โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ทฤษฎีแม่เหล็กไฟฟ้า

ดัชนี ทฤษฎีแม่เหล็กไฟฟ้า

ทฤษฎีแม่เหล็กไฟฟ้า (Electromagnetism) เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่เกี่ยวข้องกับการศึกษา แรงแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์ทางกายภาพชนิดหนึ่งที่เกิดขึ้นระหว่างอนุภาคใดๆที่มีประจุไฟฟ้า แรงแม่เหล็กไฟฟ้ามักจะแสดงสนามแม่เหล็กไฟฟ้าเช่นสนามไฟฟ้า, สนามแม่เหล็ก, และแสง แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่ปฏิสัมพันธ์พื้นฐานในธรรมชาติ อีกสามแรงพื้นฐานได้แก่ อันตรกิริยาอย่างเข้ม, อันตรกิริยาอย่างอ่อน และแรงโน้มถ่วง ฟ้าผ่าเป็นการระบายออกของไฟฟ้าสถิตแบบหนึ่งที่ไฟฟ้าสถิตจะเดินทางระหว่างสองภูมิภาคท​​ี่มีประจุไฟฟ้า แม่เหล็กไฟฟ้ามาจากภาษาอังกฤษ electromagnet คำนี้ป็นรูปแบบผสมของคำภาษากรีกสองคำได้แก่ ἤλεκτρον หมายถึง อิเล็กตรอน และ μαγνῆτιςλίθος (Magnetis Lithos) ซึ่งหมายถึง "หินแม่เหล็ก" ซึ่งเป็นแร่เหล็กชนิดหนึ่ง วิทยาศาสตร์ของปรากฏการณ์แม่เหล็กไฟฟ้าถูกกำหนดไว้ในความหมายของแรงแม่เหล็กไฟฟ้า บางครั้งถูกเรียกว่าแรงลอเรนซ์ (Lorentz force) ซึ่งประกอบด้วยทั้งไฟฟ้าและแม่เหล็กในฐานะที่เป็นสององค์ประกอบของปรากฏการณ์ แรงแม่เหล็กไฟฟ้ามีบทบาทสำคัญในการกำหนดคุณสมบัติภายในของวัตถุส่วนใหญ่ที่พบในชีวิตประจำวัน สสารทั่วไปจะได้รูปแบบของมันจากผลของแรงระหว่างโมเลกุลของโมเลกุลแต่ละตัวในสสาร อิเล็กตรอนจะถูกยึดเหนี่ยวตามกลไกคลื่นแม่เหล็กไฟฟ้าเข้ากับวงโคจรรอบนิวเคลียสเพื่อก่อตัวขึ้นเป็นอะตอมซึ่งเป็นองค์ประกอบหลักของโมเลกุล กระบวนการนี้จะควบคุมกระบวนการที่เกี่ยวข้องทั้งหลายในทางเคมีซึ่งเกิดขึ้นจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนในวงโคจรของอะตอมหนึ่งกับอิเล็กตรอนอื่นในวงโคจรของอะตอมที่อยู่ใกล้เคียงซึ่งจะถูกกำหนดโดยการปฏิสัมพันธ์ระหว่างแรงแม่เหล็กไฟฟ้ากับโมเมนตัมของอิเล็กตรอนเหล่านั้น มีคำอธิบายของสนามแม่เหล็กไฟฟ้าทางคณิตศาสตร์จำนวนมาก ในไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) สนามไฟฟ้าจะอธิบายถึงศักย์ไฟฟ้าและกระแสไฟฟ้า ในกฎของฟาราเดย์ สนามแม่เหล็กจะมาพร้อมกับการเหนี่ยวนำแม่เหล็กไฟฟ้าและแม่เหล็ก, และสมการของแมกซ์เวลจะอธิบายว่า สนามไฟฟ้าและสนามแม่เหล็กถูกสร้างขึ้นได้อย่างไร มีการเปลี่ยนแปลงซึ่งกันและกันอย่างไร และมีการเปลี่ยนแปลงโดยประจุและกระแสได้อย่างไร การแสดงเจตนาเป็นนัยในทางทฤษฎีของแรงแม่เหล็กไฟฟ้า โดยเฉพาะในการจัดตั้งของความเร็วของแสงที่ขึ้นอยู่กับคุณสมบัติของ "ตัวกลาง" ของการกระจายคลื่น (ความสามารถในการซึมผ่าน (permeability) และแรงต้านสนามไฟฟ้า (permittivity)) นำไปสู่​​การพัฒนาทฤษฎีสัมพัทธภาพพิเศษโดย อัลเบิร์ต ไอน์สไตน์ในปี 1905 แม้ว่าแรงแม่เหล็กไฟฟ้าถือเป็นหนึ่งในสี่แรงพื้นฐาน แต่ที่ระดับพลังงานสูงอันตรกิริยาอย่างอ่อนและแรงแม่เหล็กไฟฟ้าถูกรวมเป็นสิ่งเดียวกัน ในประวัติศาสตร์ของจักรวาล ในช่วงยุคควาร์ก แรงไฟฟ้าอ่อน (electroweak) จะหมายถึงแรง(แม่เหล็ก)ไฟฟ้า + (อันตรกิริยาอย่าง)อ่อน.

24 ความสัมพันธ์: ฟิสิกส์ฟิสิกส์วิศวกรรมกระแสเป็นกลางกลศาสตร์ดั้งเดิมกลศาสตร์ควอนตัมการสื่อสารไร้สายวิศวกรรมไฟฟ้าศักย์ไฟฟ้าสปิน (ฟิสิกส์)สนามไฟฟ้าหลุมดำอะตอมฮีเลียมอิเล็กทรอนิกส์อ็องรี ปวงกาเรอ็องเดร-มารี อ็องแปร์ฮันส์ คริสเทียน เออร์สเตดแม่เหล็กไฟฟ้าชีวภาพแรงต้านสนามไฟฟ้าแรงแม่เหล็กไฟฟ้าแอร์วิน ชเรอดิงเงอร์แคลคูลัสไฟฟ้าไดอะแมกเนติกเจมส์ เคลิร์ก แมกซ์เวลล์

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและฟิสิกส์ · ดูเพิ่มเติม »

ฟิสิกส์วิศวกรรม

Animation of Physics ฟิสิกส์วิศวกรรม (Engineering Physics) คือการศึกษาสาขาวิชารวมกันของฟิสิกส์ วิศวกรรมและคณิตศาสตร์เพื่อพัฒนาความเข้าใจในความสัมพันธ์ของทั้งสามสาขา ฟิสิกส์พื้นฐานจะถูกรวมกับการแก้ปัญหาและทักษะด้านวิศวกรรมซึ่งจะมีการใช้งานในวงกว้าง เส้นทางอาชีพฟิสิกส์วิศวกรรมมักจะกว้างด้าน "วิศวกรรม, วิทยาศาสตร์ประยุกต์หรือฟิสิกส์ประยุกต์ ผ่านการวิจัย การเรียน การสอนหรือผู้ประกอบการทางด้านวิศวกรรม" สหวิทยาการความรู้นี้ถูกออกแบบมาสำหรับนวัตกรรมของเทคโนโลยีที่เกิดขึ้นอย่างต่อเนื่อง.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและฟิสิกส์วิศวกรรม · ดูเพิ่มเติม »

กระแสเป็นกลาง

กระแสเป็นกลาง (Neutral current) หรือปฏิสัมพันธ์ของกระแสเป็นกลางอย่างอ่อน เป็นหนึ่งในหลายวิธีที่กลุ่ม อนุภาคย่อยของอะตอม จะสามารถมีปฏิสัมพันธ์ซึ่งกันและกันโดยการใช้ อันตรกิริยาอย่างอ่อน ปฏิสัมพันธ์เหล่านี้จะถูกไกล่เกลี่ยโดย Z โบซอน การค้นพบกระแสเป็นกลางอย่างอ่อนเป็นก้าวที่สำคัญไปสู่การรวมเป็นหนึ่งเดียวของ ทฤษฎีแม่เหล็กไฟฟ้า กับอันตรกิริยาอย่างอ่อนกลายเป็น อันตรกิริยาไฟฟ้าอ่อน (electroweak force), และนำไปสู่การคันพบ W และ Z โบซอน.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและกระแสเป็นกลาง · ดูเพิ่มเติม »

กลศาสตร์ดั้งเดิม

กลศาสตร์ดั้งเดิม เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของกลศาสตร์ (โดยอีกวิชาหนึ่ง คือ กลศาสตร์ควอนตัม) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของแรง โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้านวิทยาศาสตร์ วิศวกรรม และเทคโนโลยีมากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า กลศาสตร์นิวตัน ในทางฟิสิกส์ กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นส่วนของเครื่องจักรกล เหมือนกันกับวัตถุทางดาราศาสตร์ อาทิ ยานอวกาศ ดาวเคราะห์ ดาวฤกษ์ และ ดาราจักร รวมถึงครอบคลุมไปยังทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และแก๊ส โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับความเร็วแสง กลศาสตร์ดั้งเดิมจะมีความถูกต้องที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความถูกต้องในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของความเป็นคลื่น-อนุภาคในอะตอมและโมเลกุล แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง ทฤษฎีสนามควอนตัมจึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง คำว่า กลศาสตร์ดั้งเดิม ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของไอแซก นิวตันและนักปรัชญาธรรมชาติคนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของโยฮันเนส เคปเลอร์จากข้อมูลการสังเกตที่มีความแม่นยำสูงของไทโค บราเฮ และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของกาลิเลโอ โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมีทฤษฎีสัมพัทธภาพและกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของไอน์สไตน์ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่ถูกต้อง และถูกพัฒนามากที่สุด แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน ไลบ์นิซ และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น กลศาสตร์แบบลากรางจ์ และกลศาสตร์แฮมิลตัน ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ในกลศาสตร์เชิงวิเคราะห์อีกด้วย ในกลศาสตร์ดั้งเดิม วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของอนุภาคจุด (วัตถุที่ไม่มีการอ้างอิงถึงขนาด) โดยเคลื่อนที่ของอนุภาคจุดจะมีการกำหนดลักษณะเฉพาะของวัตถุ ได้แก่ ตำแหน่งของวัตถุ มวล และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็นศูนย์เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็กมาก ๆ อย่างเช่น อิเล็กตรอน กลศาสตร์ควอนตัมจะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีความอิสระของมันเอง (Degrees of freedom) อาทิ ลูกตะกร้อสามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์ของอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่นจุดศูนย์กลางมวลของวัตถุที่แสดงเป็นอนุภาคจุด กลศาสตร์ดั้งเดิมใช้สามัญสำนึกเป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุในปริภูมิ (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า Principle of locality).

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและกลศาสตร์ดั้งเดิม · ดูเพิ่มเติม »

กลศาสตร์ควอนตัม

'''ฟังชันคลื่น''' (Wavefunction) ของอิเล็กตรอนในอะตอมของไฮโดรเจนที่ทรงพลังงานกำหนดแน่ (ที่เพิ่มลงล่าง ''n''.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและกลศาสตร์ควอนตัม · ดูเพิ่มเติม »

การสื่อสารไร้สาย

การสื่อสารไร้สาย (Wireless communication) หมายถึงการถ่ายโอนข้อมูลสารสนเทศระหว่างจุดสองจุดหรือมากกว่า โดยไม่ได้เชื่อมต่อกันด้วยตัวนำไฟฟ้า เทคโนโลยีไร้สายที่พบมากที่สุดใช้คลื่นแม่เหล็กไฟฟ้า เช่นคลื่นวิทยุ ซึ่งอาจใช้ในระยะทางสั้นๆไม่กี่เมตรสำหรับโทรทัศน์ หรือไกลเป็นล้านกิโลเมตรลึกเข้าไปในอวกาศสำหรับวิทยุ การสื่อสารไร้สายรวมถึงหลากหลายชนิดของการใช้งานอยู่กับที่, เคลื่อนที่และแบบพกพา ได้แก่ วิทยุสองทาง, โทรศัพท์มือถือ, ผู้ช่วยดิจิตอลส่วนตัว (personal digital assistants หรือ PDAs) และเครือข่ายไร้สาย ตัวอย่างอื่น ๆ ของการประยุกต์ใช้เทคโนโลยีวิทยุไร้สายรวมถึง GPS, รีโมตประตูโรงรถ เม้าส์คอมพิวเตอร์ไร้สาย, แป้นพิมพ์และชุดหูฟังไร้สาย, หูฟังไร้สาย, เครื่องรับวิทยุไร้สาย, โทรทัศน์ผ่านดาวเทียมไร้สาย, เครื่องรับโทรทัศน์ทั่วไปและโทรศัพท์บ้านไร้สาย วิธีการอื่นของการสื่อสารไร้สายที่ไม่ได้ใช้คลื่นวิทยุได้แก่ การใช้แสง, เสียง, สนามแม่เหล็กหรือสนามไฟฟ้.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและการสื่อสารไร้สาย · ดูเพิ่มเติม »

วิศวกรรมไฟฟ้า

วิศวกรรมไฟฟ้า (Electrical Engineering) เป็นสาขาที่ศึกษาทฤษฏีและการประยุกต์ใช้ ไฟฟ้า, คลื่นแม่เหล็กไฟฟ้า ผู้ที่ประกอบวิชาชีพในสาขานี้เรียกว่า วิศวกรไฟฟ้า สาขาวิชาวิศวกรรมไฟฟ้าเป็นสาขาที่กว้างประกอบไปด้วยหลายสาขาย่อ.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและวิศวกรรมไฟฟ้า · ดูเพิ่มเติม »

ศักย์ไฟฟ้า

ักย์ไฟฟ้า (electric potential) (ยังถูกเรียกว่า ศักย์สนามไฟฟ้าหรือศักย์ไฟฟ้าสถิต) เป็นปริมาณของพลังงานศักย์ไฟฟ้าที่ประจุไฟฟ้าที่จุดหนึ่งเดียวนั้นจะพึงมีถ้ามันถูกมองหาตำแหน่งที่จุดใดจุดหนึ่งในที่ว่าง และมีค่าเท่ากับงานที่ถูกกระทำโดยสนามไฟฟ้าหนึ่งในการเคลื่อนย้ายหนึ่งหน่วยของประจุบวกจากที่ห่างไกลไม่สิ้นสุด (infinity) มาที่จุดนั้น ในทฤษฎีแม่เหล็กไฟฟ้าแบบคลาสสิก ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์แสดงโดย, หรือ มีค่าเท่ากับพลังงานศักย์ไฟฟ้า(มีหน่วยเป็นจูล)ของอนุภาคที่มีประจุใด ๆ ที่ตำแหน่งใด ๆ หารด้วยประจุ(มีหน่วยเป็นคูลอมบ์)ของอนุภาคนั้น เมื่อประจุของอนุภาคได้ถูกหารออกไป ส่วนที่เหลือจึงเป็น "คุณสมบัติ" ของตัวสนามไฟฟ้าเอง ค่านี้สามารถคำนวณได้ในสนามไฟฟ้าที่คงที่(เวลาไม่เปลี่ยน)หรือในสนามไฟฟ้าแบบไดนามิก(เปลี่ยนไปตามเวลา)ในเวลาที่กำหนด และมีหน่วยเป็นจูลต่อคูลอมบ์, หรือ volts ศักย์ไฟฟ้าที่อินฟินิตี้สมมติว่ามีค่าเป็นศูนย์ ศักย์ไฟฟ้าเป็นปริมาณสเกลาร์ เพราะศักย์ไฟฟ้าเป็นพลังงานต่อหนึ่งหน่วยประจุเนื่องจากพลังงานศักย์ไฟฟ้ามีหน่วยเป็นจูล (J) ประจุมีหน่วยเป็นคูลอมบ์ (C) ศักย์ไฟฟ้าจึงมีหน่วยเป็น จูลต่อคูบอมบ์ ซึ่งเรียกว่า โวลต์ (V)            ในกรณีสนามโน้มถ่วงของโลก พลังงานศักย์โน้มถ่วงของวัตถุที่ตำแหน่งต่างๆ ขึ้นกับความสูงของวัตถุเมื่อเทียบกับระดับอ้างอิง ซึ่งจะอยู่ที่ระดับดำก็ได้แล้วแต่จะกำหนด และให้ระดับอ้างอิงนี้มีพลังงานศักย์โน้มถ่วงเป็นศูนย์ ในการหาพลังงานศักย์ไฟฟ้าของประจุที่ตำแหน่งต่างๆ ก็ต้องกำหนดระดับอ้างอิงเช่นกัน นอกจากนี้ศักย์ไฟฟ้าแบบสเกลล่าร์ทั่วไปยังถูกใช้ในระบบ electrodynamics เมื่อสนามแม่เหล็กไฟฟ้าที่เปลี่ยนแปลงไปตามเวลาปรากฎอยู่ แต่ศักย์ไฟฟ้าทั่วไปนี้ไม่สามารถคำนวนออกมาง่าย ๆ ศักย์ไฟฟ้าและศักย์เวกเตอร์แม่เหล็กรวมเข้าด้วยกันเป็นสี่เวกเตอร์ เพื่อที่ว่าทั้งสองชนิดของศักย์จะถูกนำมาผสมกันภายใต้ Lorentz transformations.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและศักย์ไฟฟ้า · ดูเพิ่มเติม »

สปิน (ฟิสิกส์)

ในการศึกษาด้านกลศาสตร์ควอนตัมและฟิสิกส์อนุภาค สปิน (spin) คือคุณลักษณะพื้นฐานของอนุภาคมูลฐาน, อนุภาคประกอบ (ฮาดรอน) และนิวเคลียสอะตอม อนุภาคมูลฐานประเภทเดียวกันทุกตัวจะมี เลขควอนตัมสปิน เลขเดียวกัน ซึ่งเป็นส่วนสำคัญของสถานะควอนตัมของอนุภาค เมื่อรวมเข้ากับทฤษฎีสถิติของสปิน (spin-statistics theorem) สปินของอิเล็กตรอนจะส่งผลตามหลักการกีดกันของเพาลี อันเป็นตัวการเบื้องหลังของตารางธาตุ ทิศทางสปิน (บางครั้งก็เรียกย่อๆ ว่า "สปิน") ของอนุภาคหนึ่งเป็นองศาอิสระภายในที่สำคัญของอนุภาคนั้น โวล์ฟกัง เพาลี เป็นบุคคลแรกที่เสนอแนวคิดเรื่องของสปิน แต่เขายังไม่ได้ตั้งชื่อให้กับมัน ปี..

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและสปิน (ฟิสิกส์) · ดูเพิ่มเติม »

สนามไฟฟ้า

นามไฟฟ้า (electric field) คือปริมาณซึ่งใช้บรรยายการที่ประจุไฟฟ้าทำให้เกิดแรงกระทำกับอนุภาคมีประจุภายในบริเวณโดยรอบ หน่วยของสนามไฟฟ้าคือ นิวตันต่อคูลอมบ์ หรือโวลต์ต่อเมตร (มีค่าเท่ากัน) สนามไฟฟ้านั้นประกอบขึ้นจากโฟตอนและมีพลังงานไฟฟ้าเก็บอยู่ ซึ่งขนาดของความหนาแน่นของพลังงานขึ้นกับกำลังสองของความหนานแน่นของสนาม ในกรณีของไฟฟ้าสถิต สนามไฟฟ้าประกอบขึ้นจากการแลกเปลี่ยนโฟตอนเสมือนระหว่างอนุภาคมีประจุ ส่วนในกรณีคลื่นแม่เหล็กไฟฟ้านั้น สนามไฟฟ้าเปลี่ยนแปลงไปพร้อมกับสนามแม่เหล็ก โดยมีการไหลของพลังงานจริง และประกอบขึ้นจากโฟตอนจริง.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและสนามไฟฟ้า · ดูเพิ่มเติม »

หลุมดำ

มุมมองจำลองของหลุมดำด้านหน้าของทางช้างเผือก โดยมีมวลเทียบเท่าดวงอาทิตย์ 10 ดวงจากระยะทาง 600 กิโลเมตร หลุมดำ (black hole) หมายถึงเทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้แต่แสง ยกเว้นหลุมดำด้วยกัน เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ ที่ตำแหน่งรัศมีชวาร์สชิลด์ ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึงจะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า "หลุมดำ" เราไม่สามารถมองเห็นหลุมดำด้วยกล้องโทรทรรศน์ใดๆ เนื่องจากหลุมดำไม่เปล่งแสงหรือรังสีใดเลย แต่สามารถตรวจพบได้ด้วยกล้องโทรทรรศน์วิทยุ และคลื่นโน้มถ่วงของหลุมดำ (ในเชิงทฤษฎี โครงการแอลไอจีโอ) และจนถึงปัจจุบันได้ค้นพบหลุมดำในจักรวาลแล้วอย่างน้อย 6 แห่ง หลุมดำเป็นซากที่สิ้นสลายของดาวฤกษ์ที่ถึงอายุขัยแล้ว สสารที่เคยประกอบกันเป็นดาวนั้นได้ถูกอัดตัวด้วยแรงดึงดูดของตนเองจนเหลือเป็นเพียงมวลหนาแน่นที่มีขนาดเล็กยิ่งกว่านิวเคลียสของอะตอมเดียว ซึ่งเรียกว่า ภาวะเอกฐาน หลุมดำแบ่งได้เป็น 4 ประเภท คือ หลุมดำมวลยวดยิ่ง เป็นหลุมดำในใจกลางของดาราจักร, หลุมดำขนาดกลาง, หลุมดำจากดาวฤกษ์ ซึ่งเกิดจากการแตกดับของดาวฤกษ์, และ หลุมดำจิ๋วหรือหลุมดำเชิงควอนตัม ซึ่งเกิดขึ้นในยุคเริ่มแรกของเอกภพ แม้ว่าจะไม่สามารถมองเห็นภายในหลุมดำได้ แต่ตัวมันก็แสดงการมีอยู่ผ่านการมีผลกระทบกับวัตถุที่อยู่ในวงโคจรภายนอกขอบฟ้าเหตุการณ์ ตัวอย่างเช่น หลุมดำอาจจะถูกสังเกตเห็นได้โดยการติดตามกลุ่มดาวที่โคจรอยู่ภายในศูนย์กลางหลุมดำ หรืออาจมีการสังเกตก๊าซ (จากดาวข้างเคียง) ที่ถูกดึงดูดเข้าสู่หลุมดำ ก๊าซจะม้วนตัวเข้าสู่ภายใน และจะร้อนขึ้นถึงอุณหภูมิสูง ๆ และปลดปล่อยรังสีขนาดใหญ่ที่สามารถตรวจจับได้จากกล้องโทรทรรศน์ที่โคจรอยู่รอบโลก การสำรวจให้ผลในทางวิทยาศาสตร์เห็นพ้องต้องกันว่าหลุมดำนั้นมีอยู่จริงในเอกภพ แนวคิดของวัตถุที่มีแรงดึงดูดมากพอที่จะกันไม่ให้แสงเดินทางออกไปนั้นถูกเสนอโดยนักดาราศาสตร์มือสมัครเล่นชาวอังกฤษ จอห์น มิเชล ในปี 1783 และต่อมาในปี 1795 นักฟิสิกส์ชาวฝรั่งเศส ปีแยร์-ซีมง ลาปลาส ก็ได้ข้อสรุปเดียวกัน ตามความเข้าใจล่าสุด หลุมดำถูกอธิบายโดยทฤษฎีสัมพัทธภาพทั่วไป ซึ่งทำนายว่าเมื่อมีมวลขนาดใหญ่มากในพื้นที่ขนาดเล็ก เส้นทางในพื้นที่ว่างนั้นจะถูกทำให้บิดเบี้ยวไปจนถึงศูนย์กลางของปริมาตร เพื่อไม่ให้วัตถุหรือรังสีใดๆ สามารถออกมาได้ ขณะที่ทฤษฏีสัมพัทธภาพทั่วไปอธิบายว่าหลุมดำเป็นพื้นที่ว่างที่มีความเป็นภาวะเอกฐานที่จุดศูนย์กลางและที่ขอบฟ้าเหตุการณ์บริเวณขอบ คำอธิบายนี่เปลี่ยนไปเมื่อค้นพบกลศาสตร์ควอนตัม การค้นคว้าในหัวข้อนี้แสดงให้เห็นว่านอกจากหลุมดำจะดึงวัตถุไว้ตลอดกาล แล้วยังมีการค่อย ๆ ปลดปล่อยพลังงานภายใน เรียกว่า รังสีฮอว์คิง และอาจสิ้นสุดลงในที่สุด อย่างไรก็ตาม ยังไม่มีคำอธิบายเกี่ยวกับหลุมดำที่ถูกต้องตามทฤษฎีควอนตัม.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและหลุมดำ · ดูเพิ่มเติม »

อะตอมฮีเลียม

อะตอมฮีเลียม (Helium atom) คืออะตอมของธาตุเคมีฮีเลียม ซึ่งฮีเลียมนั้นประกอบด้วยอิเล็กตรอนสองตัวที่ถูกแรงแม่เหล็กไฟฟ้ายึดติดไว้กับหนึ่งนิวเคลียสที่ประกอบด้วยสองโปรตอน พร้อมทั้งมีหนึ่งหรือสองนิวตรอน (ขึ้นอยู่กับไอโซโทป) ที่ยึดติดกันด้วยแรงอย่างเข้ม ในวิชากลศาสตร์ควอนตัม เรามักจะศึกษาอะตอมของไฮโดรเจน ซึ่งเป็นอะตอมที่มีโครงสร้างอย่างง่ายที่สุด อีกอะตอมหนึ่งที่เราชอบใช้ในการศึกษา คืออะตอมของฮีเลียม ฮีเลียมเป็นธาตุที่ประกอบไปด้วยอิเล็กตรอนจำนวนสองตัวซึ่งดึงดูดอยู่กับนิวเคลียสด้วยแรงทางแม่เหล็กไฟฟ้า นิวเคลียสประกอบด้วยโปรตอนจำนวนสองตัวและนิวตรอนจำนวนหนึ่งหรือสองตัวตามไอโซโทป ซึ่งยึดเหนี่ยวกันอยู่ภายในด้วยแรงนิวเคลียร์อย่างเข้ม สมการฮาร์มิลโทเนียนของอะตอมฮีเลียม คือ โดยที่ m คือมวลของอิเล็กตรอน (โดยแท้จริงแล้ว ต้องระบุเป็นมวลลดทอน แต่เนื่องจากมวลลดทอนมีค่าใกล้เคียงมวลของอิเล็กตรอน ดังนั้นเราจึงหาสามารถใช้มวลอิเล็กตรอนในการคำนวณได้) สมการฮาร์มิลโทเนียนประกอบไปด้วย ฮาร์มิลโทเนียนของไฮโดรเจน 2 พจน์ ซึ่งมาจากอิเล็กตรอนตัวที่ 1 และตัวที่ 2 ของฮีเลียม และพจน์สุดท้ายคือพจน์ที่อธิบายแรงผลักคูลอมบ์ของอิเล็กตรอนทั้ง 2 ตัว จากพจน์ของแรงคูลอมบ์ระหว่างอิเล็กตรอน เมื่อเราใช้วิธีการรบกวน (perturbation) ในการประมาณค่าหาพลังงานของสถานะพื้นของระดับพลังงานที่เลื่อนไป ∆E จะได้ว่าพลังงานในสถานะพื้นของอะตอมฮีเลียมมีค่าประมาณ E \sim-74.8 eV.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและอะตอมฮีเลียม · ดูเพิ่มเติม »

อิเล็กทรอนิกส์

อิเล็กทรอนิกส์ (Electronics) เป็นเทคโนโลยีที่เกี่ยวข้องกับวงจรไฟฟ้าที่ประกอบด้วยอุปกรณ์ไฟฟ้าที่เป็น active component เช่นหลอดสูญญากาศ, ทรานซิสเตอร์, ไดโอด และ Integrated Circuit และ ชิ้นส่วน พาสซีฟ (passive component) เช่น ตัวนำไฟฟ้า, ตัวต้านทานไฟฟ้า, ตัวเก็บประจุ และคอยล์ พฤติกรรมไม่เชิงเส้นของ active component และความสามารถในการควบคุมการไหลของอิเล็กตรอนทำให้สามารถขยายสัญญาณอ่อนๆให้แรงขึ้นเพื่อการสื่อสารทางภาพและเสียงเช่นโทรเลข, โทรศัพท์, วิทยุ, โทรทัศน์ เป็นต้น อิเล็กทรอนิกส์ถูกใช้กันอย่างแพร่หลายในการสื่อสารข้อมูลโทรคมนาคม ความสามารถของอุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิทช์ปิดเปิดวงจรถูกนำไปใช้ในวงจร ลอจิกเกต ซึ่งเป็นส่วนสำคัญหลักในระบบคอมพิวเตอร์ นอกจากนั้น วงจรอิเล็กทรอนิกส์ยังถูกนำไปใช้ผลิตเครื่องใช้ไฟฟ้าในครัวเรือน ในการส่งพลังงานไฟฟ้าเป็นระยะทางไกลๆ การผลิตพลังงานทดแทน และอุตสาหกรรมต่างๆอีกมาก อิเล็กทรอนิกส์แตกต่างจากวิทยาศาสตร์ไฟฟ้าและเทคโนโลยีเครื่องกลไฟฟ้า โดยจะเกี่ยวข้องกับการสร้าง, การกระจาย, การสวิทช์, การจัดเก็บและการแปลงพลังงานไฟฟ้าไปและมาจากพลังงานรูปแบบอื่น ๆ โดยใช้สายไฟ, มอเตอร์, เครื่องกำเนิดไฟฟ้า, แบตเตอรี่, สวิตช์, รีเลย์, หม้อแปลงไฟฟ้า ตัวต้านทานและส่วนประกอบที่เป็นพาสซีพอื่นๆ ความแตกต่างนี้เริ่มราวปี 1906 เป็นผลจากการประดิษฐ์ไตรโอดโดยลี เดอ ฟอเรสท์ ซึ่งใช้ขยายสัญญาณวิทยุที่อ่อนๆได้ ทำให้เกิดการออกแบบและพัฒนาระบบการรับส่งสัญญาณเสียงและหลอดสูญญากาศ จึงเรียกสาขานี้ว่า "เทคโนโลยีวิทยุ" จนถึงปี 1950 ปัจจุบัน อุปกรณ์อิเล็กทรอนิกส์ส่วนใหญ่ ใช้ชิ้นส่วนสารกึ่งตัวนำเพื่อควบคุมการทำงานของอิเล็กตรอน การศึกษาเกี่ยวกับอุปกรณ์สารกึ่งตัวนำและเทคโนโลยีโซลิดสเตต ในขณะที่การออกแบบและการสร้างวงจรอิเล็กทรอนิกส์ในการแก้ปัญหาในทางปฏิบัติอยู่ภายใต้สาขาวิศวกรรมอิเล็กทรอนิกส์ บทความนี้มุ่งเน้นด้านวิศวกรรมของ.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและอิเล็กทรอนิกส์ · ดูเพิ่มเติม »

อ็องรี ปวงกาเร

อ็องรี ปวงกาเร ฌูล อ็องรี ปวงกาเร (Jules Henri Poincaré) เกิด 29 เมษายน ค.ศ. 1854 เสียชีวิต 17 กรกฎาคม ค.ศ. 1912 เป็นหนึ่งในนักคณิตศาสตร์ นักฟิสิกส์ และนักปรัชญาวิทยาศาสตร์ที่ดีสุดของฝรั่งเศส ในหนังสือประวัตินักคณิตศาสตร์ที่โด่งดังของอิริค เทมเพิล เบลล์ได้ให้เกียรติปวงกาเรว่าเป็น นักคณิตศาสตร์คนสุดท้ายผู้ล่วงรู้ครอบจักรวาล (universalist) เนื่องจากปวงกาเรเดินตามรอยของนักคณิตศาสตร์ผู้ยิ่งใหญ่ในอดีต เช่น เกาส์, ออยเลอร์ หรือนิวตัน ที่มีผลงานและรอบรู้ในแทบทุกสาขาของคณิตศาสตร์ (หลังจากยุคปวงกาเรก็ไม่ปรากฏนักคณิตศาสตร์คนได้รอบรู้ในแง่ลึกของทุกสาขาอีก ทั้งนี้เนื่องจากสาขาของคณิตศาสตร์นั้นเพิ่มขึ้นมากมายมหาศาลในปัจจุบัน โดยตัวปวงกาเรเองก็เป็นผู้ที่ก่อตั้งสาขาย่อยของคณิตศาสตร์ใหม่อีกหลายสาขา) สาขาวิชาการที่ปวงกาเรได้อุทิศผลงานและมีผลกระทบสำคัญต่อวงการมากที่สุดได้แก่ คณิตศาสตร์ ฟิสิกส์เชิงคณิตศาสตร์ และ กลศาสตร์ท้องฟ้า โดยผลงานที่โด่งดังของปวงกาเรมีมากมายเช่น.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและอ็องรี ปวงกาเร · ดูเพิ่มเติม »

อ็องเดร-มารี อ็องแปร์

นของอ็องแปร์กับบุตรชาย อ็องเดร-มารี อ็องแปร์ (André-Marie Ampère; 22 มกราคม ค.ศ. 1775 — 10 มิถุนายน ค.ศ. 1836) เป็นนักฟิสิกส์และนักคณิตศาสตร์ชาวฝรั่งเศส ผู้ซึ่งเป็นหนึ่งในผู้ค้นพบทฤษฎีแม่เหล็กไฟฟ้า หน่วย SI ของการวัดกระแสไฟฟ้า โดยชื่อของหน่วยแอมแปร์ ได้ตั้งตามชื่อของ.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและอ็องเดร-มารี อ็องแปร์ · ดูเพิ่มเติม »

ฮันส์ คริสเทียน เออร์สเตด

ฮันส์ คริสเทียน เออร์สเตด Hans Christian Ørsted, ''Der Geist in der Natur'', 1854 ฮันส์ คริสเทียน เออร์สเตด (Hans Christian Ørsted, 14 สิงหาคม พ.ศ. 2320 - 9 มีนาคม พ.ศ. 2394) เป็นนักฟิสิกส์และนักเคมีชาวเดสัมพันธ์ระหว่างไฟฟ้าและความเป็นแม่เหล็ก หรือที่เรียกว่า ทฤษฎีแม่เหล็กไฟฟ้า ฮานส์ คริสเตียน เออร์สเตด) เกิดเมื่อวันที่ 14 สิงหาคม พ.ศ. 2320 เขาเป็นศาสตราจารย์ภาควิชาฟิสิกส์ ประจำมหาวิทยาโคเปนเฮเกน ประเทศเดนมาร์ก เออร์สเตดค้นพบความสัมพันธ์ระหว่างไฟฟ้าและสนามแม่เหล็กด้วยความบังเอิญ ในเดือนเมษายน ปี พ.ศ. 2363 ขณะบรรยายวิชาฟิสิกส์ในหัวข้อ คุณสมบัติของกระแสไฟฟ้า (Electricity, Galvanism and Magnetism) โดยมีอุปกรณ์ในการทำการทดลองประกอบการบรรยาย คือ แบตเตอรี่ สายไฟ และเข็มทิศ เออร์สเตดได้ทำการทดลองเกี่ยวกับปรากฏการณ์ที่เข็มทิศจะเบนเมื่อมีฝนตกหนัก และฟ้าแลบ เพื่อลองดูว่าจะเกิดอะไรขึ้นกับเข็มทิศ ถ้าผ่านกระแสไฟเข้าไปในลวดตัวนำ เขานำลวดตัวนำตั้งฉากกับเข็มทิศและพบว่าไม่มีอะไรเกิดขึ้น แต่หลังจากการบรรยายสิ้นสุด เออร์สเตดลองวางลวดตัวนำขนานกับเข็มทิศ และผ่านกระแสไฟฟ้าไปในลวดตัวนำ กลับพบว่าเข็มทิศกระดิก และเริ่มเบน การ ค้นพบนี้ทำให้เออร์สเตดเป็นบุคคลแรกที่ค้นพบความสัมพันธ์ระหว่างกระแสไฟฟ้า และแม่เหล็ก หรือนำไปสู่ทฤษฎีความสัมพันธ์ระหว่างแม่เหล็กกับไฟฟ้า (Electro Magnetism Theory) ต่อมาในวันที่ 11 กันยายน ปีเดียวกันนั้นเอง การค้นพบของเออร์สเตดได้ถูกไปนำเสนอที่ราชสมาคมฝรั่งเศส โดย โดมินิก ฟร็องซัวส์ ฌอง อราโก (Dominiqiue Francois Jean Arago) เขาระบุว่าการค้นพบนี้สำคัญไม่น้อยไปกว่าการค้นพบไฟฟ้า นอกจากนี้ยังมีนักวิทยาศาสตร์ชาวฝรั่งเศสและชาวอังกฤษอีกหลายคนที่พยายาม แข่งขันเพื่ออธิบายปรากฏการณ์ที่เออร์สเตดค้นพบ โดยเฉพาะนักทดลองชาวฝรั่งเศสที่ชื่อ ฌอง แบพติสท์ บิโอต์ (Jean Baptiste Biot) และ เฟลิกซ์ ซาวาร์ (Felix Savart) เป็นนักฟิสิกส์คนแรกๆ ที่สามารถอธิบายปรากฏการณ์นี้อย่างละเอียดได้ นับได้ว่าการค้นพบของ ฮานส์ คริสเตียน เออร์สเตด ได้จุดประกายที่ทำให้นักวิทยาศาสตร์หลายคนพยายามค้นพบเรื่องแม่เหล็กไฟฟ้า รวมถึง อังเดร มารี แอมแป (Andre Marie Ampere) ผู้ค้นพบทฤษฎีแม หมวดหมู่:นักฟิสิกส์ชาวเดนมาร์ก หมวดหมู่:นักเคมีชาวเดนมาร์ก หมวดหมู่:บุคคลจากภาคใต้ของเดนมาร์ก.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและฮันส์ คริสเทียน เออร์สเตด · ดูเพิ่มเติม »

แม่เหล็กไฟฟ้าชีวภาพ

แม่เหล็กไฟฟ้าชีวภาพ (bioelectromagnetism) หรือ ไฟฟ้าชีวภาพ (bioelectricity) หมายถึงพลังงานไฟฟ้า พลังงานแม่เหล็ก หรือสนามแม่เหล็กไฟฟ้าที่เกิดขึ้นจากเซลล์ เนื้อเยื่อ หรือสิ่งมีชีวิตต่างๆ ตัวอย่างนี้รวมไปถึง ศักย์ไฟฟ้าเยื่อหุ้มเซลล์ (membrane potential) และกระแสไฟฟ้าที่ไหลอยู่ในเส้นประสาทและกล้ามเนื้อ ซึ่งก่อให้เกิดศักยะงาน (action potential) คำนี้ไม่ควรสับสนกับ bioelectromagnetics ซึ่งเป็นการศึกษาผลกระทบของสิ่งมีชีวิตจากพลังงานแม่เหล็กไฟฟ้าภายนอก.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและแม่เหล็กไฟฟ้าชีวภาพ · ดูเพิ่มเติม »

แรงต้านสนามไฟฟ้า

ในทฤษฎีแม่เหล็กไฟฟ้า แรงต้านสนามไฟฟ้า (permittivity) เป็นตัวชี้วัดความต้านทานที่ถูกสร้างขึ้นเมื่อมีการก่อตัวของสนามไฟฟ้าในตัวกลาง พูดอีกอย่าง แรงต้านสนามไฟฟ้าเป็นตัววัดว่าสนามไฟฟ้าจะถูกกระทบอย่างไร และแรงนี้จะได้รับผลกระทบอย่างไรจากตัวกลางไดอิเล็กทริกหนึ่ง แรงต้านสนามไฟฟ้าของตัวกลางหนึ่งจะอธิบายถึงว่าสนามไฟฟ้า(ให้ถูกต้องมากขึ้น, คือฟลักซ์)มีจำนวนมากน้อยเท่าใดที่ถูก 'สร้าง' ขึ้นต่อหน่วยประจุในตัวกลางนั้น ฟลักซ์ไฟฟ้าจะเกิดขึ้นมากในตัวกลางที่มีแรงต้าน(ต่อหน่วยประจุ)ต่ำเนื่องจากปรากฏการณ์ของการเป็นขั้ว แรงต้านสนามไฟฟ้าจะเกี่ยวข้องโดยตรงกับความอ่อนไหวทางไฟฟ้าซึ่งเป็นตัวชี้วัดว่าสารไดอิเล็กทริกหนึ่งจะกลายเป็นขั้วไฟฟ้าในการตอบสนองต่อสนามไฟฟ้าได้ง่ายแค่ไหน ดังนั้น แรงต้านสนามไฟฟ้าจะเกี่ยวข้องกับความสามารถของวัสดุที่จะต้านทานต่อสนามไฟฟ้า ในหน่วยของ SI ค่าแรงต้านสนามไฟฟ้า ε มีหน่วยเป็นฟารัดต่อเมตร (F/m or F·m−1) และ ความอ่อนไหวทางไฟฟ้า χ ไม่มีหน่วย ค่าทั้งสองเกี่ยวข้องกันผ่านทาง เมื่อ εr เป็นค่าแรงต้านสนามไฟฟ้าสัมพันธ์ของวัสดุ และ ε0.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและแรงต้านสนามไฟฟ้า · ดูเพิ่มเติม »

แรงแม่เหล็กไฟฟ้า

ทความนี้ควรนำไปรวมกับ ทฤษฎีแม่เหล็กไฟฟ้า ในวิชา ฟิสิกส์ แรงแม่เหล็กไฟฟ้า คือแรงที่ สนามแม่เหล็กไฟฟ้า กระทำต่ออนุภาคที่มีประจุทางไฟฟ้า มันคือแรงที่ยึด อิเล็กตรอน กับ นิวคลิไอ เข้าด้วยกันใน อะตอม และยึดอะตอมเข้าด้วยกันเป็น โมเลกุล แรงแม่เหล็กไฟฟ้าทำงานผ่านการแลกเปลี่ยน messenger particle ที่เรียกว่า โฟตอน การแลกเปลี่ยน messenger particles ระหว่างวัตถุทำให้เกิดแรงที่รับรู้ได้ด้วยวิธีแทนที่จะดูดหรือผลักอนุภาคออกจากกันเพียงแค่นั้น การแลกเปลี่ยนจะเปลี่ยนคุณลักษณะของพฤติกรรมของอนุภาคที่แลกเปลี่ยนนั้นอีกด้ว.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและแรงแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

แอร์วิน ชเรอดิงเงอร์

แอร์วิน ชเรอดิงเงอร์ (Erwin Rudolf Josef Alexander Schrödinger; 12 สิงหาคม ค.ศ. 1887 - 4 มกราคม ค.ศ. 1961) เป็นนักฟิสิกส์ทฤษฎีชาวออสเตรีย มีชื่อเสียงในฐานะผู้วางรากฐานกลศาสตร์ควอนตัม โดยเฉพาะอย่างยิ่งสมการชเรอดิงเงอร์ ซึ่งทำให้เขาได้รับรางวัลโนเบลสาขาฟิสิกส์ ในปี..

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและแอร์วิน ชเรอดิงเงอร์ · ดูเพิ่มเติม »

แคลคูลัส

แคลคูลัส เป็นสาขาหลักของคณิตศาสตร์ และสังคมศาสตร์ แคลคูลัสมีต้นกำเนิดจากสองแนวคิดหลัก ดังนี้ แนวคิดแรกคือ แคลคูลัสเชิงอนุพันธ์ (Differential Calculus) เป็นทฤษฎีที่ว่าด้วยอัตราการเปลี่ยนแปลง และเกี่ยวข้องกับการหาอนุพันธ์ของฟังก์ชันทางคณิตศาสตร์ ตัวอย่างเช่น การหา ความเร็ว, ความเร่ง หรือความชันของเส้นโค้ง บนจุดที่กำหนดให้.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและแคลคูลัส · ดูเพิ่มเติม »

ไฟฟ้า

ฟฟ้า (ήλεκτρον; electricity) เป็นชุดของปรากฏการณ์ทางฟิสิกส์ มีที่มาจากภาษากรีกซึ่งในสมัยนั้นหมายถึงผลจากสิ่งที่เกิดขึ้นตามธรรมชาติเนื่องจากการปรากฏตัวและการไหลของประจุไฟฟ้า เช่นฟ้าผ่า, ไฟฟ้าสถิต, การเหนี่ยวนำแม่เหล็กไฟฟ้าและกระแสไฟฟ้า นอกจากนี้ ไฟฟ้ายังทำให้เกิดการผลิตและการรับคลื่นแม่เหล็กไฟฟ้า เช่นคลื่นวิทยุ พูดถึงไฟฟ้า ประจุจะผลิตสนามแม่เหล็กไฟฟ้าซึ่งจะกระทำกับประจุอื่น ๆ ไฟฟ้าเกิดขึ้นได้เนื่องจากหลายชนิดของฟิสิกซ์ดังต่อไปนี้.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและไฟฟ้า · ดูเพิ่มเติม »

ไดอะแมกเนติก

อะแมกเนติก (Diamagnetism) เป็นสมบัติการมีปฏิกิริยาสนามแม่เหล็ก ซึ่งเป็นสมบัติเฉพาะของสสารนั้น ๆ เกี่ยวกับการเปลี่ยนทิศทางของอิเล็กตรอนออบิทอล ซึ่งก่อให้เกิดแรงแม่เหล็กไฟฟ้า ซึ่งมีสมการทางฟิสิกส์อธิบายไว้ว่า F.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและไดอะแมกเนติก · ดูเพิ่มเติม »

เจมส์ เคลิร์ก แมกซ์เวลล์

เจมส์ เคลิร์ก แมกซ์เวลล์ นักฟิสิกส์ เจมส์ เคลิร์ก แมกซ์เวลล์ (James Clerk Maxwell พ.ศ. 2374-2422) นักฟิสิกส์ เกิดที่เมืองเอดินเบิร์ก สกอตแลนด์ สหราชอาณาจักร ได้รับการศึกษาจากมหาวิทยาลัยเอดินเบิร์กและเคมบริดจ์ และเป็นศาสตราจารย์ที่มหาวิทยาลัยอาเบอร์ดีน (พ.ศ. 2399) และมหาวิทยาลัยลอนดอน (พ.ศ. 2403) แมกซ์เวลล์เป็นศาสตราจารย์ด้านฟิสิกส์เชิงทดลอง (Experimental Physics) คนแรกของมหาวิทยาลัยเคมบริดจ์ (พ.ศ. 2414) โดยเป็นผู้ก่อตั้งห้องทดลองคาเวนดิช (Cavendish Laboratory) ที่มีชื่อเสียง แมกซ์เวลล์ได้ตีพิมพ์หนังสือเล่มสำคัญชื่อ "เรื่องราวว่าด้วยไฟฟ้าและแม่เหล็ก" (Treatise on Electricity and magnetism) ในปี พ.ศ. 2416 ซึ่งเป็นการให้วิธีการทางคณิตศาสตร์เพื่ออธิบายทฤษฎีของฟาราเดย์เกี่ยวกับไฟฟ้าและแรงของแม่เหล็ก นอกจากนี้ แมกซ์เวลล์ยังได้ให้คำอธิบายเกี่ยวกับการมองเห็นสี จลนะ หรือ การเคลื่อนไหวของก๊าซ แต่งานที่ยิ่งใหญ่ที่สุดของเขาได้แก่ทฤษฎีว่าด้วยการแผ่รังสีของแม่เหล็กไฟฟ้า ซึ่งทำให้แมกซ์เวลล์ได้รับการยกย่องให้เป็นนักทฤษฎีฟิสิกส์ชั้นนำแห่งศตวรรษ จเมส์ คเลิร์ก มแกซ์วเลล์ จเมส์ คเลิร์ก มแกซ์วเลล์ หมวดหมู่:บุคคลจากเอดินบะระ.

ใหม่!!: ทฤษฎีแม่เหล็กไฟฟ้าและเจมส์ เคลิร์ก แมกซ์เวลล์ · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »