โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

นีออน-18

ดัชนี นีออน-18

นีออน-18 (Neon-18) เป็นไอโซโทปกัมมันตรังสีของนีออน มีครึ่งชีวิตประมาณ 1.7 วินาที มันมีมวลประมาณ 18.01 u มันสลายตัวด้วยวิธีการแบ่งแยกโปรตอน และ ด้วยการจับยึดอิเล็กตรอน หลังจากที่นีออน-18 สลายแล้วจะให้ ฟลูออรีน-18 และ ออกซิเจน-16 หมวดหมู่:ไอโซโทปของนีออน.

5 ความสัมพันธ์: ฟลูออรีน-18การจับยึดอิเล็กตรอนวินาทีนิวไคลด์กัมมันตรังสีนีออน

ฟลูออรีน-18

ฟลูออรีน-18 (Fluorine-18) เป็นไอโซโทปกัมมันตรังสีของฟลูออรีน มีครึ่งชีวิตประมาณ 110 นาที (1 ชั่วโมง 50 นาที) มันมีมวลประมาณ 18.001 u มันสลายตัวด้วยวิธีการแบ่งแยกโปรตอน 97% และ ด้วยการจับยึดอิเล็กตรอน หลังจากที่ฟลูออรีน-18 สลายแล้วจะให้ ออกซิเจน-18 ซึ่งเป็นไอโซโทปที่เสถียร หมวดหมู่:ไอโซโทปของฟลูออรีน.

ใหม่!!: นีออน-18และฟลูออรีน-18 · ดูเพิ่มเติม »

การจับยึดอิเล็กตรอน

องรูปแบบของการจับยึดอิเล็กตรอน ''บน'': นิวเคลียสดูดซับอิเล็กตรอน ''ล่างซ้าย'': อิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอน "ที่หายไป" รังสีเอ็กซ์ที่มีพลังงานเท่ากับความแตกต่างระหว่างสองเปลือกอิเล็กตรอนจะถูกปล่อยออกมา ''ล่างขวา'': ใน Auger effect, พลังงานจะถูกปล่อยออกมาเมื่ออิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอนรอบใน พลังงานจะถูกย้ายไปที่อิเล็กตรอนรอบนอก อิเล็กตรอนรอบนอกจะถูกดีดออกจากอะตอม เหลือแค่ไอออนบวก การจับยึดอิเล็กตรอน Electron capture หรือ Inverse Beta Decay หรือ K-electron capture หรือ K-capture หรือ L-electron capture หรือ L-capture) เป็นกระบวนการที่นิวเคลียสที่ร่ำรวยโปรตอนของอะตอมที่เป็นกลางทางไฟฟ้าดูดซับอิเล็กตรอนที่อยู่วงในของอะตอม มักจะจากเปลือกอิเล็กตรอนที่วงรอบ K และวงรอบ L กระบวนการนี้จึงเป็นการเปลี่ยนโปรตอนของนิวเคลียสให้เป็นนิวตรอนและพร้อมกันนั้นได้มีการปลดปล่อยอิเล็กตรอนนิวทริโนออกมา ตามสมการ นิวไคลด์ลูกสาว (ผลผลิตที่ได้จากการสลาย) ถ้ามันอยู่ในสภาวะกระตุ้น มันก็จะเปลี่ยนผ่านไปอยู่ในสภาวะพื้น (ground state) ของมัน โดยปกติ รังสีแกมมาจะถูกปล่อยออกมาระหว่างการเปลี่ยนผ่านนี้ แต่การปลดการกระตุ้นนิวเคลียร์อาจเกิดขึ้นโดยการแปลงภายใน (internal conversion) ก็ได้เช่นกัน หลังการจับยึดอิเล็กตรอนรอบในโดยนิวเคลียส อิเล็กตรอนรอบนอกจะแทนที่อิเล็กตรอนที่ถูกจับยึดไปและโฟตอนลักษณะรังสีเอกซ์หนึ่งตัวหรือมากกว่าจะถูกปล่อยออกมาในกระบวนการนี​​้ การจับยึดอิเล็กตรอนบางครั้งยังเป็นผลมาจาก Auger effect ได้อีกด้วย ซึ่งในกระบวนการนี้อิเล็กตรอนจะถูกดีดออกมาจากเปลือกอิเล็กตรอนของอะตอมเนื่องจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนด้วยกันของอะตอมนั้นในกระบวนการของการแสวงหาสภาวะของอิเล็กตรอนพลังงานที่ต่ำกว่า ลูกโซ่การสลายจากตะกั่ว-212 กลายเป็นตะกั่ว-208, เป็นการแสดงผลผลิตที่ได้จากการสลายในช่วงกลาง แต่ละช่วงเป็นนิวไคลด์ลูกสาวของตัวบน(นิวไคลด์พ่อแม่) หลังการจับยึดอิเล็กตรอน เลขอะตอมจะลดลงไปหนึ่งหน่วย จำนวนนิวตรอนจะเพิ่มขึ้นไปหนึ่งหน่วย และไม่มีการเปลี่ยนแปลงในมวลอะตอม การจับอิเล็กตรอนง่าย ๆ เกิดในอะตอมที่เป็นกลางเนื่องจากการสูญเสียอิเล็กตรอนในเปลือกอิเล็กตรอนจะถูกทำให้สมดุลโดยการสูญเสียประจุนิวเคลียร์บวก อย่างไรก็ตามไอออนบวกอาจเกิดจากการปล่อยอิเล็กตรอนแบบ Auger มากขึ้น การจับยึดอิเล็กตรอนเป็นตัวอย่างหนึ่งของอันตรกิริยาอย่างอ่อน ซึ่งเป็นหนึ่งในสี่ของแรงพื้นฐาน การจับยึดอิเล็กตรอนเป็นโหมดขั้นปฐมของการสลายตัวสำหรับไอโซโทปที่มีโปรตอนอย่างมากในนิวเคลียส แต่ด้วยความแตกต่างของพลังงานไม่เพียงพอระหว่างไอโซโทปกับลูกสาวของมันในอนาคต (Isobar ที่มีประจุบวกน้อยลงหนึ่งหน่วย) สำหรับนิวไคลด์ที่จะสลายตัวโดยการปล่อยโพซิตรอน การจับยึดอิเล็กตรอนเป็นโหมดการสลายตัวแบบทางเลือกเสมอสำหรับไอโซโทปกัมมันตรังสีที่ไม่มีพลังงานเพียงพอที่จะสลายตัวโดยการปล่อยโพซิตรอน บางครั้งมันจึงถูกเรียกว่าการสลายให้บีตาผกผัน แม้ว่าคำนี้ยังสามารถหมายถึงปฏิสัมพันธ์ของอิเล็กตรอนปฏินิวทริโนกับโปรตอนอีกด้วย ถ้าความแตกต่างกันของพลังงานระหว่างอะตอมพ่อแม่และอะตอมลูกสาวมีน้อยกว่า 1.022 MeV, การปล่อยโพซิตรอนเป็นสิ่งต้องห้ามเนื่องจากพลังงานที่ใช้ในการสลายมีไม่เพียงพอที่จะยอมให้เกิดขึ้น ดังนั้นการจับยึดอิเล็กตรอนจึงเป็นโหมดการสลายตัวแต่เพียงอย่างเดียว ยกตัวอย่างเช่นรูบิเดียม-83 (37 โปรตอน, 46 นิวตรอน) จะสลายตัวไปเป็น Krypton-83 (36 โปรตอน, 47 นิวตรอน) โดยการจับยึดอิเล็กตรอนแต่เพียงอย่างเดียว (เพราะความแตกต่างพลังงานหรือพลังงานสลายมีค่าประมาณ 0.9 MeV เท่านั้น) โปรตอนอิสระปกติจะไม่สามารถเปลี่ยนไปเป็นนิวตรอนอิสระได้โดยกระบวนการนี​​้ โปรตอนและนิวตรอนจะต้องเป็นส่วนหนึ่งของนิวเคลียสที่มีขนาดใหญ่ \mathrm+\mathrm^- \rightarrow\mathrm+_e | \mathrm+\mathrm^- \rightarrow\mathrm+_e | ระลึกไว้ว่า ไอโซโทปกัมมันตภาพที่สามารถเกิด pure electron capture ได้ในทฤษฎีนั้นอาจถูกห้ามจาก radioactive decay หากพวกมันถูก ionized โดยสมบูรณ์ (คำว่า "stripped" ถูกใช้บางครั้งเพื่อบรรรยายไอออนเหล่านั้น) มีสมมติฐานว่าธาตุเหล่านั้น ถ้าหากถูกสร้างโดย r-process ในการระเบิด ซูเปอร์โนวา พวกมันจะถูกปลดปล่อยเป็น ionized โดยสมบูรณ์และจะไม่มี radioactive decay ตราบเท่าที่พวกมันไม่ได้ปะทะกับอิเล็กตรอนในสเปซภายนอก ความผิดปกติในการกระจายตัวของธาตุก็ถูกคิดว่าเป็นผลส่วนหนี่งจากผลกระทบของ electron capture นี้ พันธะเคมี ยังสามารถมีผลต่ออัตราของ electron capture ได้ระดับน้อย ๆ อีกด้วย (โดยทั่วไปน้อยกว่า 1%) ขึ้นอยู่กับความใกล้ของอิเล็กตรอนกับนิวเคลียส -->.

ใหม่!!: นีออน-18และการจับยึดอิเล็กตรอน · ดูเพิ่มเติม »

วินาที

วินาที (Second) เป็นหน่วยฐานของเวลาในระบบหน่วยวัดระหว่างประเทศ (เอสไอ) และยังเป็นหน่วยเวลาในระบบการวัดอื่น เท่ากับ 1 ส่วน 60 ของนาที ระหว่าง..

ใหม่!!: นีออน-18และวินาที · ดูเพิ่มเติม »

นิวไคลด์กัมมันตรังสี

นิวไคลด์กัมมันตรังสี (radionuclide) คืออะตอมที่มีนิวเคลียสที่ไม่เสถียร มีพลังงานสูงมากจนสามารถสร้างอนุภาคกัมมันตรังสีขึ้นใหม่ภายในนิวเคลียสหรือโดยผ่านการแปลงภายในก็ได้ ระหว่างกระบวนการนี้เราจะเรียกว่านิวไคลด์กัมมันตรังสีนั้นกำลังเกิดการสลายให้กัมมันตรังสี ซึ่งทำให้เกิดการเปล่งรังสีแกมมา และ/หรือ อนุภาคย่อยของอะตอม เช่น อนุภาคอัลฟาหรืออนุภาคบีตา การเปล่งรังสีเช่นนี้สามารถเกิดจากการแผ่รังสีจากการแตกตัวเป็นไอออนก็ได้ นิวไคลด์กัมมันตรังสีสามารถเกิดขึ้นเองตามธรรมชาติ หรือถูกสร้างขึ้นได้เช่นกัน นักเคมีและนักฟิสิกส์มักเรียกนิวไคลด์กัมมันตรังสีว่า ไอโซโทปกัมมันตรังสี หรือ radioisotope ไอโซโทปกัมมันตรังสีที่มีครึ่งชีวิตที่เหมาะสมมีบทบาทสำคัญยิ่งในเทคโนโลยีหลายชนิด (เช่น การรักษาด้วยนิวเคลียร์ (nuclear medicine)) อย่างไรก็ดี นิวไคลด์กัมมันตรังสีอาจทำให้เกิดโทษมหันต์ต่อสุขภาพด้วยเช่นกัน.

ใหม่!!: นีออน-18และนิวไคลด์กัมมันตรังสี · ดูเพิ่มเติม »

นีออน

นีออน (Neon) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ Ne และเลขอะตอม 10 นีออนเป็นก๊าซเฉื่อย เป็นสมาชิกหมู่ที่ 8 ของตารางธาตุ เป็นแก๊สอะตอมเดี่ยวที่ไม่มีสี ไม่มีกลิ่นและเกือบจะไม่เกิดปฏิกิริยาเคมีใดๆ และเกิดแสงเรืองสีแดงเมื่อใช้ในหลอดสุญญากาศ (vacuum discharge tube) กับไฟนีออน และพบในปริมาณเล็กน้อยในอากาศ (หนึ่งส่วนใน 55,000ส่วน) ได้จากการนำอากาศเหลวมากลั่นลำดับส่วนและเกือบจะไม่เกิดปฏิกิริยาเคมีใดๆ เลย จึงทำให้ไม่มีสารประกอบนีออนที่เรารู้จักเลย ซึ่งนีออนจะไม่เป็นอันตรายต่อคนโดยตรง.

ใหม่!!: นีออน-18และนีออน · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »