โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ติดตั้ง
เร็วกว่าเบราว์เซอร์!
 

เฟอร์มิออน

ดัชนี เฟอร์มิออน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน เฟอร์มิออนปรากฏอยู่ในสามหมู่แรก เฟอร์มิออน ในฟิสิกส์อนุภาคหมายถึงอนุภาคประเภทหนึ่งที่เป็นไปตามการกระจายตัวแบบแฟร์มี-ดิแรก เฟอร์มิออนจะมีเลขสปินเป็นจำนวนครึ่งเท่า และเฟอร์มิออนสองตัวจะมีสถานะเชิงควอนตัมเดียวกันไม่ได้ตามกฎการกีดกันของเพาลี เฟอร์มิออนมีความหมายตรงข้ามกับโบซอน โบซอนจะมีเลขสปินเป็นจำนวนเต็มเท่า และโบซอนมากกว่าสองตัวสามารถมีสถานะเชิงควอนตัมเดียวกันได้ เฟอร์มิออนสามารถเป็นได้ทั้งอนุภาคมูลฐาน เช่นอิเล็กตรอน หรือเป็นอนุภาคประกอบ เช่นโปรตอน เฟอร์มิออนที่เป็นอนุภาคมูลฐานในแบบจำลองมาตรฐาน มีทั้งหมด 24 ตัวแบ่งเป็น ควาร์ก 6 ตัวและเลปตอน 6 ตัว รวมกับปฏิยานุภาคของมันเป็น 24 ตัว เฟอร์มิออนประกอบเช่น โปรตอน นิวตรอน เป็นองค์ประกอบสำคัญในอะตอมของสสาร ต่างจากโบซอนที่มักเป็นพาหะของแรง แต่เฟอร์มิออนอันตรกิริยาแบบอ่อน (Weakly interacting fermion) สามารถมีพฤติกรรมแบบโบซอนภายใต้เงื่อนไขพิเศษ เช่นการสร้างตัวนำยิ่งยวด คำว่า เฟอร์มิออน มาจากชื่อนักฟิสิกส์อนุภาค เอนรีโก แฟร์มี.

18 ความสัมพันธ์: พาหะแรงมีซอน (อนุภาค)ว็อล์ฟกัง เพาลีสถานะ (สสาร)หลักการกีดกันของเพาลีอะตอมอันตรกิริยาอย่างอ่อนอิเล็กตรอนอนุภาคมูลฐานอนุภาคย่อยของอะตอมความยาวคลื่นคอมป์ตันควาร์กคู่คูเปอร์ประวัติศาสตร์ฟิสิกส์นิวคลีออนนิวเคลียสของอะตอมแรงดันสภาพซ้อนสถานะของอิเล็กตรอนโบซอน

พาหะแรง

ในฟิสิกส์ของอนุภาค พาหะแรง (force carrier) หรือพาหะของแรงคืออนุภาคที่สร้างแรงต่าง ๆ ระหว่างอนุภาคใด ๆ อนุภาคเหล่านี้เป็นกลุ่มก้อนของพลังงาน (ควอนตัม) ของชนิดที่เฉพาะของสนามฟิสิกส์ ทุก ๆ สายพันธ์ของอนุภาคมูลฐานมีสนามเฉพาะตัวหนึ่งชนิด ยกตัวอย่างเช่น มีหนึ่งสนามอิเล็กตรอนที่มีควอนตัมเป็นกลุ่มอิเล็กตรอน และหนึ่งสนามแม่เหล็กไฟฟ้าที่มีควอนตัมเป็นกลุ่มโฟตอน อนุภาคที่เป็นพาหะของแรงจะเป็นคนกลางเพื่อไกล่เกลี่ยระหว่างแรงพื้นฐานทั้งหลาย ซึ่งได้แก่ แรงแม่เหล็กไฟฟ้า, อันตรกิริยาอย่างเข้ม และ อันตรกิริยาอย่างอ่อน อนุภาคนั้นถูกเรียกว่า เกจโบซอน.

ใหม่!!: เฟอร์มิออนและพาหะแรง · ดูเพิ่มเติม »

มีซอน (อนุภาค)

ในฟิสิกส์ของอนุภาค มีซอน (Meson) (หรือ) คืออนุภาคย่อยในกลุ่มแฮดรอนที่ประกอบด้วยควาร์ก 1 ตัวและปฏิควาร์ก 1 ตัว เกาะเกี่ยวอยู่ด้วยกันด้วยแรงอย่างเข้ม เนื่องจากมีซอนประกอบด้วยอนุภาคย่อย มันจึงมีขนาดทางกายภาพ ด้วยเส้นผ่าศูนย์กลางประมาณหนึ่งเฟมโตเมตร(10−15 เมตร) ซึ่งมีขนาดประมาณ ของหนึ่งโปรตอนหรือหนึ่งนิวตรอน มีซอนทั้งหมดไม่เสถียร ที่มีอายุยืนที่สุดเพียงไม่กี่หนึ่งส่วนร้อยของหนึ่งไมโครวินาทีเท่านั้น มีซอนที่มีประจุจะสลายตัว (บางครั้งผ่านทางอนุภาคระดับกลาง) กลายเป็นอิเล็กตรอนและนิวทริโน มีซอนที่ไม่มีประจุอาจสลายตัวไปเป็นโฟตอน มีซอนไม่ได้เกิดจากการสลายให้กัมมันตรังสี แต่ปรากฏอยู่ในธรรมชาติเพียงแต่เป็นผลิตภัณฑ์ที่อายุสั้นมากของปฏิสัมพันธ์พลังงานสูงมากในสสาร ระหว่างกลุ่มอนุภาคที่ทำจากควาร์ก ตัวอย่างเช่น ในปฏิสัมพันธ์ รังสีคอสมิก อนุภาคดังกล่าวเป็นโปรตอนและนิวตรอนทั่วไป มีซอนยังเกิดขึ้นบ่อยอีกด้วยโดยการสร้างขึ้นในเครื่องเร่งอนุภาคพลังงานสูงที่มีการชนกันของกลุ่มโปรตอน, กลุ่มปฏิโปรตอนหรืออนุภาคอื่น ๆ ในธรรมชาติความสำคัญของมีซอนน้ำหนักเบาก็คือการที่พวกมันเป็นอนุภาคสนามควอนตัมที่สัมพันธ์กันที่สามารถส่ง แรงนิวเคลียร์ แบบเดียวกับที่โฟตอนเป็นอนุภาคที่ส่งแรงแม่เหล็กไฟฟ้า มีซอนที่มีพลังงานสูงกว่า (มวลมากกว่า) ได้ถูกสร้างขึ้นเพียงชั่วขณะหนึ่งตอน บิกแบง แต่ไม่ถูกพิจารณาว่ามีบทบาทสำคัญในธรรมชาติวันนี้ อย่างไรก็ตามอนุภาคดังกล่าวจะถูกสร้างขึ้นอย่างสม่ำเสมอในการทดลอง เพื่อที่จะเข้าใจธรรมชาติของควาร์กชนิดหนักที่ประกอบกันขึ้นเป็นมีซอนชนิดที่หนักกว่า มีซอนเป็นส่วนหนึ่งของครอบครัวอนุภาค แฮดรอน และถูกกำหนดให้เป็นเพียงอนุภาคที่ประกอบด้วยสองควาร์ก สมาชิกอื่น ๆ ของครอบครัวแฮดรอนคือ แบริออน ที่เป็นอนุภาคย่อยที่ประกอบด้วยสามควาร์กแทนที่จะเป็นสองควาร์ก การทดลองบางอย่างแสดงหลักฐานของ มีซอนแปลกใหม่ ซึ่งไม่ได้มีเนื้อหาควาร์กที่มีวาเลนซ์แบบเดิมที่มีหนึ่งควาร์กและหนึ่งปฏิควาร์ก เพราะว่าควาร์กมีสปินเท่ากับ ความแตกต่างในจำนวนควาร์กระหว่างมีซอนและแบริออนเป็นผลให้เกิดมีซอนสองควาร์กทั่วไปกลายเป็น โบซอน ในขณะที่แบริออนเป็น เฟอร์มิออน แต่ละชนิดของมีซอนมีปฏิยานุภาคที่สอดคล้องกัน (ปฏิมีซอน) ซึ่งควาร์กจะถูกแทนที่ด้วยปฏิควาร์กที่สอดคล้องกันของมันและถูกแทนที่ได้ในทางกลับกัน ตัวอย่างเช่น ไพออน บวก (π+) ถูกสร้างขึ้นจากอัพควาร์กหนึ่งตัวและดาวน์ปฏิควาร์กหนึ่งตัว และปฏิยานุภาคที่สอดคล้องกันของมันคือ ไพออนลบ (π-) ถูกสร้างขึ้นจากหนึ่งอัพปฏิควาร์กและหนึ่งดาวน์ควาร์ก เพราะว่ามีซอนประกอบด้วยควาร์ก มันจึงมีส่วนร่วมทั้งใน อันตรกิริยาอย่างอ่อน และ อันตรกิริยาอย่างเข้ม มีซอนที่มีประจุไฟฟ้าสุทธิก็ยังมีส่วนร่วมใน แรงแม่เหล็กไฟฟ้าเช่นกัน พวกมันจะถูกแยกประเภทตามเนื้อหาของควาร์ก, โมเมนตัมเชิงมุมรวม, เท่าเทียมกัน และคุณสมบัติอื่น ๆ อีกมากมายเช่น C-เท่าเทียมกัน และ G-เท่าเทียมกัน แม้ว่าจะไม่มีมีซอนที่เสถียรก็ตาม พวกที่มีมวลต่ำกว่าก็ยังเสถียรมากกว่ามีซอนทีมีมวลขนาดใหญ่ที่สุด และมีความง่ายกว่าที่จะสังเกตเห็นและศึกษาในเครื่องเร่งอนุภาค หรือในการทดลองรังสีคอสมิก พวกมันก็ยังมักจะมีมวลน้อยกว่าแบริออนอีกด้วย หมายความว่าพวกมันจะถูกผลิตขึ้นได้ง่ายกว่าในการทดลอง ดังนั้นพวกมันจึงแสดงปรากฏการณ์บางอย่างที่ให้พลังงานที่สูงกว่าได้อย่างรวดเร็วกว่าแบริออนที่ประกอบด้วยกลุ่มควาร์กเดียวกันจะสามารถทำได้ ยกตัวอย่างเช่น ชาร์มควาร์กถูกพบเห็นเป็นครั้งแรกใน J/Psi meson (J/ψ) ในปี 1974 และ บอตทอมควาร์ก ใน upsilon meson (ϒ) ในปี 1977.

ใหม่!!: เฟอร์มิออนและมีซอน (อนุภาค) · ดูเพิ่มเติม »

ว็อล์ฟกัง เพาลี

ว็อล์ฟกัง แอนสท์ เพาลี (Wolfgang Ernst Pauli, 25 เมษายน พ.ศ. 2443 - 15 ธันวาคม พ.ศ. 2501) เป็นนักฟิสิกส์ทฤษฎีชาวออสเตรีย และหนึ่งในกลุ่มผู้บุกเบิกด้านฟิสิกส์ควอนตัม เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: เฟอร์มิออนและว็อล์ฟกัง เพาลี · ดูเพิ่มเติม »

สถานะ (สสาร)

นะ (State of matter) เป็นความสัมพันธ์กับโครงสร้างทางเคมีและคุณสมบัติทางฟิสิกส์ เช่น ความหนาแน่น, โครงสร้างผลึก (crystal structure), ดรรชนีหักเหของแสง (refractive index) และอื่นๆ สถานะที่คุ้นเคยกันมาก ได้แก่ ของแข็ง, ของเหลว, และแก๊ส ส่วนสถานะที่ไม่เป็นที่รู้จักกันมากนัก ได้แก่ พลาสมา และ พลาสมาควาร์ก-กลูออน, โบส-ไอน์สไตน์ คอนเดนเซต และ เฟอร์มิโอนิค คอนเดนเซต, วัตถุประหลาด, ผลึกเหลว, ซูเปอร์ฟลูอิด ซูเปอร์โซลิด พาราแมกเนติก, เฟอโรแมกเนติก, เฟสของ วัสดุ แม่เหล็ก.

ใหม่!!: เฟอร์มิออนและสถานะ (สสาร) · ดูเพิ่มเติม »

หลักการกีดกันของเพาลี

หลักการกีดกันของเพาลี (Pauli exclusion principle) คือหลักการของกลศาสตร์ควอนตัมที่ว่า ต้องไม่มีเฟอร์มิออน (อนุภาคที่มีสปินไม่เป็นจำนวนเต็ม) ที่เทียบเท่ากันสองตัวใดๆ ครอบครองสถานะควอนตัมเดียวกันได้ในเวลาเดียวกัน หากกล่าวให้เข้มงวดยิ่งขึ้นคือ ฟังก์ชันคลื่นรวมของเฟอร์มิออนที่เทียบเท่ากันสองตัวจะเป็นแบบกึ่งสมมาตรเมื่อเทียบกับการแลกเปลี่ยนอนุภาค หลักการนี้พัฒนาขึ้นโดยนักฟิสิกส์ชาวออสเตรีย โวล์ฟกัง เพาลี เมื่อปี..

ใหม่!!: เฟอร์มิออนและหลักการกีดกันของเพาลี · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: เฟอร์มิออนและอะตอม · ดูเพิ่มเติม »

อันตรกิริยาอย่างอ่อน

อิเล็กตรอนปฏินิวทรืโนอย่างละหนึ่งตัว ในฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อน (weak interaction) หรือบางครั้งเรียกกันทั่วไปว่า แรงนิวเคลียร์อย่างอ่อน (weak nuclear force) เป็นกลไกที่รับผิดชอบแรงอ่อนหรือแรงนิวเคลียร์อ่อน แรงนี้เป็นหนึ่งในสี่แรงพื้นฐาน่ของธรรมชาติที่รู้จักกันดีในการปฏิสัมพันธ์, แรงที่เหลือได้แก่อันตรกิริยาอย่างเข้ม, แรงแม่เหล็กไฟฟ้าและแรงโน้มถ่วง อันตรกิริยาอย่างอ่อนเป็นผู้รับผิดชอบต่อการสลายให้กัมมันตรังสีของอนุภาคย่อยของอะตอม และมันมีบทบาทสำคัญในปฏิกิริยานิวเคลียร์ฟิชชัน ทฤษฎีของอันตรกิริยาอย่างอ่อนบางครั้งเรียกว่าควอนตัม flavordynamics (QFD), คล้ายกับ QCD และ QED, แต่คำนี้ที่ไม่ค่อยได้ใช้เพราะแรงอ่อนเป็นที่เข้าใจกันดีที่สุดในแง่ของทฤษฎีไฟฟ้าอ่อน (electro-weak theory (EWT)) ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค อันตรกิริยาอย่างอ่อนเกิดจากการปล่อยหรือการดูดซึมของ W และ Z โบซอน อนุภาคทุกตัวในตระกูลเฟอร์มิออนที่รู้จักกันแล้วมีปฏิสัมพันธ์ต่อกันผ่านทางอันตรกิริยาอย่างอ่อน อนุภาคเหล่านั้นมีสปินครึ่งจำนวนเต็ม (หนึ่งในคุณสมบัติพื้นฐานของอนุภาค) พวกมันสามารถเป็นอนุภาคมูลฐานเช่นอิเล็กตรอนหรืออาจจะเป็นอนุภาคผสมเช่นโปรตอน มวลของ W+ W- และ Z โบซอน แต่ละตัวจะมีขนาดใหญ่กว่ามวลของโปรตอนหรือของนิวตรอนอย่างมาก สอดคล้องกับช่วงระยะทำการที่สั้นของแรงที่อ่อน แรงถูกเรียกว่าอ่อนเพราะความแรงของสนามในระยะทางที่กำหนดโดยทั่วไปจะมีขนาดเป็นเลขยกกำลังที่น้อยกว่าแรงนิวเคลียร์อย่างเข้มและแรงแม่เหล็กไฟฟ้ามาก ๆ ในช่วงยุคของควาร์ก แรงไฟฟ้าอ่อน (electroweak force) แยกออกเป็นแรงแม่เหล็กไฟฟ้​​าและแรงอ่อน ตัวอย่างที่สำคัญของอันตรกิริยาอย่างอ่อนได้แก่การสลายให้อนุภาคบีตา และการผลิตดิวเทอเรียมจากไฮโดรเจนที่จำเป็นเพื่อให้พลังงานในกระบวนการเทอร์โมนิวเคลียร์ของดวงอาทิตย์ เฟอร์มิออนส่วนใหญ่จะสลายตัวโดยอันตรกิริยาอย่างอ่อนไปตามเวลา การสลายตัวดังกล่าวยังทำให้การหาอายุด้วยวืธีเรดิโอคาร์บอน (radiocabon dating) มีความเป็นไปได้เมื่อคาร์บอน-14 สูญสลายผ่านอันตรกิริยาอย่างอ่อนกลายเป็นไนโตรเจน-14 นอกจากนี้มันยังสามารถสร้างสารเรืองแสงรังสี (radioluminescence) ที่ใช้กันทั่วไปในการส่องสว่างทริเทียม (tritium illumination) และในสาขาที่เกี่ยวข้องกับ betavoltaics ควาร์กเป็นผู้สร้างอนุภาคผสมเช่นนิวตรอนและโปรตอน ควาร์กมีหกชนิดที่เรียกว่า "ฟเลเวอร์" (flavour) ได้แก่ อัพ, ดาวน์, สเตรนจ์, ชาร์ม, ทอปและบอตทอม - ซึ่งเป็นคุณสมบัติของอนุภาคผสมเหล่านั้น อันตรกิริยาอย่างอ่อนเป็นหนึ่งเดียวในแง่ที่ว่ามันจะยอมให้ควาร์กสามารถที่จะสลับฟเลเวอร์ของพวกมันไปเป็นอย่างอื่นได้ ตัวอย่างเช่นในระหว่างการสลายตัวในอนุภาคบีตาลบ ดาวน์ควาร์กตัวหนึ่งสลายตัวกลายเป็นอัพควาร์ก เป็นการแปลงนิวตรอนให้เป็นโปรตอน นอกจากนี้อันตรกิริยาอย่างอ่อนยังเป็นปฏิสัมพันธ์พื้นฐานอย่างเดียวเท่านั้นที่ทำลายการสมมาตรแบบเท่าเทียมกัน และในทำนองเดียวกัน มันเป็นอย่างเดียวเท่านั้นที่ทำลาย CP-สมมาตร.

ใหม่!!: เฟอร์มิออนและอันตรกิริยาอย่างอ่อน · ดูเพิ่มเติม »

อิเล็กตรอน

page.

ใหม่!!: เฟอร์มิออนและอิเล็กตรอน · ดูเพิ่มเติม »

อนุภาคมูลฐาน

แบบจำลองมาตรฐานของอนุภาคมูลฐาน ในฟิสิกส์ของอนุภาค อนุภาคมูลฐาน (elementary particle หรือ fundamental particle) หมายถึงอนุภาคหนึ่งที่โครงสร้างย่อยไม่เป็นที่รู้จัก ดังนั้นเราจึงไม่รู้ว่ามันประกอบขึ้นด้วยอนุภาคอื่นหรือไม่ มันเป็นหน่วยย่อยที่สุดในทางทฤษฎีฟิสิกส์ทั่วไป เราไม่ถือว่ามันประกอบขึ้นมาจากสิ่งใดอีก อนุภาคมูลฐานที่เรารู้จักกันดีที่สุดคือ อิเล็กตรอน ซึ่งไม่สามารถแยกย่อยเป็นอนุภาคใดๆได้อีก อนุภาคมูลฐานที่รู้จักแล้ว ได้แก่ เฟอร์มิออนพื้นฐาน (ควาร์ก, เลปตอน, ปฏิควาร์ก และปฏิเลปตอน) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคสสาร" และ "อนุภาคปฏิสสาร" อีกชนิดหนึ่งได้แก่ โบซอนพื้นฐาน (เกจโบซอน และอนุภาคฮิกส์) ซึ่งอนุภาคเหล่านี้โดยทั่วไปเป็น "อนุภาคแรง" ที่เป็นตัวเชื่อมปฏิสัมพันธ์พื้นฐานในหมู่เฟอร์มิออนด้วยกัน อนุภาคที่ประกอบด้วยอนุภาคมูลฐานตั้งแต่สองอนุภาคขึ้นไปจะเป็น "อนุภาคผสม" (composite particle) สสารในชีวิตประจำวันจะประกอบด้วยอะตอม ที่ครั้งหนึ่งเคยถูกสันนิษฐานว่ามันเป็นอนุภาคมูลฐานของสสาร คำว่า "อะตอม" แปลว่า "แบ่งไม่ได้" ในภาษากรีก แม้ว่าการมีอยู่ของอะตอมยังคงเป็นที่ถกเถียงกันจนถึงประมาณปี 1910 อย่างที่นักฟิสิกส์ชั้นนำบางคนถือว่าโมเลกุลเป็นภาพลวงตาทางคณิตศาสตร์ และถือว่าสสารอย่างสุดขั้วที่สุดจะประกอบด้วยพลังงาน ในไม่ช้า มีการค้นพบว่าอะตอมประกอบด้วยองค์ประกอบย่อย เมื่อเริ่มทศวรรษที่ 1930 อิเล็กตรอนและโปรตอนได้ถูกค้นพบ พร้อมกับโฟตอนซึ่งเป็นอนุภาคของรังสีแม่เหล็กไฟฟ้า ในช่วงเวลานั้น การค้นพบล่าสุดของกลศาสตร์ควอนตัมได้มีก​​ารเปลี่ยนแปลงอย่างรุนแรงของแนวคิดของอนุภาค อย่างเช่นอนุภาคเดี่ยวดูเหมือนจะสามารถขยายสนามได้อย่างที่คลื่นสามารถทำได้ (ทวิภาคของอนุภาคกับคลื่น (particle-wave duality)) ข้อความที่ขัดแย้งยังคงหลีกเลี่ยงคำอธิบายที่น่าพอใจ โดยผ่านทางทฤษฎีควอนตัม โปรตอนและนิวตรอนถูกพบว่าประกอบด้วยควาร์กหลายตัว ได้แก่อัพควาร์กและดาวน์ควาร์ก ซึ่งในปัจจุบันถือว่าพวกนี้เป็นอนุภาคมูลฐาน และภายในโมเลกุลหนึ่ง สามองศาอิสระของอิเล็กตรอน (ประจุ, สปินและวงโคจร) สามารถแยกผ่านทาง wavefunction ออกเป็นสาม'อนุภาคคล้าย' (quasiparticle) (Holon, spinon และ Orbiton) แต่อิเล็กตรอนอิสระ ซึ่งไม่ได้กำลังโคจรรอบนิวเคลียส จะขาดการเคลื่อนไหวในการโคจร และจะปรากฏในรูปที่แบ่งแยกไม่ได้ จึงยังคงถือว่าเป็นอนุภาคมูลฐาน ราวปี 1980 สถานะของอนุภาคมูลฐานที่เป็นมูลฐานอย่างแท้จริง-"องค์ประกอบสุดชั้ว" ของสสาร- ได้ถูกละทิ้งเป็นส่วนใหญ่สำหรับแนวโน้มที่จะเป็นการปฏิบัติมากขึ้น ได้ถูกประมวลอยู่ในแบบจำลองมาตรฐานของฟิสิกส์ของอนุภาค ซึ่งเป็นทฤษฎีที่ประสบความสำเร็จจากทดลองทางวิทยาศาสตร์มากที่สุด การขยายความและทฤษฎีทั้งหลายที่อธิบายเกินกว่าแบบจำลองมาตรฐาน รวมทั้งทฤษฎี supersymmetry ที่นิยมกันอย่างสุดขั้ว ได้เพิ่มจำนวนอนุภาคมูลฐานเป็นสองเท่าโดยการตั้งสมมติฐานที่แต่ละอนุภาคที่รู้จักกันแล้วควบรวมเข้ากับพันธมิตร"เงา" ทำให้มีจำนวนอนุภาคมากกว่าเดิม แม้ว่าสุดยอดพันธมิตรดังกล่าวทั้งหมดยังคงไม่ได้ถูกค้นพบแต่อย่างใด ในขณะเดียวกัน โบซอนมูลฐานที่เป็นตัวเชื่อมแรงโน้มถ่วงที่เรียกว่า แกรวิตอน (Graviton) ก็ยังคงเป็นสมมุติฐานอยู.

ใหม่!!: เฟอร์มิออนและอนุภาคมูลฐาน · ดูเพิ่มเติม »

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ใหม่!!: เฟอร์มิออนและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

ความยาวคลื่นคอมป์ตัน

วามยาวคลื่นคอมป์ตัน (Compton wavelength) เป็นความยาวคลื่นของคลื่นเฉพาะตัวของสสาร ถูกเสนอโดยอาร์เทอร์ คอมป์ตัน (Arthur Compton) นักฟิสิกส์ชาวอเมริกัน ซึ่งเป็นผู้อธิบายการกระเจิงของโฟตอน (แสง) โดยอิเล็กตรอน (หรือการกระเจิงคอมป์ตัน) ความยาวคลื่นคอมป์ตันเป็นปริมาณของสสารที่เทียบเท่ากับความยาวคลื่นของโฟตอน ทำนองเดียวกับสมมูลพลังงานและมวลของไอน์สไตน์ ความยาวคลื่นคอมป์ตัน λ ของอนุภาค กำหนดตามสมการ โดยที่ h แทน ค่าคงตัวพลังค์ m แทนมวลของอนุภาคขณะนิ่ง (มวลนิ่ง;rest mass) และ c แทนอัตราเร็วแสง ข้อมูลของคณะกรรมการข้อมูลวิทยาศาสตร์และเทคโนโลยี (CODATA)..

ใหม่!!: เฟอร์มิออนและความยาวคลื่นคอมป์ตัน · ดูเพิ่มเติม »

ควาร์ก

วาร์ก (quark อ่านว่า หรือ) คืออนุภาคมูลฐานและเป็นส่วนประกอบพื้นฐานของสสาร ควาร์กมากกว่าหนึ่งตัวเมื่อรวมตัวกันจะเป็นอีกอนุภาคหนึ่งที่เรียกว่าแฮดรอน (hadron) ส่วนที่เสถียรที่สุดของแฮดรอนสองลำดับแรกคือโปรตอนและนิวตรอน ซึ่งทั้งคู่เป็นส่วนประกอบสำคัญของนิวเคลียสของอะตอม เนื่องจากปรากฏการณ์ที่เรียกว่า Color Confinement ควาร์กจึงไม่สามารถสังเกตได้โดยตรงหรือพบตามลำพังได้ มันสามารถพบได้ภายในแฮดรอนเท่านั้น เช่น แบริออน (ซึ่งโปรตอนและนิวตรอนเป็นตัวอย่าง) และภายใน มีซอน (มี'ซอน หรือเมซ'ซัน เป็นอนุภาคที่มีมวลระหว่างอิเล็กตรอนกับโปรตรอน มีประจุเป็นกลาง หรือเป็นบวกหรือลบ มีค่าสปิน) ด้วยเหตุผลนี้ สิ่งที่เรารู้จำนวนมากเกี่ยวกับควาร์กจึงได้มาจากการสังเกตที่ตัวแฮดรอนเอง ควาร์กมีอยู่ 6 ชนิด เรียกว่า 6 สายพันธ์ หรือ flavour ได้แก่ อัพ (up), ดาวน์ (down), ชาร์ม (charm), สเตรนจ์ (strange), ท็อป (top), และ บอตทอม (bottom) อัพควาร์กและดาวน์ควาร์กเป็นแบบที่มีมวลต่ำที่สุดในบรรดาควาร์กทั้งหมด ควาร์กที่หนักกว่าจะเปลี่ยนแปลงมาเป็นควาร์กแบบอัพและดาวน์อย่างรวดเร็วโดยผ่านกระบวนการการเสื่อมสลายของอนุภาค (particle decay) ซึ่งเป็นกระบวนการเปลี่ยนสถานะของอนุภาคที่มีมวลมากกว่ามาเป็นสถานะที่มีมวลน้อยกว่า ด้วยเหตุนี้ อัพควาร์กและดาวน์ควาร์กจึงเป็นชนิดที่เสถียร และพบได้ทั่วไปมากที่สุดในเอกภพ ขณะที่ควาร์กแบบชาร์ม สเตรนจ์ ทอป และบอตทอม จะเกิดขึ้นได้ก็จากการชนที่มีพลังงานสูงเท่านั้น (เช่นที่อยู่ในรังสีคอสมิกและในเครื่องเร่งอนุภาค) ควาร์กมีคุณสมบัติในตัวหลายประการ ซึ่งรวมถึงประจุไฟฟ้า ประจุสี สปิน และมวล ควาร์กเป็นอนุภาคมูลฐานเพียงชนิดเดียวในแบบจำลองมาตรฐานของฟิสิกส์อนุภาคที่สามารถมีปฏิกิริยากับแรงพื้นฐานได้ครบหมดทั้ง 4 ชนิด (คือ แรงแม่เหล็กไฟฟ้า, แรงโน้มถ่วง, อันตรกิริยาอย่างเข้ม และอันตรกิริยาอย่างอ่อน) รวมถึงยังเป็นอนุภาคเพียงชนิดเดียวเท่าที่รู้จักซึ่งมีประจุไฟฟ้าที่ไม่ใช่ตัวเลขจำนวนเต็มคูณกับประจุมูลฐาน ทุกๆ สายพันธ์ของควาร์กจะมีคู่ปฏิยานุภาค เรียกชื่อว่า ปฏิควาร์ก ซึ่งมีความแตกต่างกับควาร์กแค่เพียงคุณสมบัติบางส่วนที่มีค่าทางขนาดเท่ากันแต่มีสัญลักษณ์ตรงกันข้าม มีการนำเสนอแบบจำลองควาร์กจากนักฟิสิกส์ 2 คนโดยแยกกัน คือ เมอร์เรย์ เกลล์-แมนน์ และ จอร์จ ซวิก ในปี..

ใหม่!!: เฟอร์มิออนและควาร์ก · ดูเพิ่มเติม »

คู่คูเปอร์

ู่คูเปอร์ (Cooper pair) กลไกของการเกิดสภาพนำยวดยิ่งเกิดจากการดึงดูดกันของอิเล็กตรอนสองตัวภายใต้เงื่อนไขที่เหมาะสม โดยอันตรกิริยาแบบดึงดูดระหว่างอิเล็กตรอนสองตัวภายในตัวนำยวดยิ่ง อาศัยโฟนอนเป็นสื่อกลางในการจับคู่อิเล็กตรอน โดยอิเล็กตรอนที่สามารถจะจับคู่กันได้จะต้องมีโมเมนตัมและสปินตรงข้ามกัน ในฟิสิกส์สสารอัดแน่น (condensed matter physics), คู่คูเปอร์หรือคู่ BCS คือคู่ของอิเล็กตรอน (หรือเฟอร์มิออนอื่น ๆ) ที่ถูกยึดเหนี่ยวเข้าด้วยกันที่อุณหภูมิต่ำในลักษณะที่มีความแน่นอน ผู้ที่ได้อธิบายในเรื่องนี้ไว้เป็นคนแรกในปี..

ใหม่!!: เฟอร์มิออนและคู่คูเปอร์ · ดูเพิ่มเติม »

ประวัติศาสตร์ฟิสิกส์

''Table of Mechanicks'', 1728 ''Cyclopaedia''. ประวัติศาสตร์ของฟิสิกส์ คือ การศึกษาการเติบโตของฟิสิกส์ไม่ได้นำมาเพียงแค่การเปลี่ยนแปลงแนวคิดพื้นฐานเกี่ยวกับโลกแห่งวัตถุ คณิตศาสตร์ และ ปรัชญา เท่านั้น แต่ยังเกี่ยวข้องกับเทคโนโลยี และการเปลี่ยนรูปแบบของสังคม ฟิสิกส์ถูกพิจารณาในแง่ของทั้งตัวเนื้อความรู้และการปฏิบัติที่สร้างและส่งผ่านความรู้ดังกล่าว การปฏิวัติวิทยาศาสตร์ ซึ่งเริ่มต้นประมาณปี ค.ศ. 1600 เป็นขอบเขตง่าย ๆ ระหว่างแนวคิดโบราณกับฟิสิกส์คลาสสิก ในปี ค.ศ. 1900 จึงเป็นจุดเริ่มต้นของฟิสิกส์ยุคใหม่ ทุกวันนี้วิทยาศาสตร์ยังไม่มีอะไรแสดงถึงจุดสมบูรณ์ เพราะการค้นพบที่มากขึ้นนำมาซึ่งคำถามที่เกิดขึ้นจากอายุของเอกภพ ไปถึงธรรมชาติของสุญญากาศ และธรรมชาติในที่สุดของสมบัติของอนุภาคที่เล็กกว่าอะตอม ทฤษฎีบางส่วนเป็นสิ่งที่ดีที่สุดที่ฟิสิกส์ได้เสนอในปัจจุบันนี้ อย่างไรก็ตามรายนามของปัญหาที่ยังแก้ไม่ได้ของฟิสิกส์ ก็ยังคงมีมากอยู.

ใหม่!!: เฟอร์มิออนและประวัติศาสตร์ฟิสิกส์ · ดูเพิ่มเติม »

นิวคลีออน

นิวเคลียสอะตอมประกอบด้วยอนุภาคอัดแน่นของนิวคลีออน 2 ประเภท คือโปรตอน (สีแดง) กับนิวตรอน (สีน้ำเงิน) ในภาพนี้ โปรตอนกับนิวตรอนดูเหมือนลูกบอลเล็กๆ ที่ติดแน่นอยู่ด้วยกัน แต่ในนิวเคลียสจริงๆ ตามความเข้าใจของวิชาฟิสิกส์นิวเคลียร์ยุคใหม่ไม่ได้มีหน้าตาแบบนี้ เราพรรณนาภาพนิวเคลียสจริงๆ อย่างถูกต้องได้เพียงอาศัยกลศาสตร์ควอนตัมเท่านั้น ตัวอย่างเช่น ในนิวเคลียสจริงๆ นิวคลีออนแต่ละตัวจะอยู่ในหลายๆ ตำแหน่งในเวลาเดียวกัน กระจายไปทั่วตลอดนิวเคลียส นิวคลีออน (Nucleon) คือหนึ่งในหลายอนุภาคที่ประกอบขึ้นเป็นนิวเคลียสของอะตอม นิวเคลียสของอะตอมแต่ละตัวประกอบด้วยนิวคลีออนหนึ่งตัวหรือมากกว่านั้น ดังนั้นอะตอมแต่ละตัวจึงประกอบด้วยกลุ่มของนิวคลีออนที่ล้อมรอบด้วยอิเล็กตรอนหนึ่งตัวหรือมากกว่านั้น นิวคลีออนมีอยู่ 2 ประเภทคือนิวตรอน และโปรตอน เลขมวลของไอโซโทปอะตอมหนึ่งๆ จะมีค่าเท่ากันกับจำนวนของนิวคลีออนของไอโซโทปอะตอมนั้นๆ ด้วยเหตุนี้ เราจึงสามารถใช้เลขนิวคลีออนแทนที่เลขมวลหรือเลขมวลอะตอมซึ่งเป็นที่นิยมใช้กันอย่างกว้างขวางก็ได้ ก่อนจะถึงทศวรรษ 1960 เคยเชื่อกันว่านิวคลีออนเป็นอนุภาคมูลฐาน ซึ่งไม่อาจประกอบขึ้นจากชิ้นส่วนอื่นใดที่เล็กไปกว่านั้นอีกแล้ว แต่ปัจจุบันเราทราบกันแล้วว่ามันเป็นอนุภาคประกอบ ซึ่งเกิดจากควาร์กสามตัวเกาะเข้าด้วยกันด้วยสิ่งที่เรียกว่าอันตรกิริยาอย่างเข้ม อันตรกิริยาระหว่างนิวคลีออนตั้งแต่ 2 ตัวขึ้นไปเรียกว่า internucleon interaction หรือแรงนิวเคลียร์ ซึ่งเกิดขึ้นจากอันตรกิริยาอย่างเข้มนั่นเอง (แต่เดิมก่อนมีการค้นพบควาร์ก คำว่า "อันตรกิริยาอย่างเข้ม" มีความหมายถึงเพียง internucleon interaction เท่านั้น) ทั้งโปรตอนและนิวตรอนล้วนเป็นแบริออน และก็เป็นเฟอร์มิออนด้วย ตามคำนิยามของฟิสิกส์อนุภาค อนุภาคทั้งสองนี้ประกอบกันเป็น isospin doublet ซึ่งเป็นคำอธิบายว่าทำไมมวลของพวกมันจึงเกือบเท่ากัน โดยที่นิวตรอนหนักกว่าโปรตอนราว 0.1% เท่านั้น.

ใหม่!!: เฟอร์มิออนและนิวคลีออน · ดูเพิ่มเติม »

นิวเคลียสของอะตอม

ground state)) แต่ละนิวคลีออนสามารถพูดได้ว่าครอบครองช่วงหนึ่งของตำแหน่ง นิวเคลียส ของอะตอม (Atomic nucleus) เป็นพื้นที่ขนาดเล็กที่หนาแน่นในใจกลางของอะตอม ประกอบด้วยโปรตอน และนิวตรอน (สำหรับอะตอมของไฮโดรเจนธรรมดา นิวเคลียสมีแต่โปรตอนเท่านั้น ไม่มีนิวตรอน) นิวเคลียสถูกค้นพบในปี 1911 โดยเออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้จาก'การทดลองฟอยล์สีทองของ Geiger-Marsden ในปี 1909'.

ใหม่!!: เฟอร์มิออนและนิวเคลียสของอะตอม · ดูเพิ่มเติม »

แรงดันสภาพซ้อนสถานะของอิเล็กตรอน

แรงดันสภาพซ้อนสถานะของอิเล็กตรอน หรือ ความดันดีเจนเนอเรซีของอิเล็กตรอน (Electron degeneracy pressure) เป็นผลสืบเนื่องมาจากหลักการกีดกันของเพาลี ซึ่งกล่าวว่า เฟอร์มิออนสองตัวไม่สามารถอยู่ในสถานะควอนตัมเดียวกันในเวลาเดียวกัน แรงที่เกิดขึ้นจากความดันนี้กำหนดขีดจำกัดขอบเขตที่สสารจะสามารถถูกบีบอัดเข้าด้วยกันโดยไม่กลายเป็นดาวนิวตรอนหรือหลุมดำ แรงดังกล่าวนับว่ามีความสำคัญอย่างมากต่อฟิสิกส์ดาราศาสตร์ เนื่องจากอธิบายการมีอยู่ของดาวแคระขาว เมื่ออิเล็กตรอนถูกบีบอัดเข้าใกล้กันมากเกินไป อนุภาคที่แยกออกไปจะทำให้มันต้องมีระดับพลังงานที่เปลี่ยนไปเช่นกัน ในการเพิ่มอิเล็กตรอนอีกอนุภาคหนึ่งให้กับปริมาตรที่ให้มาจะต้องมีการเพิ่มระดับพลังงานของอิเล็กตรอนเพื่อสร้างพื้นที่ว่าง และปัจจัยดังกล่าวเป็นพลังงานซึ่งบีบอัดวัสดุซึ่งอยู่ในรูปของแรงดัน แรงดันสภาพซ้อนสถานะของอิเล็กตรอนในวัตถุสามารถคำนวณได้จาก โดยที่ h คือ ค่าคงตัวของพลังค์ m_ คือ มวลของอิเล็กตรอน m_ คือ มวลของโปรตอน \rho คือ ความหนาแน่น และ \mu_e.

ใหม่!!: เฟอร์มิออนและแรงดันสภาพซ้อนสถานะของอิเล็กตรอน · ดูเพิ่มเติม »

โบซอน

ในฟิสิกส์เชิงอนุภาค, โบซอน (boson) หมายถึง อนุภาคที่เป็นไปตาม สถิติแบบโพส-ไอน์สไตน์ มีสปินเป็นจำนวนเต็ม สามารถมีโบซอนหลายๆ ตัวอยู่ในสถานะควอนตัมเดียวกันได้ คำว่า "โบซอน" มาจากชื่อของนักวิทยาศาสตร์ชาวอินเดีย คือ สัตเยนทระ นาถ โพส โบซอนมีลักษณะตรงกันข้ามกับเฟอร์มิออน ที่เป็นไปตาม สถิติแบบแฟร์มี-ดิแรก เฟอร์มิออนตั้งแต่สองตัวหรือมากกว่านั้นจะไม่สามารถอยู่ในสถานะควอนตัมเดียวกันได้ โบซอนเป็นได้ทั้งอนุภาคมูลฐาน เช่น โฟตอน หรือเป็นอนุภาคประกอบ เช่น มีซอน โดยโบซอนส่วนมากจะเป็นอนุภาคแบบประกอบ โดยตาม "แบบจำลองมาตรฐานของฟิสิกส์เชิงอนุภาค" มีโบซอน 6 ชนิดที่เป็นอนุภาคมูลฐาน คือ.

ใหม่!!: เฟอร์มิออนและโบซอน · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »