โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท

ทางลัด: ความแตกต่างความคล้ายคลึงกันค่าสัมประสิทธิ์การเปรียบเทียบ Jaccardการอ้างอิง

ความแตกต่างระหว่าง Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท

Spike-timing-dependent plasticity vs. การเข้ารหัสทางประสาท

Spike-timing-dependent plasticity (STDP) เป็นกระบวนการทางชีววิทยาที่ปรับกำลังการเชื่อมต่อกันของเซลล์ประสาทในสมอง และจะขึ้นอยู่กับเวลาที่เซลล์ประสาทหนึ่งส่งกระแสประสาทหรือรับกระแสประสาทโดยเปรียบเทียบกับเซลล์อื่น ๆ STDP สามารถอธิบายเป็นบางส่วนเรื่องพัฒนาการของระบบประสาทที่ขึ้นอยู่กับการทำงาน โดยเฉพาะในเรื่อง long-term potentiation และ long-term depression. การยิงศักยะงานเป็นขบวนหรือเป็นลำดับ ๆ ของเซลล์ประสาท การเข้ารหัสทางประสาท (Neural coding) เป็นการศึกษาทางประสาทวิทยาศาสตร์ เพื่อกำหนดความสัมพันธ์ระหว่างสิ่งเร้ากับการตอบสนองของเซลล์ประสาทเดี่ยว ๆ หรือของกลุ่มเซลล์ประสาท และความสัมพันธ์ระหว่างการทำงานทางไฟฟ้าของเซลล์ประสาทในกลุ่ม โดยอาศัยทฤษฎีว่า การทำงานของเครือข่ายเซลล์ประสาทในสมองจะเป็นตัวแทนข้อมูลทางประสาทสัมผัสและข้อมูลอื่น ๆ นักวิชาการจึงเชื่อว่า เซลล์ประสาทสามารถเข้ารหัสข้อมูลเป็นทั้งแบบดิจิตัลและแบบแอนะล็อก.

ความคล้ายคลึงกันระหว่าง Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท

Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท มี 3 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ศักยะงานประสาทวิทยาศาสตร์เซลล์ประสาท

ศักยะงาน

การเกิดกระแสประสาท ในวิชาสรีรวิทยา ศักยะงาน (action potential) เป็นเหตุการณ์ที่กินเวลาสั้น ๆ ซึ่งศักย์เยื่อหุ้มเซลล์ (membrane potential) ไฟฟ้าของเซลล์เพิ่มและลดลงอย่างรวดเร็ว ตามด้วยแนววิถีต่อเนื่อง ศักยะงานเกิดขึ้นในเซลล์สัตว์หลายชนิด เรียกว่า เซลล์ที่เร้าได้ (excitable cell) ซึ่งรวมถึงเซลล์ประสาท เซลล์กล้ามเนื้อ และเซลล์ไร้ท่อ (endocrine cell) เช่นเดียวกับเซลล์พืชบางเซลล์ ในเซลล์ประสาท ศักยะงานมีบทบาทศูนย์กลางในการสื่อสารเซลล์ต่อเซลล์ ส่วนในเซลล์ประเภทอื่น หน้าที่หลักของศักยะงาน คือ กระตุ้นกระบวนการภายในเซลล์ ตัวอย่างเช่น ในเซลล์กล้ามเนื้อ ศักยะงานเป็นขั้นแรกในชุดเหตุการณ์ที่นำไปสู่การหดตัว ในเซลล์บีตาของตับอ่อน ศักยะงานทำให้เกิดการหลั่งอินซูลิน ศักยะงานในเซลล์ประสาทยังรู้จักในอีกชื่อหนึ่งว่า "กระแสประสาท" หรือ "พลังประสาท" (nerve impulse) หรือ spike ศักยะงานสร้างโดยช่องไอออนที่ควบคุมด้วยศักย์ไฟฟ้า (voltage-gated ion channel) ชนิดพิเศษที่ฝังอยู่ในเยื่อหุ้มเซลล์ ช่องเหล่านี้ถูกปิดเมื่อศักย์เยื่อหุ้มเซลล์ใกล้กับศักยะพัก (resting potential) แต่จะเริ่มเปิดอย่างรวดเร็วหากศักย์เยื่อหุ้มเซลล์เพิ่มขึ้นถึงค่าระดับกั้น (threshold) ที่นิยามไว้อย่างแม่นยำ เมื่อช่องเปิด จะทำให้ไอออนโซเดียมไหลเข้ามาในเซลล์ประสาท ซึ่งเปลี่ยนแปลงประจุไฟฟ้า (electrochemical gradient) การเปลี่ยนแปลงนี้ยิ่งเพิ่มศักย์เยื่อหุ้มเซลล์เข้าไปอีก ทำให้ช่องเปิดมากขึ้น และเกิดกระแสไฟฟ้าแรงขึ้นตามลำดับ กระบวนการดังกล่าวดำเนินไปกระทั่งช่องไอออนที่มีอยู่เปิดออกทั้งหมด ทำให้ศักย์เยื่อหุ้มเซลล์แกว่งขึ้นอย่างมาก การไหล่เข้าอย่างรวดเร็วของไอออนโซเดียมทำให้สภาพขั้วของเยื่อหุ้มเซลล์กลายเป็นตรงข้าม และช่องไอออนจะหยุดทำงาน (inactivate) อย่างรวดเร็ว เมื่อช่องโซเดียมปิด ไอออนโซเดียมจะไม่สามารถเข้าสู่เซลล์ประสาทได้อีกต่อไป และจะถูกลำเลียงแบบใช้พลังงานออกจากเยื่อหุ้มเซลล์ จากนั้น ช่องโปแทสเซียมจะทำงาน และมีกระแสไหลออกของไอออนโปแทสเซียม ซึ่งคืนประจุไฟฟ้ากลับสู่สถานะพัก หลังเกิดศักยะงานแล้ว จะมีการเปลี่ยนแปลงที่เรียกว่า ระยะดื้อ (refractory period) เนื่องจากกระแสโปแทสเซียมเพิ่มเติม กลไกนี้ป้องกันมิให้ศักยะงานเดินทางย้อนกลับ ในเซลล์สัตว์ มีศักยะงานอยู่สองประเภทหลัก ประเภทหนึ่งสร้างโดย ช่องโซเดียมที่ควบคุมด้วยศักย์ไฟฟ้า อีกประเภทหนึ่งโดยช่องแคลเซียมที่ควบคุมด้วยศักย์ไฟฟ้า ศักยะงานที่เกิดจากโซเดียมมักคงอยู่น้อยกว่าหนึ่งมิลลิวินาที ขณะที่ศักยะงานที่เกิดจากแคลเซียมอาจอยู่ได้นานถึง 100 มิลลิวินาทีหรือกว่านั้น.

Spike-timing-dependent plasticityและศักยะงาน · การเข้ารหัสทางประสาทและศักยะงาน · ดูเพิ่มเติม »

ประสาทวิทยาศาสตร์

ประสาทวิทยาศาสตร์ (Neuroscience) เป็นการศึกษาเกี่ยวกับ โครงสร้าง (neuroanatomy), หน้าที่, การเจริญเติบโต (neural development), พันธุศาสตร์, ชีวเคมี, สรีรวิทยา, เภสัชวิทยา และพยาธิวิทยาของระบบประสาท นอกจากนี้การศึกษาเกี่ยวกับพฤติกรรมและการเรียนรู้ยังถือว่าเป็นสาขาของประสาทวิทยาอีกด้วย การศึกษาทางชีววิทยาของสมองของมนุษย์มีเนื้อหาเกี่ยวโยงกันของสาขาวิชาต่าง ๆ ในหลายระดับ มีตั้งแต่ระดับโมเลกุลไปจนถึงระดับเซลล์ (นิวรอน) ซึ่งมีทั้งระดับการทำงานของกลุ่มของนิวรอนจำนวนน้อย เช่น ในคอลัมน์ของสมองส่วนคอร์เทกซ์ (cortical columns) ไปจนถึงระดับการทำงานของระบบต่าง ๆ ในสมองที่ทำหน้าที่เกี่ยวกับระบบประสาทการมองเห็น และไปจนถึงระดับการทำงานของระบบขนาดใหญ่ เช่น การทำงานของสมองส่วนซีรีบรัลคอร์เทกซ์ หรือ ซีรีเบลลัม และการทำงานของสมองทั้งหมด ระดับสูงสุดของการศึกษาวิชาประสาทวิทยา คือ การนำวิธีการศึกษาทางประสาทวิทยาไปรวมกับการศึกษาทางปริชานประสาทวิทยาศาสตร์ หรือประสาทวิทยาศาสตร์เกี่ยวกับการรับรู้ (cognitive neuroscience) อันเป็นสาขาวิชาที่พัฒนามาจากวิชา จิตวิทยาการรับรู้ (cognitive psychology) แต่ปัจจุบันได้แยกออกมาเป็นสาขาวิชาหนึ่ง ปริชานประสาทวิทยาศาสตร์เป็นสาขาวิชาที่ทำให้เราเข้าใจการทำงานของจิตใจ (mind) และการมีสติ (consciousness) จากเหตุมายังผล ซึ่งแตกต่างจากการศึกษาทางวิชาจิตวิทยาอันเป็นการศึกษาจากผลมายังเหตุ นักวิทยาศาสตร์บางท่านเชื่อว่าปริชานประสาทวิทยาศาสตร์สามารถอธิบายสิ่งต่าง ๆ เพิ่มเติมจากการศึกษาทางจิตวิทยา และบางทีอาจจะดีกว่าจนกระทั่งมาแทนที่ความรู้ทางจิตวิทยาที่เชื่อกันมาได้ หัวข้อการศึกษาที่เกี่ยวข้องกับวิชาประสาทวิทยาศาสตร์ อาทิเช่น.

Spike-timing-dependent plasticityและประสาทวิทยาศาสตร์ · การเข้ารหัสทางประสาทและประสาทวิทยาศาสตร์ · ดูเพิ่มเติม »

เซลล์ประสาท

ซลล์ประสาท หรือ นิวรอน (neuron,, หรือ) เป็นเซลล์เร้าได้ด้วยพลัง ของเซลล์อสุจิที่ทำหน้าที่ประมวลและส่งข้อมูลผ่านสัญญาณไฟฟ้าและเคมี โดยส่งผ่านจุดประสานประสาท (synapse) ซึ่งเป็นการเชื่อมต่อโดยเฉพาะกับเซลล์อื่น ๆ นิวรอนอาจเชื่อมกันเป็นโครงข่ายประสาท (neural network) และเป็นองค์ประกอบหลักของสมองกับไขสันหลังในระบบประสาทกลาง (CNS) และของปมประสาท (ganglia) ในระบบประสาทนอกส่วนกลาง (PNS) นิวรอนที่ทำหน้าที่โดยเฉพาะ ๆ รวมทั้ง.

Spike-timing-dependent plasticityและเซลล์ประสาท · การเข้ารหัสทางประสาทและเซลล์ประสาท · ดูเพิ่มเติม »

รายการด้านบนตอบคำถามต่อไปนี้

การเปรียบเทียบระหว่าง Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท

Spike-timing-dependent plasticity มี 4 ความสัมพันธ์ขณะที่ การเข้ารหัสทางประสาท มี 123 ขณะที่พวกเขามีเหมือนกัน 3, ดัชนี Jaccard คือ 2.36% = 3 / (4 + 123)

การอ้างอิง

บทความนี้แสดงความสัมพันธ์ระหว่าง Spike-timing-dependent plasticityและการเข้ารหัสทางประสาท หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่:

Hey! เราอยู่ใน Facebook ตอนนี้! »