองตัว อาจทำให้เกิดสัญญาณการมีตัวตนของอนุภาคฮิกส์ ฮิกส์โบซอน (Higgs boson) เป็นอนุภาคมูลฐานชนิดหนึ่งที่อยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค มันเป็นการกระตุ้นควอนตัมของ สนามฮิกส์ —ซึ่งเป็นสนามพื้นฐานที่สำคัญอย่างมากต่อทฤษฎีฟิสิกส์ของอนุภาค ที่คาดว่าจะมีอยู่จริงแต่แรกในทศวรรษที่ 1960s, ที่ไม่เหมือนสนามที่เคยรู้จักอื่น ๆ เช่นสนามแม่เหล็กไฟฟ้า, และใช้ค่าคงที่ที่ไม่เป็นศูนย์เกือบทุกแห่ง คำถามที่ว่าสนามฮิกส์มีอยู่จริงหรือไม่ อยู่ในส่วนที่ไม่ได้ตรวจสอบสุดท้ายของแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาคและ "ปัญหาส่วนกลางของฟิสิกส์ของอนุภาค" การปรากฏตัวของสนามนี้, ตอนนี้เชื่อว่าจะมีการยืนยัน, อธิบายคำถามที่ว่าทำไมอนุภาคมูลฐานบางตัวจึงมีมวลเมื่อ, ตามการสมมาตร (ฟิสิกส์)ที่ควบคุมปฏิสัมพันธ์ของพวกมัน, พวกมันควรจะไม่มีมวล การมีอยู่ของสนามฮิกส์จะแก้ปัญหาที่มีมานานหลายอย่างอีกด้วย เช่นเหตุผลสำหรับอันตรกิริยาอย่างอ่อนที่มีช่วงระยะทำการสั้นมาก ๆ ถึงแม้ว่าจะมีการตั้งสมมติฐานว่าสนามฮิกส์แทรกซึมอยู่ในจักรวาลทั้งมวล หลักฐานสำหรับการดำรงอยู่ของมันได้เป็นเรื่องยากมากที่จะหาได้ ในหลักการ สนามฮิกส์สามารถตรวจพบได้โยการกระตุ้นตัวมัน เพื่อให้แสดงตัวออกมาเป็นอนุภาคฮิกส์ แต่วิธีนี้เป็นเรื่องยากมากในการทำขึ้นและตรวจสอบ ความสำคัญของคำถามพื้นฐานนี้ได้นำไปสู่​​การค้นหาถึง 40 ปี และการก่อสร้างหนึ่งของสิ่งอำนวยความสะดวกเพื่อการทดลองที่มีราคาแพงที่สุดและมีความซับซ้อนที่สุดในโลกจนถึงวันนี้ คือเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ของเซิร์น ในความพยายามที่จะสร้างฮิกส์โบซอนและอนุภาคอื่น ๆ สำหรับการสังเกตและการศึกษา เมื่อวันที่ 4 กรกฎาคม 2012, ได้มีการประกาศการค้นพบอนุภาคใหม่ที่มีมวลระหว่าง 125 ถึง 127 GeV/c2; นักฟิสิกส์สงสัยว่ามันเป็นฮิกส์โบซอน ตั้งแต่นั้นมา อนุภาคดังกล่าวแสดงออกที่จะประพฤติ, โต้ตอบ, และสลายตัวในหลาย ๆ วิธีที่ได้คาดการณ์ไว้ตามแบบจำลองมาตรฐาน นอกจากนั้นมันยังได้รับการยืนยันอย่างไม่เป็นทางการที่จะมี parity เป็น even และมีสปินเป็นศูนย์ และมีลักษณะพื้นฐาน (fundamental attribute) ของฮิกส์โบซอน 2 อย่าง นี้ดูเหมือนจะเป็นอนุภาคแบบสเกลาตัวแรกที่มีการค้นพบในธรรมชาติ การศึกษาอื่น ๆ มีความจำเป็นเพื่อตรวจสอบว่าอนุภาคที่ค้นพบใหม่นี้มีคุณสมบัติต่าง ๆ ตรงกับที่ได้มีการคาดการณ์ไว้สำหรับฮิกส์โบซอนโดยแบบจำลองมาตรฐานหรือตามที่ได้คาดการณ์โดยบางทฤษฎีว่าฮิกส์โบซอนแบบกลุ่มมีอยู่จริงหรือไม่ ฮิกส์โบซอนถูกตั้งชื่อตามปีเตอร์ ฮิกส์ ซึ่งเป็นหนึ่งในหกนักฟิสิกส์ที่ในปี 1964 ได้นำเสนอกลไกที่บ่งบอกถึงการมีอยู่ของอนุภาคดังกล่าว เมื่อวันที่ 10 ธันวาคม 2013 สองคนในนั้น, ปีเตอร์ ฮิกส์และ François Englert ได้รับรางวัลโนเบลสาขาฟิสิกส์สำหรับการทำงานและการทำนายของพวกเขา (โรเบิร์ต Brout ผู้ร่วมวิจัยของ Englert ได้เสียชีวิตในปี 2011 และรางวัลโนเบลไม่ได้ส่งให้หลังการเสียชีวิตของผู้ประพันธ์ตามปกติ) ในแบบจำลองมาตรฐาน, อนุภาคฮิกส์เป็น โบซอน ที่ไม่มีสปิน, ไม่มีประจุไฟฟ้าหรือประจุสี นอกจากนี้มันยังไม่เสถียรอย่างมาก การสลายตัวไปเป็นอนุภาคอื่น ๆ เกือบจะเกิดขึ้นได้ในทันที มันเป็นการกระตุ้นของควอนตัมของหนึ่งในสี่ส่วนประกอบของสนามฮิกส์ ตัวหลังของสนามฮิกส์ประกอบขึ้นเป็นสนามสเกลาร์ ที่มีส่วนประกอบที่เป็นกลางสองตัวและส่วนประกอบที่มีประจุไฟฟ้าสองตัวที่ก่อให้เกิดคู่ซับซ้อน (complex doublet) ของการสมมาตรแบบ isospin อย่างอ่อน SU(2) ในวันที่ 15 ธันวาคมปี 2015 ทั้งสองทีมของนักฟิสิกส์ที่ทำงานอิสระที่เซิร์นได้รายงานคำแนะนำเบื้องต้นของการเป็นไปได้ของอนุภาคย่อยใหม่ ถ้าจริง อนุภาคสามารถเป็นได้ทั้งรุ่นที่หนักกว่าของฮิกส์โบซอน หรือเป็น Graviton อย่างใดอย่างหนึ่ง อนุภาคชนิดนี้มีบทบาทพิเศษในแบบจำลองมาตรฐาน กล่าวคือเป็นอนุภาคที่อธิบายว่าทำไมอนุภาคมูลฐานชนิดอื่น เช่น ควาร์ก อิเล็กตรอน ฯลฯ (ยกเว้นโฟตอนและกลูออน) ถึงมีมวลได้ และที่พิเศษกว่าคือ สามารถอธิบายว่าทำไมอนุภาคโฟตอนถึงไม่มีมวล ในขณะที่อนุภาค W และ Z โบซอนถึงมีมวลมหาศาล ซึ่งมวลของอนุภาคมูลฐาน รวมไปถึงความแตกต่างระหว่างแรงแม่เหล็กไฟฟ้าอันเกิดจากอนุภาคโฟตอน และอันตรกิริยาอย่างอ่อนอันเกิดจากอนุภาค W และ Z โบซอนนี่เอง เป็นผลสำคัญอย่างยิ่งที่ประกอบกันเกิดเป็นสสารในหลายรูปแบบ ทั้งที่เรามองเห็นและมองไม่เห็น ทฤษฎีอิเล็กโตรวีค (electroweak) กล่าวไว้ว่า อนุภาคฮิกส์เป็นตัวผลิตมวลให้กับอนุภาคเลปตอน (อิเล็กตรอน มิวออน เทา) และควาร์ก เนื่องจากอนุภาคฮิกส์มีมวลมากแต่สลายตัวแทบจะทันทีที่ก่อกำเนิดขึ้นมา จึงต้องใช้เครื่องเร่งอนุภาคที่มีพลังงานสูงมากในการตรวจจับและบันทึกข้อมูล ซึ่งการทดลองเพื่อพิสูจน์ความมีตัวตนของอนุภาคฮิกส์นี้จัดทำโดยองค์การวิจัยนิวเคลียร์ยุโรป (CERN) โดยทดลองภายในเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ (LHC) และเริ่มต้นการทดลองตั้งแต่ต้นปี 2010 จากการคำนวณตามแบบจำลองมาตรฐานแล้ว เครื่องเร่งอนุภาคจะต้องใช้พลังงานสูงถึง 1.4 เทระอิเล็กตรอนโวลต์ (TeV) ในการผลิตอนุภาคมูลฐานให้มากพอที่จะตรวจวัดได้ ดังนั้นจึงได้มีการสร้างเครื่องชนอนุภาคขนาดใหญ่ (LHC) ดังกล่าวขึ้นมาเพื่อทำการทดลองพิสูจน์ความมีตัวตนของอนุภาคชนิดนี้ วันที่ 12 ธันวาคม 2554 ทีม ATLAS และทีม CMS ของเซิร์น ประกาศว่าได้ค้นพบข้อมูลที่อาจแสดงถึงการค้นพบฮิกส์โบซอน และในวันที่ 4 กรกฎาคม 2555 ทั้งสองทีมได้ออกมาประกาศว่าได้ค้นพบอนุภาคชนิดใหม่ ซึ่งเรียกได้ว่าเป็น "อนุภาคที่สอดคล้องกับอนุภาคฮิกส์" มากที่สุด มีมวลประมาณ 125 GeV/c2 (ประมาณ 133 เท่าของโปรตอน หรืออยู่ในระดับ 10-25 กิโลกรัม) หลังจากนั้นได้มีการวิเคราะห์และตรวจสอบผลอย่างละเอียดเพื่อพิสูจน์ว่าอนุภาคดังกล่าวเป็นอนุภาคฮิกส์จริง และในวันที่ 14 มีนาคม 2556 เซิร์นได้ยืนยันอย่างไม่เป็นทางการว่าอนุภาคที่ตรวจพบจากการทดลองครั้งนี้เป็นอนุภาคฮิกส์ตามทฤษฎีที่ทำนายไว้ ซึ่งจะเป็นหลักฐานชิ้นสำคัญที่สุดที่สนับสนุนแบบจำลองมาตรฐาน นำไปสู่การศึกษาฟิสิกส์สาขาใหม่ แนวคิดเกี่ยวกับอนุภาคฮิกส์ และสนามฮิกส์ (Higgs field) เกิดขึ้นราวปี 2507 โดยนักวิทยาศาสตร์หลายคน ได้แก่ ฟร็องซัว อ็องแกลร์ (François Englert) และ โรเบิร์ต เบราท์ (Robert Brout) ในเดือนสิงหาคม ปีเตอร์ ฮิกส์ ในเดือนตุลาคม รวมถึงงานวิจัยอิสระอีกสามชุดโดย เจอรัลด์ กูรัลนิค (Gerald Guralnik) ซี.อาร.เฮเกน (C. R. Hagen) และ ทอม คิบเบิล (Tom Kibble) ในฤดูใบไม้ผลิปีก่อนหน้าคือ ปี 2506 เลออน เลเดอร์แมน นักฟิสิกส์รางวัลโนเบลชาวอเมริกัน ตั้งชื่ออนุภาคฮิกส์ว่า "อนุภาคพระเจ้า" (God particle) แต่นักวิทยาศาสตร์ที่มีชื่อเสียงหลายคนไม่เห็นด้วยและไม่ชอบชื่อนี้.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และฮิกส์โบซอน · ดูเพิ่มเติม »

ผลึก

Quartz crystal Bismuth Crystal Insulincrystals ผลึก (crystal) เป็นของแข็งที่มีองค์ประกอบเป็นอะตอม โมเลกุล หรือ ไอออน ซึ่งอยู่รวมกันอย่างมีระเบียบ เป็นรูปแบบที่ซ้ำกันและแผ่ขยายออกไปในเนื้อที่สามมิติ โดยทั่วไปสสารที่เป็น ของเหลว จะเกิดผลึกได้เมื่ออยู่ภายใต้กระบวนการโซลิดิฟิเคชัน (solidification) ภายใต้สภาวะที่สมบูรณ์ผลที่ได้จะเป็น ผลึกเดี่ยว (single crystal) ที่ซึ่งทุกอะตอมในของแข็งมีความพอดีที่จะอยู่ใน แลตทิช เดียวกัน หรือ โครงสร้างผลึกเดียวกัน แต่โดยทั่วไปจะเกิดหลายรูปแบบของผลึกในระหว่างโซลิดิฟิเคชัน ทำให้เกิดของแข็งที่เรียกว่า พอลิคริสตัลลีน (polycrystalline solid) ตัวอย่าง เช่น โลหะ ส่วนใหญ่ที่พบเห็นในชีวิตประจำวันจะเป็น พอลิคริสตัล (polycrystals) ผลึกที่โตคู่กันอย่างสมมาตร จะเกิดเป็นผลึกที่เรียกว่า ผลึกแฝด (crystal twins) โครงสร้างผลึกจะขึ้นอยู่กับสารเคมี สภาวะแวดล้อมขณะเกิดการแข็งตัวและความกดดันขณะนั้น กระบวนการเกิดโครงสร้างผลึกเราเรียกว่าคริสตัลไลเซชัน (crystallization) ความสำคัญของผลึก ผลึก สามารถพบได้ทั่วไปในธรรมชาติ พบมากในการก่อตัวของหิน เช่น อัญมณีต่างๆ หรือแม้แต่รอบตัวเรา ในรูปของน้ำตาล น้ำแข็ง และเกลือเม็ด เป็นต้น ความงดงามของผลึกเหล่านี้เป็นที่สนใจมาแต่ตั้งแต่ โบราณ ทั้งด้านความสมมาตรของรูปทรงและสีสรรที่หลากหลาย นักผลึกศาสตร์ในอดีต ใช้เรขาคณิตในการศึกษารูปทรงของผลึกที่พบได้ตามธรรมชาติ 5 มีคุณสมบัติเป็นคลื่นแสงพลังงานสูง มองไม่เห็นด้วยตาเปล่า เมื่อรังสีเอกซ์พุ่งกระทบกับวัตถุ อะตอมในวัตถุจะสามารถทำให้รังสีเอกซ์เกิดการกระเจิงได้ นักผลึกศาสตร์พบว่าการเรียงตัวของอะตอมอย่างเป็นระเบียบในผลึก ทำให้รังสีเอกซ์กระเจิงไปในทิศทางที่จำเพาะเท่านั้น จากข้อมูลความเข้มและทิศทางของรังสีเอกซ์ที่กระเจิงนี้ นักวิทยาศาสตร์สามารถสร้างภาพสามมิติของโครงสร้างของสารในผลึกได้ ผลึกจึงเป็นตัวอย่างที่เหมาะสมสำาหรับการศึกษาโครงสร้างของสารที่ให้ความละเอียดในระดับอะตอม ด้วยคุณสมบัติทั่วไปสามประการได้แก่ คุณสมบัติที่เป็นของแข็ง มีสามมิติ และมีการเรียงตัวของอะตอมอย่างเป็นระเบียบมาก และความสมมาตรสูง นักวิทยาศาสตร์สามารถศึกษาพันธะเคมี ที่ดึงดูดอะตอมเข้าด้วยกัน ตัวอย่างเช่น กราไฟท์หรือถ่านที่ทึบแสงและนิ่ม กับเพชรที่โปร่งแสงและแข็งมาก สารทั้งสองนี้มีส่วนประกอบทางเคมีที่เหมือนกัน คือธาตุคาร์บอนเท่านั้น การที่เพชรสามารถกระเจิงแสงได้ เกิดจากพันธะทางเคมีที่เรียงตัวเป็นระเบียบ ทำาให้เพชรแวววาว เรารู้โครงสร้างและพันธะเคมีของเพชร ได้จากศึกษาโครงสร้างผลึกด้วยรังสีเอก ผลึกที่ฉีกกฎธรรมชาติ ในปี..1984 ดร.แดน เชท์มัน ค้นพบผลึกชนิดพิเศษที่มีรูปแบบการเรียงตัวของอะตอมอย่างไม่ต่อเนื่อง รูปแบบนี้ฉีกกฎที่เคยเชื่อกันว่า ผลึกต้องประกอบขึ้นด้วยรูปแบบสมมาตรชนิด 1, 2, 3, 4 และ 6 ด้านเท่านั้น จึงจะเกิดเป็นรูปทรงสามมิติได้ การค้นพบที่เปลี่ยนแปลงความเชื่อครั้งใหญนี้่ เกิดจากการศึกษาโลหะผสมระหว่างอลูมิเนียมและแมงกานีสด้วยกล้องจุลทรรศน์อิเล็กตรอน ดร.แดน เชชท์มัน สังเกตเห็นการจัดเรียงตัวแบบห้าเหลี่ยม ในผลึก และต่อมาผลึกในลักษณะนี้ เป็นที่รู้จักว่าเป็น “ผลึกเสมือน” การค้นพบนี้ทำให้ ดร.แดน เชท์มัน ได้รับ รางวัล โนเบล สาขาเคมี ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และผลึก · ดูเพิ่มเติม »

จอร์จ สมูท

อร์จ ฟิตซ์เจอรัลด์ สมูท ที่ 3 (George Fitzgerald Smoot III; เกิดวันที่ 20 กุมภาพันธ์ ค.ศ. 1945) เป็นนักฟิสิกส์ดาราศาสตร์และนักจักรวาลวิทยาชาวอเมริกัน ผู้ชนะรางวัล 1 ล้านเหรียญสหรัฐจากการแข่งขันรายการทางโทรทัศน์ และได้รับรางวัลโนเบลสาขาฟิสิกส์เมื่อปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และจอร์จ สมูท · ดูเพิ่มเติม »

ทรานซิสเตอร์

ทรานซิสเตอร์ (transistor) เป็นอุปกรณ์สารกึงตัวนำที่สามารถควบคุมการไหลของอิเล็กตรอนได้ ใช้ทำหน้าที่ ขยายสัญญาณไฟฟ้า, เปิด/ปิดสัญญาณไฟฟ้า, ควบคุมแรงดันไฟฟ้าให้คงที่, หรือกล้ำสัญญาณไฟฟ้า (modulate) เป็นต้น การทำงานของทรานซิสเตอร์เปรียบได้กับวาล์วควบคุมที่ทำงานด้วยสัญญาณไฟฟ้าที่ขาเข้า เพื่อปรับขนาดกระแสไฟฟ้าขาออกที่จ่ายมาจากแหล่งจ่ายไฟ ทรานซิสเตอร์ประกอบด้วยวัสดุเซมิคอนดักเตอร์ที่มีอย่างน้อยสามขั้วไฟฟ้าเพื่อเชื่อมต่อกับวงจร ภายนอก แรงดันหรือกระแสไฟฟ้าที่ป้อนให้กับขั้วทรานซิสเตอร์หนึ่งคู่ จะมีผลให้เกิดการเปลี่ยนแปลงในกระแสที่ไหลผ่านในขั้วทรานซิสเตอร์อีกคู่หนึ่ง เนื่องจากพลังงานที่ถูกควบคุม (เอาต์พุต)จะสูงกว่าพลังงานที่ใช้ในการควบคุม (อินพุท) ทรานซิสเตอร์จึงสามารถขยายสัญญาณได้ ปัจจุบัน บางทรานซิสเตอร์ถูกประกอบขึ้นมาต่างหากแต่ยังมีอีกมากที่พบฝังอยู่ใน แผงวงจรรวม ทรานซิสเตอร์เป็นการสร้างบล็อกพื้นฐานของอุปกรณ์อิเล็กทรอนิกส์ที่ทันสมัย ​​และเป็นที่แพร่หลายในระบบอิเล็กทรอนิกส์สมัยใหม.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และทรานซิสเตอร์ · ดูเพิ่มเติม »

ทฤษฎีอะตอม

ในวิชาเคมีและฟิสิกส์ ทฤษฎีอะตอมคือทฤษฎีที่ว่าด้วยธรรมชาติของสสาร ซึ่งกล่าวว่า สสารทุกชนิดประกอบด้วยหน่วยเล็กๆ ที่เรียกว่า อะตอม ซึ่งตรงกันข้ามกับแนวคิดดั้งเดิมที่แบ่งสสารออกเป็นหน่วยเล็กหลายชนิดตามแต่อำเภอใจ แนวคิดนี้เริ่มต้นเป็นแนวคิดเชิงปรัชญาของชาวกรีกโบราณ (ดีโมครีตุส) และชาวอินเดีย ต่อมาได้เข้ามาสู่วิทยาศาสตร์กระแสหลักในช่วงต้นคริสต์ศตวรรษที่ 19 เมื่อมีการค้นพบในสาขาวิชาเคมีซึ่งพิสูจน์ว่า พฤติกรรมของสสารนั้นดูเหมือนมันประกอบขึ้นด้วยอนุภาคขนาดเล็ก คำว่า "อะตอม" (จากคำกริยาในภาษากรีกโบราณว่า atomos, 'แบ่งแยกไม่ได้') ถูกนำมาใช้เรียกอนุภาคพื้นฐานที่ประกอบกันขึ้นเป็นธาตุเคมี เพราะนักเคมีในยุคนั้นเชื่อว่ามันคืออนุภาคมูลฐานของสสาร อย่างไรก็ดี เมื่อเข้าสู่คริสต์ศตวรรษที่ 20 การทดลองจำนวนมากเกี่ยวกับแม่เหล็กไฟฟ้าและสารกัมมันตรังสี ทำให้นักฟิสิกส์ค้นพบว่าสิ่งที่เราเรียกว่า "อะตอมซึ่งแบ่งแยกไม่ได้อีก" นั้นที่จริงแล้วยังประกอบไปด้วยอนุภาคที่เล็กกว่าอะตอมอีกจำนวนมาก (ตัวอย่างเช่น อิเล็กตรอน โปรตอน และนิวตรอน) ซึ่งสามารถแยกแยะออกจากกันได้ อันที่จริงแล้วในสภาวะแวดล้อมสุดโต่งดังเช่นดาวนิวตรอนนั้น อุณหภูมิและความดันที่สูงอย่างยิ่งยวดกลับทำให้อะตอมไม่สามารถดำรงอยู่ได้เลยด้วยซ้ำ เมื่อพบว่าแท้จริงแล้วอะตอมยังแบ่งแยกได้ ในภายหลังนักฟิสิกส์จึงคิดค้นคำว่า "อนุภาคมูลฐาน" (elementary particle) เพื่อใช้อธิบายถึงอนุภาคที่แบ่งแยกไม่ได้ วิทยาศาสตร์ที่ศึกษาเกี่ยวกับอนุภาคที่เล็กกว่าอะตอมนี้เรียกว่า ฟิสิกส์อนุภาค (particle physics) ซึ่งนักฟิสิกส์ในสาขานี้หวังว่าจะสามารถค้นพบธรรมชาติพื้นฐานที่แท้จริงของอะตอมได้.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และทฤษฎีอะตอม · ดูเพิ่มเติม »

ทะกะอะกิ คะจิตะ

ทะกะอะกิ คะจิตะ เกิดเมื่อวันที่ 9 มีนาคม..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และทะกะอะกิ คะจิตะ · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และดาวฤกษ์ · ดูเพิ่มเติม »

คลื่นความโน้มถ่วง

ในวิชาฟิสิกส์ คลื่นความโน้มถ่วง (gravitational wave) คือความผันผวนของความโค้งในปริภูมิ-เวลาที่แผ่ออกเป็นคลื่น ที่เดินทางออกจากแหล่งกำเนิด อัลเบิร์ต ไอน์สไตน์ทำนายไว้ใน..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และคลื่นความโน้มถ่วง · ดูเพิ่มเติม »

คาร์ล เฟอร์ดินานด์ บรอน

ร์ล เฟอร์ดินานด์ บรอน (Karl Ferdinand Braun) (6 มิถุนายน ค.ศ. 1850 - 20 เมษายน ค.ศ. 1918) เป็นนักประดิษฐ์และนักฟิสิกส์ชาวเยอรมันและได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และคาร์ล เฟอร์ดินานด์ บรอน · ดูเพิ่มเติม »

ค่าคงตัวของพลังค์

งตัวของพลังค์ h นั้นได้ชื่อมาจาก มักซ์ พลังค์ ซึ่งเป็นหนึ่งในผู้บุกเบิกทฤษฎีกลศาสตร์ควอนตัม ค่าคงตัวของพลังค์เป็นปริมาณที่เกี่ยวข้องกับขนาดของควอนตา (quanta) และมีค่าเท่ากับ หรือเขียนในหน่วยอิเล็กตรอนโวลต์ได้เท่ากับ ค่าคงตัวของพลังค์มีหน่วยเป็นพลังงานคูณกับเวลา ซึ่งเป็นหน่วยวัดaction นั่นเอง หรืออาจเขียนได้ในหน่วยของโมเมนตัมคูณระยะทางเช่นกัน ปริมาณอีกอย่างซึ่งมีความเกี่ยวข้องกันคือค่าคงตัวของพลังค์แบบลดค่า (reduced Planck constant) หรือบางครั้งเรียกว่าค่าคงตัวของดิแรค เมื่อ π คือค่าคงที่พาย ชื่อเรียกปริมาณนี้อ่านออกเสียงว่า เอช-บาร์ ตัวเลขที่ใช้ในที่นี้เป็นตัวเลขที่คณะกรรมการข้อมูลวิทยาศาสตร์และเทคโนโลยี (CODATA) แนะนำให้ใช้ตั้งแต่ปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และค่าคงตัวของพลังค์ · ดูเพิ่มเติม »

ประเทศสวีเดน

วีเดน (Sweden; สฺแวรฺแย) หรือชื่อทางการคือ ราชอาณาจักรสวีเดน (Kingdom of Sweden) เป็นประเทศกลุ่มนอร์ดิกตั้งอยู่บนคาบสมุทรสแกนดิเนเวีย ในยุโรปเหนือ เขตแดนทางตะวันตกจรดประเทศนอร์เวย์ ทางตะวันออกเฉียงเหนือจรดประเทศฟินแลนด์ และช่องแคบ สแกเกอร์แรก (Skagerrak) ทางตะวันตกเฉียงใต้จรดช่องแคบแคทีแกต (Kattegat) และทางตะวันออกจรดทะเลบอลติก และอ่าวบอทเนีย มีกรุงสต็อกโฮล์มเป็นเมืองหลวง ประเทศสวีเดนมีประชากรที่เบาบาง เว้นแต่ในเขตเมืองใหญ่ พื้นที่ส่วนใหญ่ของประเทศประกอบด้วยป่าไม้ และภูเขาสูง หลังจากสิ้นสุดยุคไวกิง สวีเดนกลายเป็นส่วนหนึ่งของสหภาพคาลมาร์ ร่วมกับเดนมาร์กและนอร์เวย์ (ในช่วงเวลานี้ ฟินแลนด์เป็นส่วนหนึ่งของราชอาณาจักรสวีเดน) สวีเดนได้ออกจากสหภาพในช่วงต้นคริสต์ศตวรรษที่ 16 และได้รบสู้กับประเทศเพื่อนบ้านเป็นเวลาหลายปี โดยเฉพาะรัสเซีย และเดนมาร์กกับนอร์เวย์ที่ยังเป็นสหภาพอยู่ ซึ่งไม่ยอมรับการที่สวีเดนออกจากสหภาพ ในคริสศตวรรษที่ 17 สวีเดนได้ขยายเขตด้วยสงครามและกลายเป็นมหาอำนาจด้วยขนาด 2 เท่าของปัจจุบัน ถึง..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และประเทศสวีเดน · ดูเพิ่มเติม »

ปรากฏการณ์โฟโตอิเล็กทริก

ปรากฏการณ์โฟโตอิเล็กทริก เมื่อคลื่นแม่เหล็กไฟฟ้าตกกระทบสสารแล้วทำให้อิเล็กตรอนในสสารหลุดออกมาพร้อมพลังงานจลน์ ปรากฏการณ์โฟโตอิเล็กทริก (photoelectric effect) เป็นปรากฏการณ์ที่อิเล็กตรอนหลุดออกจากสสาร (เรียกสสารเหล่านี้ว่า โฟโตอีมิสสีฟ) http://physics.info/photoelectric/ เมื่อสสารนั้นสัมผัสกับคลื่นแม่เหล็กไฟฟ้าที่มีความถี่สูง (ความยาวคลื่นต่ำ พลังงานสูง เช่น รังสีอัลตราไวโอเล็ต) และเรียกอิเล็กตรอนที่หลุดออกมาว่า โฟโตอิเล็กตรอน ปรากฏการดังกล่าวค้นพบโดยนักฟิสิกส์ชื่อไฮน์ริช เฮิร์ตซ์ ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และปรากฏการณ์โฟโตอิเล็กทริก · ดูเพิ่มเติม »

ปีแยร์ กูว์รี

ปีแยร์ กูว์รี (Pierre Curie; 15 พฤษภาคม ค.ศ. 1859 – 19 เมษายน ค.ศ. 1906) เป็นนักฟิสิกส์ชาวฝรั่งเศส สามีของมารี กูว์รี นักเคมีชาวโปแลนด์ ที่ได้รับรางวัลโนเบลสาขาฟิสิกส์ในปี ค.ศ. 1903.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และปีแยร์ กูว์รี · ดูเพิ่มเติม »

ปีเตอร์ กรึนแบร์ก

ปีเตอร์ อันเดรอัส กรึนแบร์ก (Peter Andreas Grünberg) เป็นนักฟิสิกส์ชาวเยอรมัน และ เป็นหนึ่งในผู้ค้นพบ ปรากฏการณ์ความต้านทานแม่เหล็กขนาดยักษ์ ซึ่งเป็นที่มาของการทะลวงฝ่าอุปสรรคในการสร้างฮาร์ดดิสก์ ความจุระดับ จิกะไบต์ กรึนแบร์กได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และปีเตอร์ กรึนแบร์ก · ดูเพิ่มเติม »

ปีเตอร์ ฮิกส์

ปีเตอร์ ฮิกส์ (Peter Higgs; เกิด 29 พฤษภาคม..) เป็นนักฟิสิกส์เชิงทฤษฎีชาวอังกฤษ โดยได้รับรางวัลโนเบลสาขาฟิสิกส์ร่วมกับฟร็องซัว อ็องแกลร์ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และปีเตอร์ ฮิกส์ · ดูเพิ่มเติม »

นิวทริโน

นิวทริโน (Neutrino) เป็นอนุภาคมูลฐาน ที่เป็นกลางทางไฟฟ้า และมีค่าสปิน (ฟิสิกส์)เท่ากับครึ่งจำนวนเต็ม นิวทริโน (ภาษาอิตาลีหมายถึง "สิ่งเป็นกลางตัวน้อย") ใช้สัญลักษณ์แทนด้วยอักษรกรีกว่า \nu_^ (นิว) มวลของนิวทริโนมีขนาดเล็กมากเมื่อเปรียบเทียบกับอนุภาคย่อยอื่นๆ และเป็นอนุภาคเพียงชนิดเดียวที่รู้จักในขณะนี้ที่มีความเป็นไปได้ว่าจะเป็นสสารมืด โดยเฉพาะอย่างยิ่งสสารมืดร้อน นิวทริโนเป็นเลปตอน กลุ่มเดียวกับอิเล็กตรอน มิวออน และเทา (อนุภาค) แต่ไม่มีประจุไฟฟ้า แบ่งเป็น 3 ชนิด (หรือ flavour) ได้แก่ อิเล็กตรอนนิวทริโน (Ve) มิวออนนิวทริโน (Vμ) และเทานิวทริโน (VT) แต่ละเฟลเวอร์มีคู่ปฏิปักษ์ (ปฏิยานุภาค) ของมันเรียกว่า "ปฏินิวทริโน" ซึ่งไม่มีประจุไฟฟ้าและมีสปินเป็นครึ่งเช่นกัน นิวทริโนถูกสร้างขึ้นในวิธีที่อนุรักษ์ เลขเลปตอน นั่นคือ เมื่อมี อิเล็กตรอนนิวทริโน ถูกสร้างขึ้น หนึ่งตัว จะมี โพซิตรอน (ปฏิอิเล็กตรอน) หนึ่งตัวถูกสร้างขึ้นด้วย และเมื่อมี อิเล็กตรอนปฏินิวทริโนหนึ่งตัวถูกสร้างขึ้น ก็จะมีอิเล็กตรอนหนึ่งตัวถูกสร้างขึ้นเช่นกัน นิวทริโนไม่มีประจุไฟฟ้า จึงไม่ถูกกระทบโดยแรงแม่เหล็กไฟฟ้าที่จะกระทำต่อทุกอนุภาคที่มีประจุไฟฟ้า และเนื่องจากมันเป็นเลปตอน จึงไม่ถูกกระทบโดยอันตรกิริยาอย่างเข้มที่จะกระทำต่อทุกอนุภาคที่ประกอบเป็นนิวเคลียสของอะตอม นิวทริโนจึงถูกกระทบโดย อันตรกิริยาอย่างอ่อน และ แรงโน้มถ่วง เท่านั้น แรงอย่างอ่อนเป็นปฏิสัมพันธ์ที่มีระยะทำการสั้นมาก และแรงโน้มถ่วงก็อ่อนแออย่างสุดขั้วในระยะทางระดับอนุภาค ดังนั้นนิวทริโนโดยทั่วไปจึงสามารถเคลื่อนผ่านสสารทั่วไปได้โดยไม่ถูกขวางกั้นและไม่สามารถตรวจจับได้ นิวทริโนสามารถสร้างขึ้นได้ในหลายวิธี รวมทั้งในหลายชนิดที่แน่นอนของการสลายให้กัมมันตรังสี, ในปฏิกิริยานิวเคลียร์ เช่นพวกที่เกิดขึ้นในดวงอาทิตย์, ในเครื่องปฏิกรณ์นิวเคลียร์, เมื่อรังสีคอสมิกชนกับอะตอมและในซูเปอร์โนวา ส่วนใหญ่ของนิวทริโนในบริเวณใกล้โลกเกิดจากปฏิกิริยานิวเคลียร์ในดวงอาทิตย์ ในความเป็นจริง นิวทรืโนจากดวงอาทิตย์ประมาณ 65 พันล้านตัว ต่อวินาทีเคลื่อนที่ผ่านทุก ๆ ตารางเซนติเมตรที่ตั้งฉากกับทิศทางของดวงอาทิตย์ในภูมิภาคของโลก นิวทริโนมีการ แกว่ง (oscillate) ไปมาระหว่างฟเลเวอร์ที่แตกต่างกันเมื่อมีการเคลื่อนที่ นั่นคิอ อิเล็กตรอนนิวทริโนตัวหนึ่งที่ถูกสร้างขึ้นในปฏิกิริยาการสลายให้อนุภาคบีตา อาจกลายเป็นมิวออนนิวทริโนหรือเทานิวทริโนหนึ่งตัวเมื่อมาถึงเครื่องตรวจจับ ซึ่งนิวทริโนแต่ละชนิดจะมีมวลไม่เท่ากัน ถึงแม้ว่ามวลเหล่านี้มีขนาดที่เล็กมาก จากการวัดทางจักรวาลวิทยา ได้มีการคำนวณว่าผลรวมของมวลนิวทริโนสามตัวน้อยกว่าหนึ่งในล้านส่วนของมวลอิเล็กตรอน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และนิวทริโน · ดูเพิ่มเติม »

นิวตรอน

นิวตรอน (neutron) เป็น อนุภาคย่อยของอะตอม ตัวหนึ่ง มีสัญญลักษณ์ n หรือ n0 ที่ไม่มี ประจุไฟฟ้า และมีมวลใหญ่กว่ามวลของ โปรตอน เล็กน้อย โปรตอนและนิวตรอนแต่ละตัวมีมวลประมาณหนึ่งหน่วย มวลอะตอม โปรตอนและนิวตรอนประกอบกันขึ้นเป็น นิวเคลียส ของหนึ่งอะตอม และทั้งสองตัวนี้รวมกันเรียกว่า นิวคลีออน คุณสมบัติของพวกมันถูกอธิบายอยู่ใน ฟิสิกส์นิวเคลียร์ นิวเคลียสประกอบด้วยโปรตอนจำนวน Z ตัว โดยที่ Z จะเรียกว่า เลขอะตอม และนิวตรอนจำนวน N ตัว โดยที่ N คือ เลขนิวตรอน เลขอะตอมใช้กำหนดคุณสมบัติทางเคมีของอะตอม และเลขนิวตรอนใช้กำหนด ไอโซโทป หรือ นิวไคลด์ คำว่าไอโซโทปและนิวไคลด์มักจะถูกใช้เป็นคำพ้อง แต่พวกมันหมายถึงคุณสมบัติทางเคมีและทางนิวเคลียร์ตามลำดับ เลขมวล ของอะตอมใช้สัญลักษณ์ A จะเท่ากับ Z+N ยกตัวอย่างเช่น คาร์บอนมีเลขอะตอมเท่ากับ 6 และคาร์บอน-12 ที่เป็นไอโซโทปที่พบอย่างมากมายของมันมี 6 นิวตรอนขณะคาร์บอน-13 ที่เป็นไอโซโทปที่หายากของมันมี 7 นิวตรอน องค์ประกอบบางอย่างจะเกิดขึ้นเองในธรรมชาติโดยมีไอโซโทปที่เสถียรเพียงหนึ่งตัว เช่นฟลูออรีน (ดู นิวไคลด์ที่เสถียร) องค์ประกอบอื่น ๆ จะเกิดขึ้นโดยมีไอโซโทปที่เสถียรเป็นจำนวนมาก เช่นดีบุกที่มีสิบไอโซโทปที่เสถียร แม้ว่านิวตรอนจะไม่ได้เป็นองค์ประกอบทางเคมี มันจะรวมอยู่ใน ตารางของนิวไคลด์ ภายในนิวเคลียส โปรตอนและนิวตรอนจะยึดเหนี่ยวอยู่ด้วยกันด้วย แรงนิวเคลียร์ และนิวตรอนเป็นสิ่งจำเป็นสำหรับความมั่นคงของนิวเคลียส นิวตรอนถูกผลิตขึ้นแบบทำสำเนาในปฏิกิริยา นิวเคลียร์ฟิวชั่น และ นิวเคลียร์ฟิชชัน พวกมันเป็นผู้สนับสนุนหลักใน การสังเคราะห์นิวเคลียส ขององค์ประกอบทางเคมีภายในดวงดาวผ่านกระบวนการฟิวชัน, ฟิชชั่นและ การจับยึดนิวตรอน นิวตรอนเป็นสิ่งจำเป็นสำหรับการผลิตพลังงานนิวเคลียร์ ในทศวรรษหลังจากที่นิวตรอนที่ถูกค้นพบในปี 1932 นิวตรอนถูกนำมาใช้เพื่อให้เกิดการกลายพันธ์ของนิวเคลียส (nuclear transmutation) ในหลายประเภท ด้วยการค้นพบของ นิวเคลียร์ฟิชชัน ในปี 1938 ทุกคนก็ตระหนักได้อย่างรวดเร็วว่า ถ้าการฟิชชันสามารถผลิตนิวตรอนขึ้นมาได้ นิวตรอนแต่ละตัวเหล่านี้อาจก่อให้เกิดฟิชชันต่อไปได้อีกในกระบวนการต่อเนื่องที่เรียกว่า ปฏิกิริยาลูกโซ่นิวเคลียร์ เหตุการณ์และการค้นพบเหล่านี้นำไปสู่​​เครื่องปฏิกรณ์ที่ยั่งยืนด้วยตนเองเป็นครั้งแรก (Chicago Pile-1, 1942) และอาวุธนิวเคลียร์ครั้งแรก (ทรินิตี้ 1945) นิวตรอนอิสระหรือนิวตรอนอิสระใด ๆ ของนิวเคลียสเป็นรูปแบบหนึ่งของ การแผ่รังสีจากการแตกตัวเป็นไอออน ดังนั้นมันจึงเป็นอันตรายต่อชีวภาพโดยขึ้นอยู่กับปริมาณที่รับ สนาม "พื้นหลังนิวตรอน" ขนาดเล็กในธรรมชาติของนิวตรอนอิสระจะมีอยู่บนโลก ซึ่งเกิดจากมิวออนรังสีคอสมิก และจากกัมมันตภาพรังสีตามธรรมชาติขององค์ประกอบที่ทำฟิชชันได้ตามธรรมชาติในเปลือกโลก แหล่งที่ผลิตนิวตรอนโดยเฉพาะเช่นเครื่องกำเนิดนิวตรอน, เครื่องปฏิกรณ์นิวเคลียร์เพื่อการวิจัยและแหล่งผลิตนิวตรอนแบบสปอลเลชัน (Spallation Source) ที่ผลิตนิวตรอนอิสระสำหรับการใช้งานในการฉายรังสีและในการทดลองการกระเจิงนิวตรอน คำว่า "นิวตรอน" มาจากภาษากรีก neutral ที่แปลว่า เป็นกลาง เออร์เนสต์ รัทเทอร์ฟอร์ด เป็นผู้ตั้งทฤษฎีการมีอยู่ของนิวตรอนเมื่อปี ค.ศ. 1920 โดยเขาพบว่าอะตอมของธาตุทุกชนิด เลขมวลจะมีค่าใกล้เคียงกับ 2 เท่าของเลขอะตอมเสมอ จึงสันนิษฐานได้ว่ามีอนุภาคอีกชนิดหนึ่งที่ยังไม่ถูกค้น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และนิวตรอน · ดูเพิ่มเติม »

นีลส์ บอร์

|นีลส์ โบร์ นีลส์ โบร์ กับ ไอน์สไตน์ นีลส์ โบร์ (Niels Hendrik David Bohr – 7 ตุลาคม พ.ศ. 2428-18 พฤศจิกายน พ.ศ. 2505) นักฟิสิกส์ชาวเยอรมัน เกิดที่กรุงโคเปนเฮเกน จบการศึกษาจากมหาวิทยาลัยโคเปนเฮเกนแล้วจึงได้ไปทำงานที่ประเทศอังกฤษ ที่เมืองเคมบริดจ์ และแมนเชสเตอร์ ต่อมาได้ดำรงตำแหน่งผู้อำนวยการสถาบันฟิสิกส์ทฤษฎีที่โคเปนเฮเกนตั้งแต่ปี พ.ศ. 2463 จนถึงแก่กรรม นีลส์ โบร์ ได้ขยายต่อยอดทฤษฎีโครงสร้างอะตอมให้ก้าวหน้าไปเป็นอันมาก จากการให้การอธิบายสเปกตรัมของไฮโดรเจน โดยวิธีสร้างแบบจำลองไฮโดรเจนและทฤษฎีควอนตัม (พ.ศ. 2456) ในช่วงสงครามโลกครั้งที่ 2 บอร์ได้ไปช่วยโครงการวิจัยที่ สหรัฐอเมริกาและกลับโคเปนเฮเกนเมื่อสิ้นสงครามในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และนีลส์ บอร์ · ดูเพิ่มเติม »

แอร์วิน ชเรอดิงเงอร์

แอร์วิน ชเรอดิงเงอร์ (Erwin Rudolf Josef Alexander Schrödinger; 12 สิงหาคม ค.ศ. 1887 - 4 มกราคม ค.ศ. 1961) เป็นนักฟิสิกส์ทฤษฎีชาวออสเตรีย มีชื่อเสียงในฐานะผู้วางรากฐานกลศาสตร์ควอนตัม โดยเฉพาะอย่างยิ่งสมการชเรอดิงเงอร์ ซึ่งทำให้เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และแอร์วิน ชเรอดิงเงอร์ · ดูเพิ่มเติม »

โพซิตรอน

ซิตรอน (positron) หรือ แอนติอิเล็กตรอน (antielectron) เป็นปฏิยานุภาคหรือปฏิสสารของอิเล็กตรอน โพซิตรอนมีประจุไฟฟ้าเป็น +1 มีสปินเป็น 1/2 และมีมวลเท่ากับอิเล็กตรอน ถ้าโพซิตรอนพลังงานต่ำชนกับอิเล็กตรอนพลังงานต่ำจะเกิดการประลัย (annihilation) คือมีการเกิดโฟตอนรังสีแกมมา 2 โฟตอนหรือมากกว่า โพซิตรอนอาจจะเกิดจากการสลายตัวของการปลดปล่อยโพซิตรอนกัมมันตรังสี (ผ่านอันตรกิริยาอย่างอ่อน) หรือโดยการผลิตคู่จากโฟตอนที่มีพลังงานเพียงพอ.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และโพซิตรอน · ดูเพิ่มเติม »

โรเบิร์ต วูดโรว์ วิลสัน

รเบิร์ต วูดโรว์ วิลสัน (Robert Woodrow Wilson; เกิด 10 มกราคม ค.ศ. 1936) เป็นนักดาราศาสตร์ชาวอเมริกัน ผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์ร่วมกับ อาร์โน อัลลัน เพนเซียส จากผลงานการค้นพบรังสีไมโครเวฟพื้นหลังของจักรวาล เมื่อปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และโรเบิร์ต วูดโรว์ วิลสัน · ดูเพิ่มเติม »

โทรเลข

การส่งโทรเลขสมัยสงครามโลกครั้งที่ 2 โทรเลข อดีตเรียก ตะแล็บแก๊บ (Telegraph) คือระบบโทรคมนาคมซึ่งใช้อุปกรณ์ทางไฟฟ้าส่งข้อความจากที่หนึ่งไปยังอีกที่หนึ่ง เดิมส่งโดยอาศัยสายตัวนำที่โยงติดต่อถึงกันและอาศัยอำนาจแม่เหล็กไฟฟ้าเป็นหลักสำคัญ แต่ระยะหลังมีการใช้วิธีการส่งไร้สาย ที่เรียกว่า วิทยุโทรเลข (radio telegraph, wireless telegraph หรือ continuous wave ย่อว่า CW).

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และโทรเลข · ดูเพิ่มเติม »

ไลโก

หอสังเกตการณ์คลื่นความโน้มถ่วงโดยใช้อินเตอร์เฟอโรมิเตอร์ชนิดเลเซอร์ (Laser Interferometer Gravitational-Wave Observatory) หรือเรียกโดยย่อว่า ไลโก (LIGO) เป็นโครงการทดลองทางฟิสิกส์ขนาดใหญ่เพื่อสังเกตการณ์คลื่นความโน้มถ่วง ก่อตั้งเมื่อ พ.ศ. 2535 โดยคิป ธอร์น และโรนัลด์ เดรเวอร์ แห่งสถาบันเทคโนโลยีแคลิฟอร์เนีย และเรนเนอร์ ไวส์ แห่งสถาบันเทคโนโลยีแมสซาชูเซตส์ ร่วมกับนักวิทยาศาสตร์จากทั่วโลก ภายใต้การบริหารงานโดยองค์กรความร่วมมือวิทยาศาสตร์ไลโก เพื่อสังเกตการณ์และวิเคราะห์ผลจากข้อมูลที่ได้เพื่อใช้คลื่นความโน้มถ่วงนี้ในทางดาราศาสตร์ ไลโกได้รับการสนับสนุนเงินทุนจากมูลนิธิวิทยาศาสตร์แห่งชาติสหรัฐอเมริกา และได้รับความร่วมมือเป็นอย่างดีจากสภาสนับสนุนวิทยาศาสตร์และเทคโนโลยีแห่งสหราชอาณาจักร สมาคมมักซ์พลังค์แห่งเยอรมนี และสภาวิจัยแห่งออสเตรเลี.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และไลโก · ดูเพิ่มเติม »

ไฮเกอ กาเมอร์ลิง โอนเนิส

กอ กาเมอร์ลิง โอนเนิส (Heike Kamerlingh Onnes; 21 กันยายน ค.ศ. 1853 – 21 กุมภาพันธ์ ค.ศ. 1926) เป็นนักฟิสิกส์ชาวดัตช์ เกิดที่เมืองโครนิงเงิน เป็นบุตรของฮาร์ม กาเมอร์ลิง โอนเนิส และอันนา แกร์ดีนา กูร์ส มีน้องชายและน้องสาวชื่อแม็นโซและแจ็นนีตามลำดับ ในปี..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และไฮเกอ กาเมอร์ลิง โอนเนิส · ดูเพิ่มเติม »

ไดโอดเปล่งแสง

อดเปล่งแสงสีต่าง ๆ ไดโอดเปล่งแสง (light-emitting diode หรือย่อว่า LED) เป็นอุปกรณ์สารกึ่งตัวนำอย่างหนึ่ง จัดอยู่ในจำพวกไดโอด ที่สามารถเปล่งแสงในช่วงสเปกตรัมแคบ เมื่อถูกไบอัสทางไฟฟ้าในทิศทางไปข้างหน้า ปรากฏการณ์นี้อยู่ในรูปของ electroluminescence สีของแสงที่เปล่งออกมานั้นขึ้นอยู่กับองค์ประกอบทางเคมีของวัสดุกึ่งตัวนำที่ใช้ และเปล่งแสงได้ใกล้ช่วงอัลตราไวโอเลต ช่วงแสงที่มองเห็น และช่วงอินฟราเรด ผู้พัฒนาไดโอดเปล่งแสงขึ้นเป็นคนแรก คือ นิก โฮโลยัก (Nick Holonyak Jr.) (เกิด ค.ศ. 1928) แห่งบริษัทเจเนรัล อิเล็กทริก (General Electric Company) โดยได้พัฒนาไดโอดเปล่งแสงในช่วงแสงที่มองเห็น และสามารถใช้งานได้ในเชิงปฏิบัติเป็นครั้งแรก เมื่อ ค.ศ. 1962.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และไดโอดเปล่งแสง · ดูเพิ่มเติม »

เอนรีโก แฟร์มี

อนริโก แฟร์มี เอนริโก แฟร์มี (Enrico Fermi) (29 กันยายน พ.ศ. 2444 – 28 พฤศจิกายน พ.ศ. 2497) นักฟิสิกส์รางวัลโนเบลชาวอิตาลีผู้มีบทบาทสำคัญในการพัฒนาวิชานิวเคลียร์ฟิสิกส์ เป็นนักฟิสิกส์ที่เชี่ยวชาญทั้งการทดลองและทฤษฎี ซึ่งหาได้ยากยิ่งในวงการฟิสิกส์ปัจจุบัน.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และเอนรีโก แฟร์มี · ดูเพิ่มเติม »

เจ. เจ. ทอมสัน

ซอร์ โจเซฟ จอห์น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และเจ. เจ. ทอมสัน · ดูเพิ่มเติม »

เดนนิส กาบอร์

นนิส กาบอร์ ซีบีอี, เอฟอาร์เอส (Dennis Gabor CBE, FRS; 5 มิถุนายน ค.ศ. 1900 - 9 กุมภาพันธ์ ค.ศ. 1979) นักประดิษฐ์และวิศวกรไฟฟ้าชาวอังกฤษเชื้อสายยิว-ฮังการี Arthur T. Hubbard (1995) CRC Press, 1995.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และเดนนิส กาบอร์ · ดูเพิ่มเติม »

เครื่องชนอนุภาคแฮดรอนขนาดใหญ่

รูปเครื่องเร่งอนุภาค LHC แผนผังแสดงส่วนต่างๆ ของ LHC แผนที่แสดงขอบเขตของ LHC ''superconducting quadrupole electromagnetas'' หรือท่อตัวนำยิ่งยวดแม่เหล็กไฟฟ้าสี่ขั้ว สำหรับใช้นำอนุภาคไปสู่จุดที่กำหนดสำหรับการชน เครื่องชนอนุภาคแฮดรอนขนาดใหญ่ (Large Hadron Collider; LHC) คือเครื่องเร่งอนุภาคที่ใหญ่ที่สุดในโลก มีเป้าหมายที่จะสร้างอนุภาคโปรตอน 7 TeV ขึ้น เพื่อพิสูจน์ข้อเท็จจริงและข้อจำกัดของทฤษฎีทางฟิสิกส์อนุภาคที่มีอยู่ในปัจจุบันอันอยู่ภายใต้กฎของแรงทั้งสี่ องค์กรวิจัยนิวเคลียร์แห่งยุโรป (European Organization for Nuclear Research) หรือ เซิร์น (Conseil Européen pour la Recherche Nucléaire) เป็นผู้สร้างเครื่องนี้ขึ้นที่บริเวณเขตแดนประเทศฝรั่งเศสและสวิตเซอร์แลนด์ ใกล้กับกรุงเจนีวา เป็นท่อใต้ดินลักษณะเป็นวงแหวนขนาดความยาวเส้นรอบวง 27 กิโลเมตร เครื่อง LHC นี้ถือว่าเป็นเครื่องเร่งอนุภาคที่มีขนาดใหญ่ที่สุดและใช้พลังงานสูงที่สุดของโลก สร้างขึ้นจากเงินทุนและการสนับสนุนรวมทั้งความร่วมมือจากนักฟิสิกส์มากกว่า 8,000 คน จาก 85 ประเทศ ในมหาวิทยาลัยและห้องทดลองทั่วโลกนับร้อยแห่ง ในระหว่างการก่อสร้าง เซิร์นเปิดโอกาสให้อาสาสมัครจากทั่วโลก ได้เข้าร่วมบริจาคการทำงานของคอมพิวเตอร์ เพื่อจำลองพฤติกรรมที่เกิดขึ้นภายในเครื่อง LHC เพื่อช่วยในการออกแบบ และปรับแต่งระบบ ด้วยโครงการที่มีชื่อว่า LHC@home ตั้งแต่วันที่ 1 กันยายน พ.ศ. 2547 โครงการนี้ดำเนินการบนระบบ Berkeley Open Infrastructure for Network Computing ของมหาวิทยาลัยแคลิฟอร์เนีย เบิร์กลีย์ เครื่องเร่งนี้สามารถทำความเย็นลงได้ต่ำที่สุดที่ประมาณ 1.9 K (หรือ −271.25 °C) เป็นอุณหภูมิที่ทำลงไปใกล้อุณหภูมิสัมบูรณ์มากที่สุด ได้มีการทดสอบยิงอนุภาคเริ่มต้นสำเร็จแล้วในช่วงวันที่ 8-11 สิงหาคม..

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และเครื่องชนอนุภาคแฮดรอนขนาดใหญ่ · ดูเพิ่มเติม »

10 ธันวาคม

วันที่ 10 ธันวาคม เป็นวันที่ 344 ของปี (วันที่ 345 ในปีอธิกสุรทิน) ตามปฏิทินสุริยคติแบบเกรกอเรียน เมื่อถึงวันนี้จะยังเหลือวันอีก 21 วันในปีนั้น.

ใหม่!!: รางวัลโนเบลสาขาฟิสิกส์และ10 ธันวาคม · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Nobel Prize in Physicsรายชื่อผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์รายนามผู้ได้รับรางวัลโนเบลสาขาฟิสิกส์

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »