โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

กลศาสตร์ท้องฟ้าและไอแซก นิวตัน

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง กลศาสตร์ท้องฟ้าและไอแซก นิวตัน

กลศาสตร์ท้องฟ้า vs. ไอแซก นิวตัน

กลศาสตร์ท้องฟ้า (Celestial mechanics) เป็นสาขาวิชาหนึ่งของการศึกษาดาราศาสตร์ ที่เกี่ยวข้องกับการเคลื่อนที่ของวัตถุท้องฟ้า โดยนำศาสตร์ของวิชาฟิสิกส์และกลศาสตร์ดั้งเดิม มาประยุกต์ใช้กับวัตถุทางดาราศาสตร์เช่น ดาวฤกษ์หรือดาวเคราะห์ เพื่อสร้างข้อมูลของตำแหน่งดาวขึ้น กลศาสตร์วงโคจร (Orbital mechanics หรือ astrodynamics) ก็เป็นสาขาย่อยสาขาหนึ่งในศาสตร์นี้ โดยมีเป้าหมายในการศึกษาเกี่ยวกับวงโคจรของดาวเทียมที่มนุษย์สร้างขึ้น. ซอร์ไอแซก นิวตัน (Isaac Newton) (25 ธันวาคม ค.ศ. 1641 – 20 มีนาคม ค.ศ. 1725 ตามปฏิทินจูเลียน) นักฟิสิกส์ นักคณิตศาสตร์ นักดาราศาสตร์ นักปรัชญา นักเล่นแร่แปรธาตุ และนักเทววิทยาชาวอังกฤษ งานเขียนในปี..

ความคล้ายคลึงกันระหว่าง กลศาสตร์ท้องฟ้าและไอแซก นิวตัน

กลศาสตร์ท้องฟ้าและไอแซก นิวตัน มี 7 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ฟิสิกส์กลศาสตร์ดั้งเดิมกอทท์ฟรีด วิลเฮล์ม ไลบ์นิซดาราศาสตร์ดาวเคราะห์นิโคเลาส์ โคเปอร์นิคัสโยฮันเนส เคปเลอร์

ฟิสิกส์

แสงเหนือแสงใต้ (Aurora Borealis) เหนือทะเลสาบแบร์ ใน อะแลสกา สหรัฐอเมริกา แสดงการแผ่รังสีของอนุภาคที่มีประจุ และ เคลื่อนที่ด้วยความเร็วสูง ขณะเดินทางผ่านสนามแม่เหล็กโลก ฟิสิกส์ (Physics, φυσικός, "เป็นธรรมชาติ" และ φύσις, "ธรรมชาติ") เป็นวิทยาศาสตร์ ที่เกี่ยวข้องกับ สสาร และ พลังงาน ศึกษาการเปลี่ยนแปลงทางกายภาพ และ ศึกษาความสัมพันธ์ระหว่างสสารกับพลังงาน รวมทั้งเป็นความรู้พื้นฐานที่นำไปใช้ในการพัฒนาเทคโนโลยีเกี่ยวกับการผลิต และเครื่องใช้ต่าง ๆ เพื่ออำนวยความสะดวกแก่มนุษย์ ตัวอย่างเช่น การนำความรู้พื้นฐานทางด้านแม่เหล็กไฟฟ้า ไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ (โทรทัศน์ วิทยุ คอมพิวเตอร์ โทรศัพท์มือถือ ฯลฯ) อย่างแพร่หลาย หรือ การนำความรู้ทางอุณหพลศาสตร์ไปใช้ในการพัฒนาเครื่องจักรกลและยานพาหนะ ยิ่งไปกว่านั้นความรู้ทางฟิสิกส์บางอย่างอาจนำไปสู่การสร้างเครื่องมือใหม่ที่ใช้ในวิทยาศาสตร์สาขาอื่น เช่น การนำความรู้เรื่องกลศาสตร์ควอนตัม ไปใช้ในการพัฒนากล้องจุลทรรศน์อิเล็กตรอนที่ใช้ในชีววิทยา เป็นต้น นักฟิสิกส์ศึกษาธรรมชาติ ตั้งแต่สิ่งที่เล็กมาก เช่น อะตอม และ อนุภาคย่อย ไปจนถึงสิ่งที่มีขนาดใหญ่มหาศาล เช่น จักรวาล จึงกล่าวได้ว่า ฟิสิกส์ คือ ปรัชญาธรรมชาติเลยทีเดียว ในบางครั้ง ฟิสิกส์ ถูกกล่าวว่าเป็น แก่นแท้ของวิทยาศาสตร์ (fundamental science) เนื่องจากสาขาอื่น ๆ ของวิทยาศาสตร์ธรรมชาติ เช่น ชีววิทยา หรือ เคมี ต่างก็มองได้ว่าเป็น ระบบของวัตถุต่าง ๆ หลายชนิดที่เชื่อมโยงกัน โดยที่เราสามารถสามารถอธิบายและทำนายพฤติกรรมของระบบดังกล่าวได้ด้วยกฎต่าง ๆ ทางฟิสิกส์ ยกตัวอย่างเช่น คุณสมบัติของสารเคมีต่าง ๆ สามารถพิจารณาได้จากคุณสมบัติของโมเลกุลที่ประกอบเป็นสารเคมีนั้น ๆ โดยคุณสมบัติของโมเลกุลดังกล่าว สามารถอธิบายและทำนายได้อย่างแม่นยำ โดยใช้ความรู้ฟิสิกส์สาขาต่าง ๆ เช่น กลศาสตร์ควอนตัม, อุณหพลศาสตร์ หรือ ทฤษฎีแม่เหล็กไฟฟ้า เป็นต้น ในปัจจุบัน วิชาฟิสิกส์เป็นวิชาที่มีขอบเขตกว้างขวางและได้รับการพัฒนามาแล้วอย่างมาก งานวิจัยทางฟิสิกส์มักจะถูกแบ่งเป็นสาขาย่อย ๆ หลายสาขา เช่น ฟิสิกส์ของสสารควบแน่น ฟิสิกส์อนุภาค ฟิสิกส์อะตอม-โมเลกุล-และทัศนศาสตร์ ฟิสิกส์ดาราศาสตร์ ฟิสิกส์พลศาสตร์ที่ไม่เป็นเชิงเส้น-และเคออส และ ฟิสิกส์ของไหล (สาขาย่อยฟิสิกส์พลาสมาสำหรับงานวิจัยฟิวชั่น) นอกจากนี้ยังอาจแบ่งการทำงานของนักฟิสิกส์ออกได้อีกสองทาง คือ นักฟิสิกส์ที่ทำงานด้านทฤษฎี และนักฟิสิกส์ที่ทำงานทางด้านการทดลอง โดยที่งานของนักฟิสิกส์ทฤษฎีเกี่ยวข้องกับการพัฒนาทฤษฎีใหม่ แก้ไขทฤษฎีเดิม หรืออธิบายการทดลองใหม่ ๆ ในขณะที่ งานการทดลองนั้นเกี่ยวข้องกับการทดสอบทฤษฎีที่นักฟิสิกส์ทฤษฎีสร้างขึ้น การตรวจทดสอบการทดลองที่เคยมีผู้ทดลองไว้ หรือแม้แต่ การพัฒนาการทดลองเพื่อหาสภาพทางกายภาพใหม่ ๆ ทั้งนี้ขอบเขตของวิชาฟิสิกส์ภาคปฏิบัติ ขึ้นอยู่กับขีดจำกัดของการสังเกต และประสิทธิภาพของเครื่องมือวัด ถ้าเทคโนโลยีของเครื่องมือวัดพัฒนามากขึ้น ข้อมูลที่ได้จะมีความละเอียดและถูกต้องมากขึ้น ทำให้ขอบเขตของวิชาฟิสิกส์ยิ่งขยายออกไป ข้อมูลที่ได้ใหม่ อาจไม่สอดคล้องกับสิ่งที่ทฤษฎีและกฎที่มีอยู่เดิมทำนายไว้ ทำให้ต้องสร้างทฤษฏีใหม่ขึ้นมาเพื่อทำให้ความสามารถในการทำนายมีมากขึ้น.

กลศาสตร์ท้องฟ้าและฟิสิกส์ · ฟิสิกส์และไอแซก นิวตัน · ดูเพิ่มเติม »

กลศาสตร์ดั้งเดิม

กลศาสตร์ดั้งเดิม เป็นหนึ่งในสองวิชาที่สำคัญที่สุดของกลศาสตร์ (โดยอีกวิชาหนึ่ง คือ กลศาสตร์ควอนตัม) ซึ่งอธิบายถึงการเคลื่อนที่ของวัตถุต่าง ๆ ภายใต้อิทธิพลจากระบบของแรง โดยวิชานี้ถือเป็นวิชาที่ครอบคลุมในด้านวิทยาศาสตร์ วิศวกรรม และเทคโนโลยีมากที่สุดวิชาหนึ่ง อีกทั้งยังเป็นวิชาที่เก่าแก่ ซึ่งมีการศึกษาในการเคลื่อนที่ของวัตถุตั้งแต่สมัยโบราณ โดยกลศาสตร์ดั้งเดิมรู้จักในวงกว้างว่า กลศาสตร์นิวตัน ในทางฟิสิกส์ กลศาสตร์ดั้งเดิมอธิบายการเคลื่อนที่ของวัตถุขนาดใหญ่โดยแปลงการเคลื่อนที่ต่าง ๆ ให้กลายเป็นส่วนของเครื่องจักรกล เหมือนกันกับวัตถุทางดาราศาสตร์ อาทิ ยานอวกาศ ดาวเคราะห์ ดาวฤกษ์ และ ดาราจักร รวมถึงครอบคลุมไปยังทุกสถานะของสสาร ทั้งของแข็ง ของเหลว และแก๊ส โดยจะให้ผลลัพธ์ที่มีความแม่นยำสูง แต่เมื่อวัตถุมีขนาดเล็กหรือมีความเร็วที่สูงใกล้เคียงกับความเร็วแสง กลศาสตร์ดั้งเดิมจะมีความถูกต้องที่ต่ำลง ต้องใช้กลศาสตร์ควอนตัมในการศึกษาแทนกลศาสตร์ดั้งเดิมเพื่อให้มีความถูกต้องในการคำนวณสูงขึ้น โดยกลศาสตร์ควอนตัมจะเหมาะสมที่จะศึกษาการเคลื่อนที่ของวัตถุที่มีขนาดเล็กมาก ซึ่งได้ถูกปรับแต่งให้เข้ากับลักษณะของอะตอมในส่วนของความเป็นคลื่น-อนุภาคในอะตอมและโมเลกุล แต่เมื่อกลศาสตร์ทั้งสองไม่สามารถใช้ได้ จากกรณีที่วัตถุขนาดเล็กเคลื่อนที่ด้วยความเร็วสูง ทฤษฎีสนามควอนตัมจึงเป็นตัวเลือกที่นำมาใช้ในการคำนวณแทนกลศาสตร์ทั้งสอง คำว่า กลศาสตร์ดั้งเดิม ได้ถูกใช้เป็นครั้งแรกในช่วงต้นคริสต์ศตวรรษที่ 20 เพื่อกล่าวถึงระบบทางฟิสิกส์ของไอแซก นิวตันและนักปรัชญาธรรมชาติคนอื่นที่อยู่ร่วมสมัยในช่วงคริสต์ศตวรรษที่ 17 ประกอบกับทฤษฎีทางดาราศาสตร์ในช่วงแรกเริ่มของโยฮันเนส เคปเลอร์จากข้อมูลการสังเกตที่มีความแม่นยำสูงของไทโค บราเฮ และการศึกษาในการเคลื่อนที่ต่าง ๆ ที่อยู่บนโลกของกาลิเลโอ โดยมุมมองของฟิสิกส์ได้ถูกเปลี่ยนแปลงเรื่อยมาอย่างยาวนานก่อนที่จะมีทฤษฎีสัมพัทธภาพและกลศาสตร์ควอนตัม ซึ่งแต่เดิม ในบางแห่งทฤษฎีสัมพัทธภาพของไอน์สไตน์ไม่ถูกจัดอยู่ในกลศาสตร์ดั้งเดิม แต่อย่างไรก็ตามเมื่อเวลาผ่านไป หลายแห่งเริ่มจัดให้สัมพัทธภาพเป็นกลศาสตร์ดั้งเดิมในรูปแบบที่ถูกต้อง และถูกพัฒนามากที่สุด แต่เดิมนั้น การพัฒนาในส่วนของกลศาสตร์ดั้งเดิมมักจะกล่าวถึงกลศาสตร์นิวตัน ซึ่งมีการใช้หลักการทางฟิสิกส์ประกอบกับวิธีการทางคณิตศาสตร์โดยนิวตัน ไลบ์นิซ และบุคคลอื่นที่เกี่ยวข้อง และวิธีการปกติหลายอย่างได้ถูกพัฒนา นำมาสู่การกำหนดกลศาสตร์ครั้งใหม่ ไม่ว่าจะเป็น กลศาสตร์แบบลากรางจ์ และกลศาสตร์แฮมิลตัน ซึ่งสิ่งเหล่านี้ได้ถูกพัฒนาขึ้นเป็นอย่างมากในช่วงคริสต์ศตวรรษที่ 18 และ 19 อีกทั้งได้ขยายความรู้เป็นอย่างมากพร้อมกับกลศาสตร์นิวตันโดยเฉพาะอย่างยิ่งการนำกลศาสตร์เหล่านี้ไปใช้ในกลศาสตร์เชิงวิเคราะห์อีกด้วย ในกลศาสตร์ดั้งเดิม วัตถุที่อยู่ในโลกของความเป็นจริงจะถูกจำลองให้อยู่ในรูปของอนุภาคจุด (วัตถุที่ไม่มีการอ้างอิงถึงขนาด) โดยเคลื่อนที่ของอนุภาคจุดจะมีการกำหนดลักษณะเฉพาะของวัตถุ ได้แก่ ตำแหน่งของวัตถุ มวล และแรงที่กระทำต่อวัตถุ ซึ่งจะกำหนดไว้เป็นตัวเลขที่อาจมีหน่วยกำหนดไว้ และกล่าวถึงมาเป็นลำดับ เมื่อมองจากความเป็นจริง วัตถุต่าง ๆ ที่กลศาสตร์ดั้งเดิมกำหนดไว้ว่าวัตถุมีขนาดไม่เป็นศูนย์เสมอ (ซึ่งถ้าวัตถุที่มีขนาดเล็กมาก ๆ อย่างเช่น อิเล็กตรอน กลศาสตร์ควอนตัมจะอธิบายได้อย่างแม่นยำกว่ากลศาสตร์ดั้งเดิม) วัตถุที่มีขนาดไม่เป็นศูนย์จะมีความซับซ้อนในการศึกษามากกว่าอนุภาคจุดตามทฤษฎี เพราะวัตถุมีความอิสระของมันเอง (Degrees of freedom) อาทิ ลูกตะกร้อสามารถหมุนได้ขณะเคลื่อนที่หลังจากที่ถูกเดาะขึ้นไปบนอากาศ อย่างไรก็ตาม ผลลัพธ์ของอนุภาคจุดสามารถใช้ในการศึกษาจำพวกวัตถุทั่วไปได้โดยสมมุติว่าเป็นวัตถุนั้น หรือสร้างอนุภาคจุดสมมุติหลาย ๆ จุดขึ้นมา ดังเช่นจุดศูนย์กลางมวลของวัตถุที่แสดงเป็นอนุภาคจุด กลศาสตร์ดั้งเดิมใช้สามัญสำนึกเป็นแนวว่าสสารและแรงเกิดขึ้นและมีปฏิสัมพันธ์กันอย่างไร โดยตั้งสมมุติฐานว่าสสารและพลังงานมีความแน่นอน และมีคุณสมบัติที่รู้อยู่แล้ว ได้แก่ ตำแหน่งของวัตถุในปริภูมิ (Space) และความเร็วของวัตถุ อีกทั้งยังสามารถสมมุติว่ามีอิทธิพลโดยตรงกับสิ่งที่อยู่รอบวัตถุในขณะนั้นได้อีกด้วย (หรือเรียกอีกอย่างหนึ่งว่า Principle of locality).

กลศาสตร์ดั้งเดิมและกลศาสตร์ท้องฟ้า · กลศาสตร์ดั้งเดิมและไอแซก นิวตัน · ดูเพิ่มเติม »

กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ

กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ กอทท์ฟรีด วิลเฮล์ม ฟอน ไลบ์นิซ (Gottfried Wilhelm von Leibniz) (1 กรกฎาคม ค.ศ. 1646 (พ.ศ. 2189) ในเมืองไลพ์ซิจ ประเทศเยอรมนี 1 กรกฎาคม ค.ศ. 1646 - 4 พฤศจิกายน ค.ศ. 1716 (พ.ศ. 2259)) เป็นนักปรัชญา, นักวิทยาศาสตร์, นักคณิตศาสตร์, นักการทูต, บรรณารักษ์ และ นักกฎหมาย ชาวเยอรมันเชื้อสายเซิบ เขาเป็นคนที่เริ่มใช้คำว่า "ฟังก์ชัน" สำหรับอธิบายปริมาณที่เกี่ยวกับเส้นโค้ง เช่น ความชันของเส้นโค้ง หรือจุดบางจุดของเส้นโค้งดังกล่าว ไลบ์นิซและนิวตันได้รับการยกย่องร่วมกันว่าเป็นผู้เริ่มพัฒนาแคลคูลัส โดยเฉพาะส่วนของไลบ์นิซในการพัฒนาปริพันธ์และกฎผลคูณ หมวดหมู่:บุคคลที่เกิดในปี พ.ศ. 2189 หมวดหมู่:นักปรัชญา หมวดหมู่:ชาวเยอรมัน หมวดหมู่:นักฟิสิกส์ หมวดหมู่:นักฟิสิกส์ชาวเยอรมัน หมวดหมู่:นักคณิตศาสตร์ หมวดหมู่:นักคณิตศาสตร์ชาวเยอรมัน หมวดหมู่:นักปรัชญาชาวเยอรมัน.

กลศาสตร์ท้องฟ้าและกอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ · กอทท์ฟรีด วิลเฮล์ม ไลบ์นิซและไอแซก นิวตัน · ดูเพิ่มเติม »

ดาราศาสตร์

ราจักรทางช้างเผือก ดาราศาสตร์ คือวิชาวิทยาศาสตร์ที่ศึกษาวัตถุท้องฟ้า (อาทิ ดาวฤกษ์ ดาวเคราะห์ ดาวหาง และดาราจักร) รวมทั้งปรากฏการณ์ทางธรรมชาติต่าง ๆ ที่เกิดขึ้นจากนอกชั้นบรรยากาศของโลก โดยศึกษาเกี่ยวกับวิวัฒนาการ ลักษณะทางกายภาพ ทางเคมี ทางอุตุนิยมวิทยา และการเคลื่อนที่ของวัตถุท้องฟ้า ตลอดจนถึงการกำเนิดและวิวัฒนาการของเอกภพ ดาราศาสตร์เป็นหนึ่งในสาขาของวิทยาศาสตร์ที่เก่าแก่ที่สุด นักดาราศาสตร์ในวัฒนธรรมโบราณสังเกตการณ์ดวงดาวบนท้องฟ้าในเวลากลางคืน และวัตถุทางดาราศาสตร์หลายอย่างก็ได้ถูกค้นพบเรื่อยมาตามยุคสมัย อย่างไรก็ตาม กล้องโทรทรรศน์เป็นสิ่งประดิษฐ์ที่จำเป็นก่อนที่จะมีการพัฒนามาเป็นวิทยาศาสตร์สมัยใหม่ ตั้งแต่อดีตกาล ดาราศาสตร์ประกอบไปด้วยสาขาที่หลากหลายเช่น การวัดตำแหน่งดาว การเดินเรือดาราศาสตร์ ดาราศาสตร์เชิงสังเกตการณ์ การสร้างปฏิทิน และรวมทั้งโหราศาสตร์ แต่ดาราศาสตร์ทุกวันนี้ถูกจัดว่ามีความหมายเหมือนกับฟิสิกส์ดาราศาสตร์ ตั้งแต่คริสต์ศตวรรษที่ 20 เป็นต้นมา ดาราศาสตร์ได้แบ่งออกเป็นสองสาขาได้แก่ ดาราศาสตร์เชิงสังเกตการณ์ และดาราศาสตร์เชิงทฤษฎี ดาราศาสตร์เชิงสังเกตการณ์จะให้ความสำคัญไปที่การเก็บและการวิเคราะห์ข้อมูล โดยการใช้ความรู้ทางกายภาพเบื้องต้นเป็นหลัก ส่วนดาราศาสตร์เชิงทฤษฎีให้ความสำคัญไปที่การพัฒนาคอมพิวเตอร์หรือแบบจำลองเชิงวิเคราะห์ เพื่ออธิบายวัตถุท้องฟ้าและปรากฏการณ์ต่าง ๆ ทั้งสองสาขานี้เป็นองค์ประกอบซึ่งกันและกัน กล่าวคือ ดาราศาสตร์เชิงทฤษฎีใช้อธิบายผลจากการสังเกตการณ์ และดาราศาสตร์เชิงสังเกตการณ์ใช้ในการรับรองผลจากทางทฤษฎี การค้นพบสิ่งต่าง ๆ ในเรื่องของดาราศาสตร์ที่เผยแพร่โดยนักดาราศาสตร์สมัครเล่นนั้นมีความสำคัญมาก และดาราศาสตร์ก็เป็นหนึ่งในวิทยาศาสตร์จำนวนน้อยสาขาที่นักดาราศาสตร์สมัครเล่นยังคงมีบทบาท โดยเฉพาะการค้นพบหรือการสังเกตการณ์ปรากฏการณ์ที่เกิดขึ้นเพียงชั่วคราว ไม่ควรสับสนระหว่างดาราศาสตร์โบราณกับโหราศาสตร์ ซึ่งเป็นความเชื่อที่นำเอาเหตุการณ์และพฤติกรรมของมนุษย์ไปเกี่ยวโยงกับตำแหน่งของวัตถุท้องฟ้า แม้ว่าทั้งดาราศาสตร์และโหราศาสตร์เกิดมาจากจุดร่วมเดียวกัน และมีส่วนหนึ่งของวิธีการศึกษาที่เหมือนกัน เช่นการบันทึกตำแหน่งดาว (ephemeris) แต่ทั้งสองอย่างก็แตกต่างกัน ในปี ค.ศ. 2009 นี้เป็นการครบรอบ 400 ปีของการพิสูจน์แนวคิดเรื่องดวงอาทิตย์เป็นศูนย์กลางของจักรวาล ของ นิโคเลาส์ โคเปอร์นิคัส อันเป็นการพลิกคติและโค่นความเชื่อเก่าแก่เรื่องโลกเป็นศูนย์กลางของจักรวาลของอริสโตเติลที่มีมาเนิ่นนาน โดยการใช้กล้องโทรทรรศน์สังเกตการณ์ทางดาราศาสตร์ของกาลิเลโอซึ่งช่วยยืนยันแนวคิดของโคเปอร์นิคัส องค์การสหประชาชาติจึงได้ประกาศให้ปีนี้เป็นปีดาราศาสตร์สากล มีเป้าหมายเพื่อให้สาธารณชนได้มีส่วนร่วมและทำความเข้าใจกับดาราศาสตร์มากยิ่งขึ้น.

กลศาสตร์ท้องฟ้าและดาราศาสตร์ · ดาราศาสตร์และไอแซก นิวตัน · ดูเพิ่มเติม »

ดาวเคราะห์

วเคราะห์ (πλανήτης; planet หรือ "ผู้พเนจร") คือวัตถุขนาดใหญ่ที่โคจรรอบดาวฤกษ์ ก่อนคริสต์ทศวรรษ 1990 มีดาวเคราะห์ที่เรารู้จักเพียง 8 ดวง (ทั้งหมดอยู่ในระบบสุริยะ) ปัจจุบันเรารู้จักดาวเคราะห์ใหม่อีกมากกว่า 100 ดวง ซึ่งเป็นดาวเคราะห์นอกระบบ คือ โคจรรอบดาวฤกษ์ดวงอื่นที่ไม่ใช่ดวงอาทิตย์ ในปี..

กลศาสตร์ท้องฟ้าและดาวเคราะห์ · ดาวเคราะห์และไอแซก นิวตัน · ดูเพิ่มเติม »

นิโคเลาส์ โคเปอร์นิคัส

นิโคเลาส์ โคเปอร์นิคัส (Nicolaus Copernicus Torinensis, Mikołaj Kopernik มีกอไว กอแปร์ญิก; 19 กุมภาพันธ์ ค.ศ. 1473 – 24 พฤษภาคม ค.ศ. 1543) เป็นนักคณิตศาสตร์และนักดาราศาสตร์สมัยฟื้นฟูศิลปวิทยา ผู้คิดค้นแบบจำลองระบบดวงอาทิตย์เป็นศูนย์กลางสมบูรณ์ ซึ่งดวงอาทิตย์เป็นศูนย์กลางของเอกภพ มิใช่โลกLinton (2004, pp.) อย่างไรก็ดี โคเปอร์นิคัสมิใช่ผู้แรกที่เสนอระบบดวงอาทิตย์เป็นศูนย์กลางในบางรูปแบบ นักคณิตศาสตร์และนักดาราศาสตร์ชาวกรีกคนหนึ่ง ชื่อ อริสตาซูสแห่งซามอส ได้เสนอแนวคิดดังกล่าวมาตั้งแต่ศตวรรษที่ 3 ก่อนคริสตกาลแล้ว กระนั้น มีหลักฐานน้อยมากว่าเขาเคยพัฒนาความคิดของเขาไกลเกินแบบร่างง่าย ๆ เท่านั้น (Dreyer, 1953,. การตีพิมพ์หนังสือ De revolutionibus orbium coelestium (ว่าด้วยการปฏิวัติของทรงกลมฟ้า) ของโคเปอร์นิคัส ก่อนหน้าที่เขาเสียชีวิตไม่นาน ถูกพิจารณาว่าเป็นเหตุการณ์สำคัญในประวัติศาสตร์วิทยาศาสตร์ เป็นการเริ่มต้นการปฏิวัติโคเปอร์นิคัสและมีส่วนสำคัญต่อความรุ่งเรืองของการปฏิวัติวิทยาศาสตร์ที่เกิดขึ้นตามมา ทฤษฎีระบบดวงอาทิตย์เป็นศูนย์กลางอธิบายกลไกของระบบสุริยะในเชิงคณิตศาสตร์ มิใช่ด้วยคำของอริสโตเติล โคเปอร์นิคัสเป็นหนึ่งในผู้เชี่ยวชาญหลายสาขาแห่งสมัยฟื้นฟูศิลปวิทยา เป็นทั้งนักคณิตศาสตร์ นักดาราศาสตร์ นักนิติศาสตร์ที่สำเร็จดุษฎีบัณฑิตในวิกฎหมาย นักฟิสิกส์ ผู้รู้สี่ภาษา นักวิชาการคลาสสิก นักแปล ศิลปิน สงฆ์คาทอลิก ผู้ว่าราชการ นักการทูตและนักเศรษฐศาสตร.

กลศาสตร์ท้องฟ้าและนิโคเลาส์ โคเปอร์นิคัส · นิโคเลาส์ โคเปอร์นิคัสและไอแซก นิวตัน · ดูเพิ่มเติม »

โยฮันเนส เคปเลอร์

ันเนส เคปเลอร์ (Johannes Kepler; 27 ธันวาคม ค.ศ. 1571 - 15 พฤศจิกายน ค.ศ. 1630) นักดาราศาสตร์ นักโหราศาสตร์และนักคณิตศาสตร์ชาวเยอรมัน ผู้มีส่วนสำคัญในการปฏิวัติวงการวิทยาศาสตร์ เขาค้นพบกฎการเคลื่อนที่ของดาวเคราะห์ในงาน Astronomia nova, Harmonice Mundi ของเขา และได้แต่งหนังสือชื่อ Epitome of Copernican Astronomy โยฮันเนส เคปเลอร์ ประกอบอาชีพเป็นครูสอนคณิตศาสตร์ที่โรงเรียน Graz (ภายหลังเปลี่ยนเป็น มหาวิทยาลัย Graz) และเป็นผู้ช่วยของ ไทโค บราเฮ นักคณิตศาสตร์ในความอุปถัมภ์ของจักรพรรดิรูดอร์ฟที่ 2 ผู้ซึ่งรวบรวมรวมข้อมูลของดาวเคราะห์มาตลอดชีวิต และปูทางให้เคปเลอร์ค้นพบกฎการเคลื่อนที่ของดาวเคราะห์ในเวลาต่อมา เขาทำงานด้านทัศนศาสตร์ และช่วยสนับสนุนการค้นพบกล้องโทรทรรศน์ของกาลิเลโอ กาลิเลอี เขาถูกยกย่องว่าเป็น "นักฟิสิกส์ดาราศาสตร์ทฤษฎีคนแรก" แต่คาร์ล ซาแกน ยกย่องเขาในฐานะ "นักโหราศาสตร์ทางวิทยาศาสตร์คนสุดท้าย".

กลศาสตร์ท้องฟ้าและโยฮันเนส เคปเลอร์ · โยฮันเนส เคปเลอร์และไอแซก นิวตัน · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง กลศาสตร์ท้องฟ้าและไอแซก นิวตัน

กลศาสตร์ท้องฟ้า มี 17 ความสัมพันธ์ขณะที่ ไอแซก นิวตัน มี 74 ขณะที่พวกเขามีเหมือนกัน 7, ดัชนี Jaccard คือ 7.69% = 7 / (17 + 74)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง กลศาสตร์ท้องฟ้าและไอแซก นิวตัน หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »