เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

ทรงกลม n มิติ

ดัชนี ทรงกลม n มิติ

ในทางคณิตศาสตร์ ทรงกลม n มิติ หมายถึงทรงกลมในมิติใดๆ โดยสมการของทรงกลม n มิติ สามารถเขียนได้ในรูปของ (x_1,x_2,...,x_n) ดังนี้.

สารบัญ

  1. 6 ความสัมพันธ์: ฟังก์ชันแกมมามิติทรงกลมคณิตศาสตร์ปริมาตรแฟกทอเรียล

  2. ทรงกลม
  3. เรขาคณิตหลายมิติ

ฟังก์ชันแกมมา

กราฟของฟังก์ชันแกมมาบนระนาบจำนวนจริง ฟังก์ชันแกมมา (Gamma function, G ตัวใหญ่) เป็นฟังก์ชันทางคณิตศาสตร์ที่เป็นส่วนขยายของฟังก์ชันแฟกทอเรียลบนจำนวนเชิงซ้อน หรือสามารถกล่าวได้อีกอย่างหนึ่งว่า ฟังก์ชันแกมมาเป็นการเติมเต็มฟังก์ชันแฟกทอเรียลของค่า n ที่ไม่ใช่จำนวนเต็มบวกหรือศูนย์ สำหรับจำนวนเชิงซ้อน z ซึ่งส่วนจริงเป็นค่าบวก ได้นิยามไว้ว่า นิยามดังกล่าวทำให้ผลลัพธ์สามารถขยายไปได้ถึงระนาบจำนวนเชิงซ้อน ยกเว้นเมื่อส่วนจริงเป็นจำนวนเต็มลบ สำหรับกรณีถ้า z มีค่าเป็นจำนวนเต็มบวก จะได้ ซึ่งแสดงให้เห็นว่ามีความเกี่ยวข้องกับฟังก์ชันแฟกทอเรียล ฟังก์ชันแกมมาเป็นองค์ประกอบหนึ่งในฟังก์ชันที่เกี่ยวกับการกระจายและความน่าจะเป็นหลากหลายฟังก์ชัน นั่นหมายความว่าฟังก์ชันนี้นำไปใช้ได้ในเรื่องของความน่าจะเป็นและสถิต.

ดู ทรงกลม n มิติและฟังก์ชันแกมมา

มิติ

มิติ ความหมายโดยทั่วไปหมายถึง สิ่งที่บอกคุณสมบัติของวัตถุ ได้แก่ ความกว้าง ความยาว และ ความสูง ส่วนในทางคณิตศาสตร์ มิติ หมายถึงจำนวนตัวเลขที่ต้องการเพื่อระบุตำแหน่งและคุณสมบัติของวัตถุใด ๆ ในปริภูมิ ในศาสตร์ต่าง ๆ อาจนิยามความหมายของคำว่า มิติ แทนจำนวนพารามิเตอร์ที่เกี่ยวข้อง เช่น ต้นทุน และ ราคา ในทางเศรษฐศาสตร์ ตัวอย่างในทางภูมิศาสตร์เช่น จุดบนพื้นผิวโลก สามารถกำหนดได้โดยตัวเลขค่าละติจูดและลองจิจูด ทำให้แผนที่ดังกล่าวมีสองมิติ (ถึงแม้ว่าโลกจะมีรูปร่างเกือบทรงกลมซึ่งมีสามมิติก็ตาม) ในการกำหนดตำแหน่งเครื่องบินหรืออากาศยานอื่น นอกจากละติจูดและลองจิจูดแล้ว ยังมีอีกตัวแปรหนึ่งคือค่า ความสูงจากพื้นดิน ทำให้พิกัดของเครื่องบิน เป็นสามมิติ เวลา สามารถใช้เป็นมิติที่สามหรือที่สี่ (เพิ่มจากพื้นที่สองหรือสามมิติเดิม) ในการกำหนดตำแหน่งได้.

ดู ทรงกลม n มิติและมิติ

ทรงกลม

รูปทรงกลม ในทางเรขาคณิต ทรงกลม (อังกฤษ: sphere) เป็นกราฟสามมิติ ทรงกลมที่มีจุดศูนย์กลางที่ (x0, y0, z0) จะมีสมการเป็น จุดบนทรงกลมที่มีรัศมี r จะผ่าน พื้นที่ผิวของทรงกลมที่มีรัศมี r คือ และปริมาตรคือ ทรงกลมเป็นรูปทรงที่มีพื้นที่ผิวน้อยที่สุดในบรรดารูปทรงที่มีปริมาตรเท่ากัน และมีปริมาตรมากที่สุดในบรรดารูปทรงที่มีพื้นที่ผิวเท่ากัน หมวดหมู่:เรขาคณิตเชิงอนุพันธ์ หมวดหมู่:เรขาคณิตมูลฐาน หมวดหมู่:พื้นผิว หมวดหมู่:ทอพอโลยี.

ดู ทรงกลม n มิติและทรงกลม

คณิตศาสตร์

ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity.

ดู ทรงกลม n มิติและคณิตศาสตร์

ปริมาตร

ออนซ์ และมิลลิลิตร ปริมาตร หมายถึง ปริมาณของปริภูมิหรือรูปทรงสามมิติ ซึ่งยึดถือหรือบรรจุอยู่ในภาชนะไม่ว่าจะสถานะใดๆก็ตาม บ่อยครั้งที่ปริมาตรระบุปริมาณเป็นตัวเลขโดยใช้หน่วยกำกับ เช่นลูกบาศก์เมตรซึ่งเป็นหน่วยอนุพันธ์เอสไอ นอกจากนี้ยังเป็นที่เข้าใจกันโดยทั่วไปว่า ปริมาตรของภาชนะคือ ความจุ ของภาชนะ เช่นปริมาณของของไหล (ของเหลวหรือแก๊ส) ที่ภาชนะนั้นสามารถบรรจุได้ มากกว่าจะหมายถึงปริมาณเนื้อวัสดุของภาชนะ รูปทรงสามมิติทางคณิตศาสตร์มักถูกกำหนดปริมาตรขึ้นด้วยพร้อมกัน ปริมาตรของรูปทรงอย่างง่ายบางชนิด เช่นมีด้านยาวเท่ากัน สันขอบตรง และรูปร่างกลมเป็นต้น สามารถคำนวณได้ง่ายโดยใช้สูตรต่าง ๆ ทางเรขาคณิต ส่วนปริมาตรของรูปทรงที่ซับซ้อนยิ่งขึ้นสามารถคำนวณได้ด้วยแคลคูลัสเชิงปริพันธ์ถ้าทราบสูตรสำหรับขอบเขตของรูปทรงนั้น รูปร่างหนึ่งมิติ (เช่นเส้นตรง) และรูปร่างสองมิติ (เช่นรูปสี่เหลี่ยมจัตุรัส) ถูกกำหนดให้มีปริมาตรเป็นศูนย์ในปริภูมิสามมิติ ปริมาตรของของแข็ง (ไม่ว่าจะมีรูปทรงปกติหรือไม่ปกติ) สามารถตรวจวัดได้ด้วยการแทนที่ของไหล และการแทนที่ของเหลวสามารถใช้ตรวจวัดปริมาตรของแก๊สได้อีกด้วย ปริมาตรรวมของวัสดุสองชนิดโดยปกติจะมากกว่าปริมาตรของวัสดุอย่างใดอย่างหนึ่ง เว้นแต่เมื่อวัสดุหนึ่งละลายในอีกวัสดุหนึ่งแล้ว ปริมาตรรวมจะไม่เป็นไปตามหลักการบวก ในเรขาคณิตเชิงอนุพันธ์ ปริมาตรถูกอธิบายด้วยความหมายของรูปแบบปริมาตร (volume form) และเป็นตัวยืนยงแบบไรมันน์ (Riemann invariant) ที่สำคัญโดยรวม ในอุณหพลศาสตร์ ปริมาตรคือตัวแปรเสริม (parameter) ชนิดพื้นฐาน และเป็นตัวแปรควบคู่ (conjugate variable) กับความดัน.

ดู ทรงกลม n มิติและปริมาตร

แฟกทอเรียล

ในทางคณิตศาสตร์ แฟกทอเรียล (factorial) ของจำนวนเต็มไม่เป็นลบ n คือผลคูณของจำนวนเต็มบวกทั้งหมดที่น้อยกว่าหรือเท่ากับ n เขียนแทนด้วย n! (อ่านว่า n แฟกทอเรียล) ตัวอย่างเช่น สำหรับค่าของ 0! ถูกกำหนดให้เท่ากับ 1 ตามหลักการของผลคูณว่าง การดำเนินการแฟกทอเรียลพบได้ในคณิตศาสตร์สาขา ต่าง ๆ โดยเฉพาะอย่างยิ่งคณิตศาสตร์เชิงการจัด พีชคณิต และคณิตวิเคราะห์ การพบเห็นโดยพื้นฐานที่สุดคือข้อเท็จจริงที่ว่า การจัดลำดับวัตถุที่แตกต่างกัน n สิ่งสามารถทำได้ n! วิธี (การเรียงสับเปลี่ยนของเซตของวัตถุ) ข้อเท็จจริงนี้เป็นที่ทราบโดยนักวิชาการชาวอินเดียตั้งแต่ต้นคริสต์ศตวรรษที่ 12 เป็นอย่างน้อย นอกจากนี้ คริสเตียน แครมป์ (Christian Kramp) เป็นผู้แนะนำให้ใช้สัญกรณ์ n! เมื่อ ค.ศ.

ดู ทรงกลม n มิติและแฟกทอเรียล

ดูเพิ่มเติม

ทรงกลม

เรขาคณิตหลายมิติ