โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

พันธะไฮโดรเจน

ดัชนี พันธะไฮโดรเจน

น้ำ ซึ่งในรูปแทนด้วยเส้นประสีดำ ส่วนเส้นขาวทึบเป็นพันธะโควาเลนต์ที่ยึดเกาะกันระหว่าง ออกซิเจน (สีแดง) และ ไฮโดรเจน (สีขาว) พันธะไฮโดรเจน (Hydrogen bond) เป็นอันตรกิริยานอนโคเวเลนต์ชนิดหนึ่ง ที่เกิดขึ้นระหว่างอะตอมที่มีสภาพลบหรือมีอิเล็กโทรเนกาทิวิตีสูงกับอะตอมของไฮโดรเจนที่สร้างพันธะโควาเลนต์กับอะตอมที่มีอิเล็กโทรเนกาทิวิตีสูงอีกอะตอมหนึ่ง พันธะไฮโดรเจนจัดเป็นแรงทางไฟฟ้าสถิตระหว่างสภาพขั้วบวกและสภาพขั้วลบ หรือเป็นอันตรกิริยาแบบขั้วคู่-ขั้วคู่ ทั้งนี้ พันธะไฮโดรเจนอาจเกิดขึ้นภายในโมเลกุลหรือระหว่างโมเลกุลก็ได้ พลังงานพันธะไฮโดรเจนอยู่ระหว่าง 5-30 kJ/mol ซึ่งมีความแข็งแรงมากกว่าแรงแวนเดอร์วาล์ว แต่อ่อนกว่าพันธะโคเวเลนต์และพันธะไอออนิก อนึ่ง ในโมเลกุลขนาดใหญ่ เช่น โปรตีน หรือ กรดนิวคลีอิก ก็อาจมีพันธะไฮโดรเจนภายในโมเลกุลได้ นิยามโดย IUPAC "พันธะไฮโดรเจนเป็นอันตรกิริยาแบบดึงดูดระหว่างอะตอมไฮโดรเจนจากโมเลกุลหรือส่วนของโมเลกุล X-H โดยที่ X มีสภาพลบหรืออิเล็กโทรเนกาติวิตีสูงกว่าไฮโดรเจน กับอะตอมหรือกลุ่มของอะตอมในโมเลกุลเดียวกันหรือโมเลกุลอื่นที่มีหลักฐานแสดงการเกิดพันธะ" โดยทั่วไปแล้ว พันธะไฮโดรเจนจะถูกแสดงด้วยสัญลักษณ์ X-H…Y-X เมื่อจุดสามจุด (…) แทนพันธะไฮโดรเจน X-H แทนผู้ให้ (donor) พันธะไฮโดรเจน ตัวรับ (acceptor) อาจจะเป็นอะตอมหรือไอออนลบ Y หรือส่วนของโมเลกุล Y-Z เมื่อ Y สร้างพันธะกับ Z ในบางกรณี X และ Y อาจจะเป็นอะตอมชนิดเดียวกัน และ ระยะ X-H และ Y-H เท่ากัน ทำให้เกิดพันธะไฮโดรเจนแบบสมมาตร (symmetric hydrogen bond) และในบางครั้งจะพบว่า ตัวรับพันธะไฮโดรเจนอาจจะเป็นอิเล็กตรอนคู่โดดเดี่ยวของ Y หรือพันธะไพ (pi bond) ของ Y-Z.

13 ความสัมพันธ์: พันธะแฮโลเจนพันธะโลหะพันธะโคเวเลนต์พันธะไอออนิกพันธะเคมีกรดนิวคลีอิกออกซิเจนอะตอมอันตรกิริยานอนโคเวเลนต์โมเลกุลโปรตีนไฟฟ้าสถิตไฮโดรเจน

พันธะแฮโลเจน

ันธะแฮโลเจนที่เกิดขึ้นระหว่างโมเลกุลของไอโอโดคลอไรด์และโมเลกุลเอมีน แสดงด้วยเส้นประ พันธะแฮโลเจน (halogen bond) เป็นอันตรกิริยานอนโคเวเลนต์ (noncovalent interactions) ชนิดหนึ่ง ที่เกิดขึ้นระหว่างอะตอมของธาตุแฮโลเจนที่มีสมบัติเป็นกรดลิวอิส (lewis acid) กับอะตอมที่มีสมบัติเป็นเบสลิวอิส (Lewis Base) และจะเกิดขึ้นเมื่ออะตอมของธาตุแฮโลเจนเป็นอิเล็กโตรไฟล์ (electrophile) เท่านั้น.

ใหม่!!: พันธะไฮโดรเจนและพันธะแฮโลเจน · ดูเพิ่มเติม »

พันธะโลหะ

ันธะโลหะ (Metallic bonding) เป็นพันธะภายในโลหะซึ่งเกี่ยวข้องกับ การเคลื่อนย้าย อิเล็กตรอน อิสระระหว่างแลตทิซของอะตอมโลหะ ดังนั้นพันธะโลหะจึงอาจเปรียบได้กับเกลือที่หลอมเหลวอะตอมของโลหะมีอิเล็กตรอนพิเศษเฉพาะในวงโคจรชั้นนอกของมันเทียบกับคาบ (period) หรือระดับพลังงานของพวกมัน อิเล็กตรอนที่เคลื่อนย้ายเหล่านี้เปรียบได้กับทะเลอิเล็กตรอน(Sea of Electrons) ล้อมรอบแลตทิชขนาดใหญ่ของไอออนบวก ยังไม่สามารถเขียนเป็นสูตรทางเคมีได้ เพราะไม่ทราบจำนวนอะตอมที่แท้จริง พันธะโลหะอาจจะมีเป็นล้าน ๆ อะตอมก็ได้ พันธะโลหะเทียบได้กับพันธะโควาเลนต์ที่เป็น นอน-โพลาร์ ที่จะไม่มีในธาตุโลหะบริสุทธ์ หรือมีน้อยมากในโลหะผสม ความแตกต่าง อิเล็กโตรเนกาทิวิตีระหว่างอะตอม ซึ่งมีส่วนในปฏิกิริยาพันธะ และอิเล็กตรอนที่เกี่ยวข้องในปฏิกิริยาจะเคลื่อนย้ายข้ามระหว่างโครงสร้างผลึกของโลหะ พันธะโลหะเป็นแรงดึงดูดไฟฟ้าสถิต (electrostatic attraction) ระหว่างอะตอม หรือไออนของโลหะ และอิเล็กตรอนอิสระ(delocalised electrons) นี่คือเหตุว่าทำไมอะตอมหรือชั้นของมันยอมให้มีการเลื่อนไถลไปมาระหว่างกันและกันได้ เป็นผลให้โลหะมีคุณสมบัติที่สามารถตีเป็นแผ่นหรือดึงเป็นเส้นได้.

ใหม่!!: พันธะไฮโดรเจนและพันธะโลหะ · ดูเพิ่มเติม »

พันธะโคเวเลนต์

ในโมเลกุลของฟลูออรีน อะตอมของธาตุฟลูออรีนสองอะตอมสร้างพันธะโคเวเลนต์กัน พันธะโคเวเลนต์ (Covalent bond) คือพันธะเคมี ภายในโมเลกุลลักษณะหนึ่ง พันธะโคเวเลนต์เกิดจากอะตอมสองอะตอมใช้เวเลนซ์อิเล็กตรอนหนึ่งคู่หรือมากกว่าร่วมกัน ทำให้เกิดแรงดึงดูดที่รวมอะตอมเป็นโมเลกุลขึ้น อะตอมมักสร้างพันธะโคเวเลนต์เพื่อเติมวงโคจรอิเล็กตรอนรอบนอกสุดให้เต็ม ดังนั้น อะตอมที่สร้างพันธะโคเวเลนต์จึงมักมีเวเลนซ์อิเล็กตรอนอยู่มาก เช่น ธาตุหมู่ VI และหมู่ VII เป็นต้น พันธะโคเวเลนต์แข็งแรงกว่าพันธะไฮโดรเจนและมีความแข็งแรงพอ ๆ กับพันธะไอออนิก พันธะโคเวเลนต์มักเกิดขึ้นระหว่างอะตอมที่มีค่าอิเล็กโตรเนกาทิวิตีใกล้เคียงกัน ธาตุอโลหะมีแนวโน้มที่จะสร้างพันธะโคเวเลนต์มากกว่าธาตุโลหะซึ่งมักสร้างพันธะโลหะ เนื่องจากอิเล็กตรอนของธาตุโลหะสามารถเคลื่อนอย่างอิสระ ในทางกลับกัน อิเล็กตรอนของธาตุอโลหะไม่สามารถเคลื่อนที่ได้อย่างอิสระนัก การใช้อิเล็กตรอนร่วมกันจึงเป็นทางเลือกเดียวในการสร้างพันธะกับธาตุที่มีสมบัติคล้าย ๆ กัน อย่างไรก็ดี พันธะโคเวเลนต์ที่มีโลหะนั้นมีความสำคัญอย่างยิ่งในการเร่งปฏิกิริยา ตัวอย่างเช่น พันธะโคเวเลนต์ระหว่างสารอินทรีย์กับโลหะเป็นเครื่องมือสำคัญของกระบวนการสร้างพอลิเมอร์หลายๆ กระบวนการ เป็นต้น(cr.ดร.วัชราฃรณ์ ลาบา).

ใหม่!!: พันธะไฮโดรเจนและพันธะโคเวเลนต์ · ดูเพิ่มเติม »

พันธะไอออนิก

Sodium and fluorine undergoing a redox reaction to form sodium fluoride. Sodium loses its outer electron to give it a stable electron configuration, and this electron enters the fluorine atom exothermically. The oppositely charged ions - typically a great many of them - are then attracted to each other to form a solid. พันธะไอออนิก (Ionic bonding) เป็นพันธะเคมีชนิดหนึ่ง เกิดจากที่อะตอมหรือกลุ่มของอะตอมสร้างพันธะกันโดยที่อะตอมหรือกลุ่มของอะตอมให้อิเล็กตรอนกับอะตอมหรือกลุ่มของอะตอม ทำให้กลายเป็นประจุบวก ในขณะที่อะตอมหรือกลุ่มของอะตอมที่ได้รับอิเล็กตรอนนั้นกลายเป็นประจุลบ เนื่องจากทั้งสองกลุ่มมีประจุตรงกันข้ามกันจะดึงดูดกัน ทำให้เกิดพันธะไอออน โดยทั่วไปพันธะชนิดนี้มักเกิดขึ้นระหว่างโลหะกับอโลหะ โดยอะตอมที่ให้อิเล็กตรอนมักเป็นโลหะ ทำให้โลหะนั้นมีประจุบวก และอะตอมที่รับอิเล็กตรอนมักเป็นอโลหะ จึงมีประจุลบ ไอออนที่พันธะไอออนมีความแข็งแรงมากกว่าพันธะไฮโดรเจน แต่แข็งแรงพอ ๆ กับพันธะโคเวเลนต.

ใหม่!!: พันธะไฮโดรเจนและพันธะไอออนิก · ดูเพิ่มเติม »

พันธะเคมี

ันธะเคมี (อังกฤษ: Chemical Bond) คือ แรงยึดเหนี่ยวที่เกิดขึ้นระหว่างอะตอมหรือกลุ่มของอะตอมเพื่อเกิดเป็นกลุ่มที่เสถียรและเป็นอิสระในระดับโมเลกุล ลักษณะเฉพาะที่สำคัญของพันธะเคมีในโมเลกุลคือจะปรากฏในบริเวณระหว่างนิวเคลียสของอะตอม ทำให้มีการเปลี่ยนแปลงพลังงานจนอยู่ในช่วงที่เหมาะสม ซึ่งอาจจะเกิดเป็นพันธะโคเวเลนต์ พันธะไอออนิก หรือพันธะโลหะ ได้ อนึ่ง การศึกษาเรื่องพันธะเคมีทำให้สามารถเข้าใจและทำนายสมบัติทางกายภาพและทางเคมีของสารได้.

ใหม่!!: พันธะไฮโดรเจนและพันธะเคมี · ดูเพิ่มเติม »

กรดนิวคลีอิก

รงสร้างของดีเอ็นเอเป็นเกลียวคู่ กรดนิวคลีอิก (nucleic acid) เป็นพอลิเมอร์ของนิวคลีโอไทด์ ที่ต่อกันด้วยพันธะฟอสโฟไดเอสเทอร์ (phosphodiester bond) โดยที่หมู่ของฟอสเฟตที่เป็นส่วนประกอบของพันธะจะเชื่อมโยงระหว่างหมู่ ไฮดรอกซิลที่ตำแหน่ง 5' ของนิวคลีโอไทด์โมเลกุลหนึ่งกับหมู่ไฮดรอกซิลที่ตำแหน่ง 3' ในโมเลกุลถัดไป จึงทำให้นิวคลีโอไทด์มีโครงสร้างของสันหลัง (backbone) เป็นฟอสเฟตกับน้ำตาลและมีแขนงข้างเป็นเบส อาจจำแนกได้เป็น DNA และ RNA.

ใหม่!!: พันธะไฮโดรเจนและกรดนิวคลีอิก · ดูเพิ่มเติม »

ออกซิเจน

ออกซิเจน (Oxygen) เป็นธาตุในตารางธาตุที่มีสัญลักษณ์ O และเลขอะตอม 8 ธาตุนี้พบมาก ทั้งบนโลกและทั่วทั้งจักรวาล โมเลกุลออกซิเจน (O2 หรือที่มักเรียกว่า free oxygen) บนโลกมีความไม่เสถียรทางเทอร์โมไดนามิกส์จึงเกิดปฏิกิริยาออกซิเดชันกับธาตุอื่น ๆ ได้ง่าย ออกซิเจนเกิดขึ้นครั้งแรกในโลกจากการสังเคราะห์ด้วยแสงของแบคทีเรียและพื.

ใหม่!!: พันธะไฮโดรเจนและออกซิเจน · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: พันธะไฮโดรเจนและอะตอม · ดูเพิ่มเติม »

อันตรกิริยานอนโคเวเลนต์

การจัดเรียงตัวของโมเลกุลในไนลอนโดยมีพันธะนอนโคเวเลนต์ คือ พันธะไฮโดรเจนเชื่อมต่อระหว่างโมเลกุล แสดงด้วยเส้นประ อันตรกิริยานอนโคเวเลนต์ (Noncovalent Interactions) หมายถึง อันตรกิริยาที่ไม่ใช่พันธะโคเวเลนต์ หรืออาจจะเรียกได้ว่าเป็นอันตรกิริยาระหว่างโมเลกุล (Intermolecular Interactions) หรือแรงระหว่างโมเลกุล (Intermolecular Forces) โดยมากแล้วมักจะพบในโมเลกุลที่มีขนาดใหญ่ซึ่งเกิดจากแรงไฟฟ้าสถิต อันตรกิริยานอนโคเวเลนต์มีความสำคัญในการศึกษาโมเลกุลขนาดใหญ่ (Macromolecules) และในเคมีซุปราโมเลกุลาร์ (Supramolecular Chemistry).

ใหม่!!: พันธะไฮโดรเจนและอันตรกิริยานอนโคเวเลนต์ · ดูเพิ่มเติม »

โมเลกุล

โครงสร้างสามมิติ (ซ้ายและกลาง) และโครงสร้างสองมิติ (ขวา) ของโมเลกุลเทอร์พีนอย โมเลกุล (molecule) เป็นส่วนที่เล็กที่สุดของสสารซึ่งสามารถดำรงอยู่ได้ตามลำพังและยังคงความเป็นสารดังกล่าวไว้ได้ โมเลกุลประกอบด้วยอะตอมของธาตุมาเกิดพันธะเคมีกันกลายเป็นสารประกอบชนิดต่าง ๆ ใน 1 โมเลกุล อาจจะประกอบด้วยอะตอมของธาตุทางเคมีตัวเดียว เช่น ออกซิเจน (O2) หรืออาจจะมีหลายธาตุก็ได้ เช่น น้ำ (H2O) ซึ่งเป็นการประกอบร่วมกันของ ไฮโดรเจน 2 อะตอมกับ ออกซิเจน 1 อะตอม หากโมเลกุลหลายโมเลกุลมาเกิดพันธะเคมีต่อกัน ก็จะทำให้เกิดสสารขนาดใหญ่ขึ้นมาได้ เช่น (H2O) รวมกันหลายโมเลกุล เป็นน้ำ มโลเกุล มโลเกุล หมวดหมู่:โมเลกุล.

ใหม่!!: พันธะไฮโดรเจนและโมเลกุล · ดูเพิ่มเติม »

โปรตีน

3 มิติของไมโอโกลบิน (โปรตีนชนิดหนึ่ง) โปรตีน (protein) เป็นสารประกอบชีวเคมี ซึ่งประกอบด้วยพอลิเพปไทด์หนึ่งสายหรือมากกว่า ที่พับกันเป็นรูปทรงกลมหรือเส้นใย โดยทำหน้าที่อำนวยกระบวนการทางชีววิทยา พอลิเพปไทด์เป็นพอลิเมอร์สายเดี่ยวที่เป็นเส้นตรงของกรดอะมิโนที่เชื่อมเข้ากันด้วยพันธะเพปไทด์ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโนของกรดอะมิโนเหลือค้าง (residue) ที่อยู่ติดกัน ลำดับกรดอะมิโนในโปรตีนกำหนดโดยลำดับของยีน ซึ่งเข้ารหัสในรหัสพันธุกรรม โดยทั่วไป รหัสพันธุกรรมประกอบด้วยกรดอะมิโนมาตรฐาน 20 ชนิด อย่างไรก็ดี สิ่งมีชีวิตบางชนิดอาจมีซีลีโนซิสตีอีน และไพร์โรไลซีนในกรณีของสิ่งมีชีวิตโดเมนอาร์เคียบางชนิด ในรหัสพันธุกรรมด้วย ไม่นานหรือระหว่างการสังเคราะห์ สารเหลือค้างในโปรตีนมักมีขั้นปรับแต่งทางเคมีโดยกระบวนการการปรับแต่งหลังทรานสเลชัน (posttranslational modification) ซึ่งเปลี่ยนแปลงคุณสมบัติทางกายภาพและทางเคมี การจัดเรียง ความเสถียร กิจกรรม และที่สำคัญที่สุด หน้าที่ของโปรตีนนั้น บางครั้งโปรตีนมีกลุ่มที่มิใช่เพปไทด์ติดอยู่ด้วย ซึ่งสามารถเรียกว่า โปรสทีติกกรุป (prosthetic group) หรือโคแฟกเตอร์ โปรตีนยังสามารถทำงานร่วมกันเพื่อบรรลุหน้าที่บางอย่าง และบ่อยครั้งที่โปรตีนมากกว่าหนึ่งชนิดรวมกันเพื่อสร้างโปรตีนเชิงซ้อนที่มีความเสถียร หนึ่งในลักษณะอันโดดเด่นที่สุดของพอลิเพปไทด์คือความสามารถจัดเรียงเป็นขั้นก้อนกลมได้ ขอบเขตซึ่งโปรตีนพับเข้าไปเป็นโครงสร้างตามนิยามนั้น แตกต่างกันไปมาก ปรตีนบางชนิดพับตัวไปเป็นโครงสร้างแข็งอย่างยิ่งโดยมีการผันแปรเล็กน้อย เป็นแบบที่เรียกว่า โครงสร้างปฐมภูมิ ส่วนโปรตีนชนิดอื่นนั้นมีการจัดเรียงใหม่ขนานใหญ่จากโครงสร้างหนึ่งไปยังอีกโครงสร้างหนึ่ง การเปลี่ยนแปลงโครงสร้างนี้มักเกี่ยวข้องกับการส่งต่อสัญญาณ ดังนั้น โครงสร้างโปรตีนจึงเป็นสื่อกลางซึ่งกำหนดหน้าที่ของโปรตีนหรือกิจกรรมของเอนไซม์ โปรตีนทุกชนิดไม่จำเป็นต้องอาศัยกระบวนการจัดเรียงก่อนทำหน้าที่ เพราะยังมีโปรตีนบางชนิดทำงานในสภาพที่ยังไม่ได้จัดเรียง เช่นเดียวกับโมเลกุลใหญ่ (macromolecules) อื่น ดังเช่น พอลิแซกคาไรด์และกรดนิวคลีอิก โปรตีนเป็นส่วนสำคัญของสิ่งมีชีวิตและมีส่วนเกี่ยวข้องในแทบทุกกระบวนการในเซลล์ โปรตีนจำนวนมากเป็นเอนไซม์ซึ่งเร่งปฏิกิริยาทางชีวเคมี และสำคัญต่อกระบวนการเมตาบอลิซึม โปรตีนยังมีหน้าที่ด้านโครงสร้างหรือเชิงกล อาทิ แอกตินและไมโอซินในกล้ามเนื้อและโปรตีนในไซโทสเกเลตอน ซึ่งสร้างเป็นระบบโครงสร้างค้ำจุนรูปร่างของเซลล์ โปรตีนอื่นสำคัญในการส่งสัญญาณของเซลล์ การตอบสนองของภูมิคุ้มกัน การยึดติดกันของเซลล์ และวัฏจักรเซลล์ โปรตีนยังจำเป็นในการกินอาหารของสัตว์ เพราะสัตว์ไม่สามารถสังเคราะห์กรดอะมิโนทั้งหมดตามที่ต้องการได้ และต้องได้รับกรดอะมิโนที่สำคัญจากอาหาร ผ่านกระบวนการย่อยอาหาร สัตว์จะแตกโปรตีนที่ถูกย่อยเป็นกรดอะมิโนอิสระซึ่งจะถูกใช้ในเมตาบอลิซึมต่อไป โปรตีนอธิบายเป็นครั้งแรกโดยนักเคมีชาวดัตช์ Gerardus Johannes Mulder และถูกตั้งชื่อโดยนักเคมีชาวสวีเดน Jöns Jacob Berzelius ใน..

ใหม่!!: พันธะไฮโดรเจนและโปรตีน · ดูเพิ่มเติม »

ไฟฟ้าสถิต

นามไฟฟ้าสถิตที่เกิดจากการกระจายตัวของประจุ (+) ส่วนเกิน ไฟฟ้าสถิต (Static electricity) คือความไม่สมดุลย์ของประจุไฟฟ้าภายในหรือบนพื้นผิวของวัสดุหนึ่ง ประจุยังคงอยู่กับที่จนกระทั่งมันสามารถจะเคลื่อนที่โดยอาศัยการไหลของอิเล็กตรอน (กระแสไฟฟ้า) หรือมีการปลดปล่อยประจุ (electrical discharge) ไฟฟ้าสถิตมีชื่อที่ขัดกับไฟฟ้ากระแสที่ไหลผ่านเส้นลวดหรือตัวนำอื่นและนำส่งพลังงาน ประจุไฟฟ้าสถิตสามารถสร้างขึ้นได้เมื่อไรก็ตามที่สองพื้นผิวสัมผัสกันและแยกจากกัน และอย่างน้อยหนึ่งในพื้นผิวนั้นมีความต้านทานสูงต่อกระแสไฟฟ้า (และดังนั้นมันจึงเป็นฉนวนไฟฟ้า) ผลกระทบทั้งหลายจากไฟฟ้าสถิตจะคุ้นเคยกับคนส่วนใหญ่เพราะผู้คนสามารถรู้สึก, ได้ยิน, และแม้แต่ได้เห็นประกายไฟเมื่อประจุส่วนเกินจะถูกทำให้เป็นกลางเมื่อถูกนำเข้ามาใกล้กับตัวนำไฟฟ้าขนาดใหญ่ (เช่นเส้นทางที่ไปลงดิน) หรือภูมิภาคที่มีประจุส่วนเกินที่มีขั้วตรงข้าม (บวกหรือลบ) ปรากฏการณ์ที่คุ้นเคยของช็อกจากไฟฟ้าสถิต หรือที่เจาะจงมากขึ้นคือการปลดปล่อยไฟฟ้าสถิต (electrostatic discharge) จะเกิดจากการเป็นกลางของประจุ ประจุไฟฟ้าเป็นปริมาณทางไฟฟ้าปริมาณหนึ่งที่กำหนดขึ้นธรรมชาติ ของสสารจะประกอบด้วยหน่วยย่อยๆ  ที่มีลักษณะและ มีสมบัติเหมือนกันที่เรียกว่า อะตอม(atom)ภายในอะตอม จะประกอบด้วยอนุภาคมูลฐาน3ชนิดได้แก่  โปรตอน (proton)  นิวตรอน (neutron) และ อิเล็กตรอน (electron)โดยที่โปรตอนมีประจุไฟฟ้าบวกกับนิวตรอนที่เป็นกลางทางไฟฟ้ารวมกันอยู่เป็นแกนกลางเรียกว่านิวเคลียส (nucleus) ส่วนอิเล็กตรอน มี ประจุ ไฟฟ้าลบ จะอยู่รอบๆนิวเคลี.

ใหม่!!: พันธะไฮโดรเจนและไฟฟ้าสถิต · ดูเพิ่มเติม »

ไฮโดรเจน

รเจน (Hydrogen; hydrogenium ไฮโดรเจเนียม) เป็นธาตุเคมีที่มีเลขอะตอม 1 สัญลักษณ์ธาตุคือ H มีน้ำหนักอะตอมเฉลี่ย 1.00794 u (1.007825 u สำหรับไฮโดรเจน-1) ไฮโดรเจนเป็นธาตุที่เบาที่สุดและพบมากที่สุดในเอกภพ ซึ่งคิดเป็นมวลธาตุเคมีประมาณร้อยละ 75 ของเอกภพ ดาวฤกษ์ในลำดับหลักส่วนใหญ่ประกอบด้วยไฮโดรเจนในสถานะพลาสมา ธาตุไฮโดรเจนที่เกิดขึ้นเองตามธรรมชาติหาได้ค่อนข้างยากบนโลก ไอโซโทปที่พบมากที่สุดของไฮโดรเจน คือ โปรเทียม (ชื่อพบใช้น้อย สัญลักษณ์ 1H) ซึ่งมีโปรตอนหนึ่งตัวแต่ไม่มีนิวตรอน ในสารประกอบไอออนิก โปรเทียมสามารถรับประจุลบ (แอนไอออนซึ่งมีชื่อว่า ไฮไดรด์ และเขียนสัญลักษณ์ได้เป็น H-) หรือกลายเป็นสปีซีประจุบวก H+ ก็ได้ แคตไอออนหลังนี้เสมือนว่ามีเพียงโปรตอนหนึ่งตัวเท่านั้น แต่ในความเป็นจริง แคตไอออนไฮโดรเจนในสารประกอบไอออนิกเกิดขึ้นเป็นสปีซีที่ซับซ้อนกว่าเสมอ ไฮโดรเจนเกิดเป็นสารประกอบกับธาตุส่วนใหญ่และพบในน้ำและสารประกอบอินทรีย์ส่วนมาก ไฮโดรเจนเป็นส่วนสำคัญในการศึกษาเคมีกรด-เบส โดยมีหลายปฏิกิริยาแลกเปลี่ยนโปรตอนระหว่างโมเลกุลละลายได้ เพราะเป็นอะตอมที่เรียบง่ายที่สุดเท่าที่ทราบ อะตอมไฮโดรเจนจึงได้ใช้ในทางทฤษฎี ตัวอย่างเช่น เนื่องจากเป็นอะตอมที่เป็นกลางทางไฟฟ้าเพียงชนิดเดียวที่มีผลเฉลยเชิงวิเคราะห์ของสมการชเรอดิงเงอร์ การศึกษาการพลังงานและพันธะของอะตอมไฮโดรเจนได้มีบทบาทสำคัญในการพัฒนากลศาสตร์ควอนตัม มีการสังเคราะห์แก๊สไฮโดรเจนขึ้นเป็นครั้งแรกในต้นคริสต์ศตวรรษที่ 16 โดยการผสมโลหะกับกรดแก่ ระหว่าง..

ใหม่!!: พันธะไฮโดรเจนและไฮโดรเจน · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »