โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ซากมหานวดารา

ดัชนี ซากมหานวดารา

ซากมหานวดารา N49 ในเมฆแมเจลแลนใหญ่ ซากมหานวดารา (supernova remnant; SNR) คือโครงสร้างที่เกิดจากการระเบิดขนาดใหญ่ของดวงดาวในปรากฏการณ์ มหานวดารา ซากมหานวดาราคงอยู่ด้วยคลื่นช็อคที่ขยายตัวออกมา ประกอบด้วยวัตถุที่ดีดตัวออกมาจากการระเบิด รวมถึงวัตถุมวลสารระหว่างดาวระหว่างเส้นทางที่ถูกกวาดเข้ามารวมด้วย เส้นทางการเกิดมหานวดารามีสองทางคือ เมื่อดาวฤกษ์มวลมากไม่มีเชื้อเพลิงต่อไปและหยุดสร้างพลังงานฟิวชั่นที่แกนกลาง จึงเกิดการแตกสลายจากภายในด้วยแรงจากความโน้มถ่วงของมันเองกลายเป็นดาวนิวตรอนหรือหลุมดำ หรือดาวแคระขาวที่รวบรวมวัตถุจากดาวข้างเคียงเข้ามาจนกระทั่งมีขนาดถึงมวลวิกฤต และเกิดการระเบิดนิวเคลียร์ความร้อนขึ้น ผลจากการระเบิดมหานวดาราทั้งสองกรณีทำให้มวลสารระหว่างดาวส่วนใหญ่หรือทั้งหมดถูกขับออกไปด้วยความเร็วประมาณ 10% ของความเร็วแสง หรือราว 3,000 กิโลเมตร/วินาที เมื่อมวลสารเหล่านี้ปะทะกับอวกาศหรือแก๊สระหว่างดาวที่อยู่รอบๆ จึงเกิดเป็นคลื่นช็อคที่ทำให้แก๊สมีอุณหภูมิเพิ่มสูงขึ้นมากถึงขนาด 10 ล้านเคลวิน และกลายเป็นพลาสมา ซากมหานวดาราที่โด่งดังที่สุดและถูกเฝ้าสังเกตมากที่สุดน่าจะได้แก่ SN 1987A ซึ่งเป็นมหานวดาราในเมฆแมเจลแลนใหญ่ ค้นพบในปี..

15 ความสัมพันธ์: พลังงานฟิวชั่นพลาสมามวลวิกฤตมวลสารระหว่างดาวมหานวดาราหลุมดำอัตราเร็วของแสงทีโค บราดาวฤกษ์ดาวนิวตรอนดาวแคระขาวความโน้มถ่วงโยฮันเนส เคปเลอร์เมฆแมเจลแลนใหญ่เคลวิน

พลังงานฟิวชั่น

ลังงานฟิวชั่น (Fusion power) คือพลังงานที่เกิดจากปฏิกิริยานิวเคลียร์ฟิวชั่น ปฏิกิริยาชนิดนี้เกิดจากการที่นิวเคลียสของอะตอมธาตุเบาหลอมตัวเข้าด้วยกัน และได้นิวเคลียสที่หนักกว่าเดิมและมีเสถียรภาพมากขึ้น มวลของธาตุเบาที่รวมกันจะหายไปเล็กน้อยซึ่งส่วนที่หายไปนั้นเองได้เปลี่ยนแปลงเป็นพลังงานตามสมการ ''E''.

ใหม่!!: ซากมหานวดาราและพลังงานฟิวชั่น · ดูเพิ่มเติม »

พลาสมา

ลาสมา คือ อะตอมของแก๊สมีตระกูล หรือ Noble Gases เช่น ฮีเลียม นีออน อาร์กอน คริปตอน ซีนอน และเรดอน.

ใหม่!!: ซากมหานวดาราและพลาสมา · ดูเพิ่มเติม »

มวลวิกฤต

มวลวิกฤต (critical mass) คือปริมาณที่น้อยที่สุดของวัสดุฟิสไซล์ที่จำเป็นสำหรับการรักษาปฏิกิริยาลูกโซ่นิวเคลียร์ให้ยั่งยิน.

ใหม่!!: ซากมหานวดาราและมวลวิกฤต · ดูเพิ่มเติม »

มวลสารระหว่างดาว

การกระจายตัวของประจุไฮโดรเจน ซึ่งนักดาราศาสตร์เรียกว่า เอชทู ในช่องว่างระหว่างดาราจักร ที่สังเกตการณ์จากซีกโลกด้านเหนือผ่าน Wisconsin Hα Mapper มวลสารระหว่างดาว (interstellar medium; ISM) ในทางดาราศาสตร์หมายถึงกลุ่มแก๊สและฝุ่นที่กระจายตัวอยู่ในพื้นที่ว่างระหว่างดวงดาว เป็นสสารที่ดำรงอยู่ระหว่างดาวฤกษ์ต่างๆ ในดาราจักร เติมเติมช่องว่างระหว่างดวงดาวและผสานต่อเนื่องกับช่องว่างระหว่างดาราจักรที่อยู่โดยรอบ การแผ่คลื่นแม่เหล็กไฟฟ้าเป็นพลังงานของสสารมีปริมาณเท่ากันกับสนามการแผ่รังสีระหว่างดวงดาว มวลสารระหว่างดาวประกอบด้วยองค์ประกอบอันเจือจางอย่างมากของไอออน อะตอม โมเลกุล ฝุ่นขนาดใหญ่ รังสีคอสมิก และสนามแม่เหล็กของดาราจักร โดยที่ 99% ของมวลของสสารเป็นแก๊ส และอีก 1% เป็นฝุ่น มีความหนาแน่นเฉลี่ยในดาราจักรทางช้างเผือก ระหว่างไม่กี่พันจนถึงหลักร้อยล้านหน่วยอนุภาคต่อลูกบาศก์เมตร ประมาณ 90% ของแก๊สเป็นไฮโดรเจน ส่วนอีกประมาณ 10% เป็นฮีเลียม เมื่อพิจารณาตามจำนวนของนิวเคลียส โดยมีสสารมวลหนักผสมอยู่บ้างเล็กน้อย มวลสารระหว่างดาวมีบทบาทสำคัญอย่างยิ่งสำหรับการศึกษาฟิสิกส์ดาราศาสตร์ เนื่องจากมันอยู่ในระหว่างกลางของเหล่าดวงดาวในดาราจักร ดาวฤกษ์ใหม่จะเกิดขึ้นจากย่านที่หนาแน่นที่สุดของสสารนี้กับเมฆโมเลกุล โดยได้รับสสารและพลังงานมาจากเนบิวลาดาวเคราะห์ ลมระหว่างดาว และซูเปอร์โนวา ความสัมพันธ์ระหว่างดาวฤกษ์กับมวลสารระหว่างดาวช่วยให้นักดาราศาสตร์สามารถคำนวณอัตราการสูญเสียแก๊สของดาราจักร และสามารถคาดการณ์ช่วงเวลาการก่อตัวของดาวฤกษ์กัมมันต์ได้.

ใหม่!!: ซากมหานวดาราและมวลสารระหว่างดาว · ดูเพิ่มเติม »

มหานวดารา

ำลองจากศิลปินแสดงให้เห็นมหานวดารา SN 2006gy ที่กล้องโทรทรรศน์อวกาศรังสีเอกซ์จันทราจับภาพได้ อยู่ห่างจากโลก 240 ล้านปีแสง มหานวดารา นิพนธ์ ทรายเพชร, อารี สวัสดี และ บุญรักษา สุนทรธรรม.

ใหม่!!: ซากมหานวดาราและมหานวดารา · ดูเพิ่มเติม »

หลุมดำ

มุมมองจำลองของหลุมดำด้านหน้าของทางช้างเผือก โดยมีมวลเทียบเท่าดวงอาทิตย์ 10 ดวงจากระยะทาง 600 กิโลเมตร หลุมดำ (black hole) หมายถึงเทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้แต่แสง ยกเว้นหลุมดำด้วยกัน เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ ที่ตำแหน่งรัศมีชวาร์สชิลด์ ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึงจะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า "หลุมดำ" เราไม่สามารถมองเห็นหลุมดำด้วยกล้องโทรทรรศน์ใดๆ เนื่องจากหลุมดำไม่เปล่งแสงหรือรังสีใดเลย แต่สามารถตรวจพบได้ด้วยกล้องโทรทรรศน์วิทยุ และคลื่นโน้มถ่วงของหลุมดำ (ในเชิงทฤษฎี โครงการแอลไอจีโอ) และจนถึงปัจจุบันได้ค้นพบหลุมดำในจักรวาลแล้วอย่างน้อย 6 แห่ง หลุมดำเป็นซากที่สิ้นสลายของดาวฤกษ์ที่ถึงอายุขัยแล้ว สสารที่เคยประกอบกันเป็นดาวนั้นได้ถูกอัดตัวด้วยแรงดึงดูดของตนเองจนเหลือเป็นเพียงมวลหนาแน่นที่มีขนาดเล็กยิ่งกว่านิวเคลียสของอะตอมเดียว ซึ่งเรียกว่า ภาวะเอกฐาน หลุมดำแบ่งได้เป็น 4 ประเภท คือ หลุมดำมวลยวดยิ่ง เป็นหลุมดำในใจกลางของดาราจักร, หลุมดำขนาดกลาง, หลุมดำจากดาวฤกษ์ ซึ่งเกิดจากการแตกดับของดาวฤกษ์, และ หลุมดำจิ๋วหรือหลุมดำเชิงควอนตัม ซึ่งเกิดขึ้นในยุคเริ่มแรกของเอกภพ แม้ว่าจะไม่สามารถมองเห็นภายในหลุมดำได้ แต่ตัวมันก็แสดงการมีอยู่ผ่านการมีผลกระทบกับวัตถุที่อยู่ในวงโคจรภายนอกขอบฟ้าเหตุการณ์ ตัวอย่างเช่น หลุมดำอาจจะถูกสังเกตเห็นได้โดยการติดตามกลุ่มดาวที่โคจรอยู่ภายในศูนย์กลางหลุมดำ หรืออาจมีการสังเกตก๊าซ (จากดาวข้างเคียง) ที่ถูกดึงดูดเข้าสู่หลุมดำ ก๊าซจะม้วนตัวเข้าสู่ภายใน และจะร้อนขึ้นถึงอุณหภูมิสูง ๆ และปลดปล่อยรังสีขนาดใหญ่ที่สามารถตรวจจับได้จากกล้องโทรทรรศน์ที่โคจรอยู่รอบโลก การสำรวจให้ผลในทางวิทยาศาสตร์เห็นพ้องต้องกันว่าหลุมดำนั้นมีอยู่จริงในเอกภพ แนวคิดของวัตถุที่มีแรงดึงดูดมากพอที่จะกันไม่ให้แสงเดินทางออกไปนั้นถูกเสนอโดยนักดาราศาสตร์มือสมัครเล่นชาวอังกฤษ จอห์น มิเชล ในปี 1783 และต่อมาในปี 1795 นักฟิสิกส์ชาวฝรั่งเศส ปีแยร์-ซีมง ลาปลาส ก็ได้ข้อสรุปเดียวกัน ตามความเข้าใจล่าสุด หลุมดำถูกอธิบายโดยทฤษฎีสัมพัทธภาพทั่วไป ซึ่งทำนายว่าเมื่อมีมวลขนาดใหญ่มากในพื้นที่ขนาดเล็ก เส้นทางในพื้นที่ว่างนั้นจะถูกทำให้บิดเบี้ยวไปจนถึงศูนย์กลางของปริมาตร เพื่อไม่ให้วัตถุหรือรังสีใดๆ สามารถออกมาได้ ขณะที่ทฤษฏีสัมพัทธภาพทั่วไปอธิบายว่าหลุมดำเป็นพื้นที่ว่างที่มีความเป็นภาวะเอกฐานที่จุดศูนย์กลางและที่ขอบฟ้าเหตุการณ์บริเวณขอบ คำอธิบายนี่เปลี่ยนไปเมื่อค้นพบกลศาสตร์ควอนตัม การค้นคว้าในหัวข้อนี้แสดงให้เห็นว่านอกจากหลุมดำจะดึงวัตถุไว้ตลอดกาล แล้วยังมีการค่อย ๆ ปลดปล่อยพลังงานภายใน เรียกว่า รังสีฮอว์คิง และอาจสิ้นสุดลงในที่สุด อย่างไรก็ตาม ยังไม่มีคำอธิบายเกี่ยวกับหลุมดำที่ถูกต้องตามทฤษฎีควอนตัม.

ใหม่!!: ซากมหานวดาราและหลุมดำ · ดูเพิ่มเติม »

อัตราเร็วของแสง

ปรากฏการณ์เชเรนคอฟ ในเครื่องปฏิกรณ์นิวเคลียร์ เป็นผลมาจาก อิเล็กตรอนเคลื่อนที่เร็วกว่าแสงที่เดินทางในน้ำ อัตราเร็วของแสง (speed of light) ในสุญญากาศ มีนิยามว่าเท่ากับ 299,792,458 เมตรต่อวินาที (หรือ 1,080,000,000 กิโลเมตรต่อชั่วโมง หรือประมาณ 186,000.000 ไมล์ต่อวินาที หรือ 671,000,000 ไมล์ต่อชั่วโมง) ค่านี้เขียนแทนด้วยตัว c ซึ่งมาจากภาษาละตินคำว่า celeritas (แปลว่า อัตราเร็ว) และเรียกว่าเป็นค่าคงที่ของไอน์สไตน์ แสงเป็นสิ่งที่แปลกประหลาดนั่นคือไม่ว่าผู้สังเกตจะเคลื่อนที่หรือหยุดนิ่ง ไม่ว่าจะอยู่ในสถานที่ใด ด้วยเงื่อนไขใด อัตราเร็วของแสงที่ผู้สังเกตคนนั้นวัดได้ จะเท่าเดิมเสมอ ซึ่งขัดกับความรู้สึกของคนทั่วไป แต่เป็นไปตาม ทฤษฎีสัมพัทธภาพ ของ อัลเบิร์ต ไอน์สไตน์ สังเกตว่าอัตราเร็วของแสงในสุญญากาศ เป็น นิยาม ไม่ใช่ การวัด ในหน่วยเอสไอกำหนดให้ เมตร มีนิยามว่าเป็นระยะทางที่แสงเดินทางในสุญญากาศในเวลา 1/299,792,458 วินาที แสงที่เดินทางผ่านตัวกลางโปร่งแสง (คือไม่เป็นสุญญากาศ) จะมีอัตราเร็วต่ำกว่า c อัตราส่วนของ c ต่ออัตราเร็วของแสงที่เดินทางผ่านในตัวกลาง เรียกว่า ดรรชนีหักเหของตัวกลางนั้น โดยเมื่อผ่านแก้ว จะมีดรรชนีหักเห 1.5-1.9 ผ่านน้ำจะมีดรรชีนีหักเห 1.3330 ผ่านเบนซินจะมีดรรชนีหักเห 1.5012 ผ่านคาร์บอนไดซัลไฟต์จะมีดรรชนีหักเห 1.6276 ผ่านเพชรจะมีดรรชนีหักเห 2.417 ผ่านน้ำแข็งจะมีดรรชนีหักเห 1.309.

ใหม่!!: ซากมหานวดาราและอัตราเร็วของแสง · ดูเพิ่มเติม »

ทีโค บรา

ทีโค บรา (Tycho Brahe) เป็นนักดาราศาสตร์ผู้หนึ่งที่มีบทบาทสำคัญในการแสดงว่าดวงอาทิตย์เป็นศูนย์กลางของระบบสุริยะ เป็นอาจารย์ของโยฮันเนส เคปเลอร์ ผู้ซึ่งสร้าง กฎของเคปเลอร์ และได้จดบันทึกข้อมูลสำคัญๆ ทางดาราศาสตร์เอาไว้มากมายเช่น ซุปเปอร์โนวา ตำแหน่งดาวเคราะห์เป็นต้น ซึ่งข้อมูลส่วนหนึ่งนั้นเองที่เป็นรากฐานสำคัญให้ โยฮันเนส เคปเลอร์ สร้าง กฎของเคปเลอร์ต่อไป.

ใหม่!!: ซากมหานวดาราและทีโค บรา · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: ซากมหานวดาราและดาวฤกษ์ · ดูเพิ่มเติม »

ดาวนิวตรอน

วนิวตรอน (Neutron Star) เป็นซากที่เหลือจากยุบตัวของการระเบิดแบบซูเปอร์โนวาชนิด II,Ib หรือ Ic และจะเกิดเฉพาะดาวฤกษ์มวลมากมีส่วนประกอบเพียงนิวตรอนที่อะตอมไร้กระแสไฟฟ้า (นิวตรอนมีมวลสารใกล้เคียงโปรตอน) และดาวประเภทนี้สามารถคงตัวอยู่ได้ด้วยหลักการกีดกันของเพาลีเกี่ยวกับแรงผลักระหว่างนิวตรอน ดาวนิวตรอนมีมวลประมาณ 1.35 ถึง 2.1 เท่ามวลดวงอาทิตย์ และมีรัศมี 20 ถึง 10 กิโลเมตรตามลำดับ (เมื่อดาวนิวตรอนมีมวลเพิ่มขึ้น รัศมีของดาวจะลดลง) ดาวนิวตรอนจึงมีขนาดเล็กกว่าดวงอาทิตย์ 30,000 ถึง 70,000 เท่า ดังนั้นดาวนิวตรอนจึงมีความหนาแน่นที่ 8*1013 ถึง 2*1015 กรัมต่อลูกบากศ์เซนติเมตร ซึ่งเป็นช่วงของความหนาแน่นของนิวเคลียสอะตอม ต้องใช้ความเร็วหลุดพ้นประมาณ 150,000 กิโลเมตรต่อวินาที หรือประมาณครึ่งหนึ่งของความเร็วแสง โดยทั่วไปแล้ว ดาวที่มีมวลน้อยกว่า 1.44 เท่ามวลดวงอาทิตย์ จะเป็นดาวแคระขาวตามขีดจำกัดของจันทรสิกขาร์ ถ้าอยู่ระหว่าง 2 ถึง 3 เท่ามวลดวงอาทิตย์อาจจะเป็นดาวควาร์ก (แต่ก็ยังเป็นที่ถกเถียงกันอยู่) ส่วนดาวที่มีมวลมากกว่านี้จะกลายเป็นหลุมดำไป เมื่อดาวฤกษ์มวลมากเกิดซูเปอร์โนวาและกลายเป็นดาวนิวตรอน ส่วนแก่นของมันจะได้รับโมเมนตัมเชิงมุมมา ซึ่งการเปลี่ยนแปลงรัศมีจากใหญ่ไปเล็กนั้นจะทำให้ความเร็วในการหมุนรอบตัวเองขึ้น แต่เมื่อเวลาผ่านไปก็จะหมุนรอบตัวเองช้าลงทีละน้อย ความเร็วในการหมุนรอบตัวเองของดาวนิวตรอนที่มีการบันทึกได้นั้นอยู่ระหว่าง 700 รอบต่อวินาทีไปจนถึง 30 วินาทีต่อรอบ ความเร่งที่พื้นผิวอยู่ที่ 2*1011 ถึง 3*1012 เท่ามากกว่าโลก ด้วยเหตุนี้ดาวนิวตรอนจึงสามารถส่งคลื่นวิทยุออกมาเป็นช่วงหรือพัลซาร์ และกระแสแม่เหล็กออกมาปริมาณมหาศาล การที่ดาวนิวตรอนสามารถส่งคลื่นวิทยุออกมาเป็นช่วงๆ นั้นทำได้อย่างไร ยังคงเป็นคำถามที่ไม่มีคำตอบ แม้ว่าจะมีการวิจัยเรื่องนี้มานานกว่า 40 ปีแล้วก็ตามในดาราจักรของเรานั้นเราพบเพียงไม่กี่สิบดวงเท่านั้น เรายังพบอีกว่า ดาวนิวตรอนน่าจะเป็นต้นกำเนิดของ แสงวาบรังสีแกมมา ที่มีความสว่างมากกว่าซูเปอร์โนวา หลายเท.

ใหม่!!: ซากมหานวดาราและดาวนิวตรอน · ดูเพิ่มเติม »

ดาวแคระขาว

ซิริอุส เอ และ บี ที่ถ่ายโดยกล้องโทรทรรศน์อวกาศฮับเบิล ซิริอุส บี ที่เป็นดาวแคระขาวสามารถเห็นเป็นจุดจาง ๆ อยู่ทางด้านล่างซ้ายของดาว Sirius A ที่สว่างกว่ามาก ๆ ดาวแคระขาว (White dwarf) หรือบางครั้งเรียกว่า ดาวแคระเสื่อม (Degenerate dwarf) เป็นดาวขนาดเล็กที่ส่วนใหญ่ประกอบไปด้วยอิเล็กตรอนที่เป็นสสารเสื่อม เนื่องจากดาวแคระขาวที่มีมวลเท่ากับดวงอาทิตย์จะมีปริมาตรใกล้เคียงกับโลก ทำให้มันมีความหนาแน่นสูงและมีกำลังส่องสว่างน้อยมาจากความร้อนที่สะสมไว้, Jennifer Johnson, lecture notes, Astronomy 162, Ohio State University.

ใหม่!!: ซากมหานวดาราและดาวแคระขาว · ดูเพิ่มเติม »

ความโน้มถ่วง

หมุนรอบดวงอาทิตย์ ไม่หลุดออกจากวงโคจร (ภาพไม่เป็นไปตามอัตราส่วน) ความโน้มถ่วง (gravity) เป็นปรากฏการณ์ธรรมชาติซึ่งทำให้วัตถุกายภาพทั้งหมดดึงดูดเข้าหากัน ความโน้มถ่วงทำให้วัตถุกายภาพมีน้ำหนักและทำให้วัตถุตกสู่พื้นเมื่อปล่อย แรงโน้มถ่วงเป็นหนึ่งในสี่แรงหลัก ซึ่งประกอบด้วย แรงโน้มถ่วง แรงแม่เหล็กไฟฟ้า แรงนิวเคลียร์แบบอ่อน และ แรงนิวเคลียร์แบบเข้ม ในจำนวนแรงทั้งสี่แรงหลัก แรงโน้มถ่วงมีค่าน้อยที่สุด ถึงแม้ว่าแรงโน้มถ่วงจะเป็นแรงที่เราไม่สามารถรับรู้ได้มากนักเพราะความเบาบางของแรงที่กระทำต่อเรา แต่ก็เป็นแรงเดียวที่ยึดเหนี่ยวเราไว้กับพื้นโลก แรงโน้มถ่วงมีความแรงแปรผันตรงกับมวล และแปรผกผันกับระยะทางยกกำลังสอง ไม่มีการลดทอนหรือถูกดูดซับเนื่องจากมวลใดๆ ทำให้แรงโน้มถ่วงเป็นแรงที่สำคัญมากในการยึดเหนี่ยวเอกภพไว้ด้วยกัน นอกเหนือจากความโน้มถ่วงที่เกิดระหว่างมวลแล้ว ความโน้มถ่วงยังสามารถเกิดขึ้นได้จากการที่เราเปลี่ยนสภาพการเคลื่อนที่ตามกฎการเคลื่อนที่ของนิวตัน เช่น การเพิ่มหรือลดความเร็วของวัตถุ การเปลี่ยนทิศทางการเคลื่อนที่ เป็นต้น.

ใหม่!!: ซากมหานวดาราและความโน้มถ่วง · ดูเพิ่มเติม »

โยฮันเนส เคปเลอร์

ันเนส เคปเลอร์ (Johannes Kepler; 27 ธันวาคม ค.ศ. 1571 - 15 พฤศจิกายน ค.ศ. 1630) นักดาราศาสตร์ นักโหราศาสตร์และนักคณิตศาสตร์ชาวเยอรมัน ผู้มีส่วนสำคัญในการปฏิวัติวงการวิทยาศาสตร์ เขาค้นพบกฎการเคลื่อนที่ของดาวเคราะห์ในงาน Astronomia nova, Harmonice Mundi ของเขา และได้แต่งหนังสือชื่อ Epitome of Copernican Astronomy โยฮันเนส เคปเลอร์ ประกอบอาชีพเป็นครูสอนคณิตศาสตร์ที่โรงเรียน Graz (ภายหลังเปลี่ยนเป็น มหาวิทยาลัย Graz) และเป็นผู้ช่วยของ ไทโค บราเฮ นักคณิตศาสตร์ในความอุปถัมภ์ของจักรพรรดิรูดอร์ฟที่ 2 ผู้ซึ่งรวบรวมรวมข้อมูลของดาวเคราะห์มาตลอดชีวิต และปูทางให้เคปเลอร์ค้นพบกฎการเคลื่อนที่ของดาวเคราะห์ในเวลาต่อมา เขาทำงานด้านทัศนศาสตร์ และช่วยสนับสนุนการค้นพบกล้องโทรทรรศน์ของกาลิเลโอ กาลิเลอี เขาถูกยกย่องว่าเป็น "นักฟิสิกส์ดาราศาสตร์ทฤษฎีคนแรก" แต่คาร์ล ซาแกน ยกย่องเขาในฐานะ "นักโหราศาสตร์ทางวิทยาศาสตร์คนสุดท้าย".

ใหม่!!: ซากมหานวดาราและโยฮันเนส เคปเลอร์ · ดูเพิ่มเติม »

เมฆแมเจลแลนใหญ่

มฆมาเจลลันใหญ่ เมฆแมเจลแลนใหญ่ (Large Magellanic Cloud, LMC) คือดาราจักรบริวารของทางช้างเผือก อยู่ห่างจากเราออกไปเพียงไม่ถึง 50 กิโลพาร์เซก (ประมาณ 160,000 ปีแสง) ถือเป็นดาราจักรที่อยู่ใกล้กับทางช้างเผือกเป็นอันดับที่สาม โดยมีดาราจักรแคระชนิดรีคนยิงธนู (ประมาณ 16 กิโลพาร์เซก) กับดาราจักรแคระสุนัขใหญ่ (ประมาณ 12.9 กิโลพาร์เซก) อยู่ใกล้กับศูนย์กลางของดาราจักรทางช้างเผือก เมฆแมเจลแลนใหญ่มีมวลสมมูลประมาณ 1 หมื่นล้านเท่าของมวลดวงอาทิตย์ (1010 มวลดวงอาทิตย์) นั่นคือมีมวลเป็นประมาณ 1/10 เท่าของมวลของทางช้างเผือก เมฆแมเจลแลนใหญ่เป็นดาราจักรที่ใหญ่เป็นอันดับสี่ในกลุ่มท้องถิ่น โดยมีดาราจักรแอนดรอเมดา ทางช้างเผือก และดาราจักรไทรแองกูลัม เป็นดาราจักรขนาดใหญ่เป็นอันดับหนึ่ง สอง และสามตามลำดับ โดยมากเมฆแมเจลแลนใหญ่มักถูกพิจารณาว่าเป็นดาราจักรไร้รูปแบบ (ในฐานข้อมูลวัตถุพ้นดาราจักรขององค์การนาซา ระบุรหัสตามลำดับฮับเบิลให้แก่มันเป็น Irr/SB(s)m) อย่างไรก็ดีเมฆแมเจลแลนใหญ่ก็มีโครงสร้างคล้ายคานที่บริเวณศูนย์กลาง ทำให้เชื่อได้ว่ามันอาจจะเคยเป็นดาราจักรชนิดก้นหอยมีคานมาก่อน ลักษณะอันไร้รูปแบบของเมฆแมเจลแลนใหญ่อาจเป็นผลมาจากปฏิกิริยาน้ำขึ้นน้ำลงระหว่างตัวมันเองกับทางช้างเผือกและเมฆแมเจลแลนเล็ก เมฆแมเจลแลนใหญ่ปรากฏบนท้องฟ้ายามกลางคืนเป็น "เมฆ" จาง ๆ อยู่ในทางซีกโลกใต้ บริเวณชายขอบระหว่างกลุ่มดาวปลากระโทงแทงกับกลุ่มดาวภูเขา เมฆแมเจลแลนใหญ่เป็นดาราจักรคู่กับเมฆแมเจลแลนเล็ก ซึ่งอยู่ห่างออกไปทางตะวันตกประมาณ 20 อง.

ใหม่!!: ซากมหานวดาราและเมฆแมเจลแลนใหญ่ · ดูเพิ่มเติม »

เคลวิน

ลวิน (kelvin, สัญลักษณ์: K) เป็นหน่วยวัดอุณหภูมิหนึ่ง และเป็นหน่วยพื้นฐานหนึ่งในเจ็ดของระบบเอสไอ นิยามให้เท่ากับ 1/273.16 เท่าของอุณหภูมิเทอร์โมไดนามิกของจุดสามสถานะของน้ำ เคลวินตั้งชื่อเพื่อเป็นเกียรติแต่นักฟิสิกส์และวิศวกรชาวอังกฤษ วิลเลียม ทอมสัน บารอนที่หนึ่งแห่ง เคลวิน (William Thomson, 1st Baron Kelvin) ซึ่งชื่อบรรดาศักดิ์นี้ตั้งตามชื่อ แม่น้ำเคลวิน อีกทีหนึ่ง แม่น้ำสายนี้ตัดผ่านมหาวิทยาลัยกลาสโกว์ สกอตแลนด์ เคลวิน เป็นหน่วยของหน่วยวัดอุณหภูมิหนึ่ง ที่ลอร์เควิน ได้พัฒนาคิดสเกลขึ้นใหม่ โดยหาความสัมพันธ์ระหว่างอุณหภูมิและความเร็วของอิเล็กตรอนที่เคลื่อนที่รอบนิวเคลียส โดยสังเกตว่าถ้าให้ความร้อนกับสสารมากขึ้น อิเล็กตรอนจะมีพลังงานมากขึ้น ทำให้เคลื่อนที่มีความเร็วมากขึ้น ในทางกลับกันถ้าลดความร้อนให้กับสสาร อิเล็กตรอนก็จะมีพลังงานน้อยลง ทำให้การเคลื่อนที่ลดลง และถ้าสามารถลดอุณหภูมิลงจนถึงจุดที่อิเล็กตรอนหยุดการเคลื่อนที่ ณ จุดนั้น จะไม่มีอุณหภูมิหรือพลังงานในสสารเลย และจะไม่มีการแผ่รังสีความร้อนจากวัตถุ จึงเรียกอุณหภูมิ ณ จุดนี้ว่า ศูนย์สัมบูรณ์ (0 K) หมวดหมู่:หน่วยฐานเอสไอ หมวดหมู่:หน่วยวัดอุณหภูมิ.

ใหม่!!: ซากมหานวดาราและเคลวิน · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

ซากซุปเปอร์โนวาซากซูเปอร์โนวา

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »