โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ดาวน์โหลด
เร็วกว่าเบราว์เซอร์!
 

การแตกตัวเป็นไอออน

ดัชนี การแตกตัวเป็นไอออน

การแตกตัวเป็นไอออน (Ionization) เป็นกระบวนการหนึ่ง ที่อะตอมหรือโมเลกุลได้รับประจุลบหรือประจุบวกจากการได้มาหรือการเสียไปของอิเล็กตรอนอะตอมหรือโมเลกุลนั้นจึงกลายเป็นไอออน, มักจะเกิดขึ้นร่วมกับการเปลี่ยนแปลงทางเคมีอื่น ๆ การแตกตัวเป็นไอออนอาจเป็นผลมาจากการสูญเสียอิเล็กตรอนหลังจากการชนกันของอนุภาคย่อยของอะตอมด้วยกัน, การชนกันของอะตอมกับอะตอมอื่น ๆ, การชนกันของโมเลกุลกับไอออน, หรือผ่านการมีปฏิสัมพันธ์กับแสง.

5 ความสัมพันธ์: การสลายให้กัมมันตรังสีการจับยึดอิเล็กตรอนการแปลงภายในรังสีก่อไอออนอนุภาคย่อยของอะตอม

การสลายให้กัมมันตรังสี

การสลายให้อนุภาคแอลฟา เป็นการสลายให้กัมมันตรังสีชนิดหนึ่งที่นิวเคลียสของอะตอมปลดปล่อย อนุภาคแอลฟา เป็นผลให้อะตอมแปลงร่าง (หรือ "สลาย") กลายเป็นอะตอมที่มีเลขมวลลดลง 4 หน่วยและเลขอะตอมลดลง 2 หน่วย การสลายให้กัมมันตรังสี (radioactive decay) หรือ การสลายของนิวเคลียส หรือ การแผ่กัมมันตรังสี (nuclear decay หรือ radioactivity) เป็นกระบวนการที่ นิวเคลียสของอะตอมที่ไม่เสถียร สูญเสียพลังงานจากการปลดปล่อยรังสี.

ใหม่!!: การแตกตัวเป็นไอออนและการสลายให้กัมมันตรังสี · ดูเพิ่มเติม »

การจับยึดอิเล็กตรอน

องรูปแบบของการจับยึดอิเล็กตรอน ''บน'': นิวเคลียสดูดซับอิเล็กตรอน ''ล่างซ้าย'': อิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอน "ที่หายไป" รังสีเอ็กซ์ที่มีพลังงานเท่ากับความแตกต่างระหว่างสองเปลือกอิเล็กตรอนจะถูกปล่อยออกมา ''ล่างขวา'': ใน Auger effect, พลังงานจะถูกปล่อยออกมาเมื่ออิเล็กตรอนรอบนอกเข้าแทนที่อิเล็กตรอนรอบใน พลังงานจะถูกย้ายไปที่อิเล็กตรอนรอบนอก อิเล็กตรอนรอบนอกจะถูกดีดออกจากอะตอม เหลือแค่ไอออนบวก การจับยึดอิเล็กตรอน Electron capture หรือ Inverse Beta Decay หรือ K-electron capture หรือ K-capture หรือ L-electron capture หรือ L-capture) เป็นกระบวนการที่นิวเคลียสที่ร่ำรวยโปรตอนของอะตอมที่เป็นกลางทางไฟฟ้าดูดซับอิเล็กตรอนที่อยู่วงในของอะตอม มักจะจากเปลือกอิเล็กตรอนที่วงรอบ K และวงรอบ L กระบวนการนี้จึงเป็นการเปลี่ยนโปรตอนของนิวเคลียสให้เป็นนิวตรอนและพร้อมกันนั้นได้มีการปลดปล่อยอิเล็กตรอนนิวทริโนออกมา ตามสมการ นิวไคลด์ลูกสาว (ผลผลิตที่ได้จากการสลาย) ถ้ามันอยู่ในสภาวะกระตุ้น มันก็จะเปลี่ยนผ่านไปอยู่ในสภาวะพื้น (ground state) ของมัน โดยปกติ รังสีแกมมาจะถูกปล่อยออกมาระหว่างการเปลี่ยนผ่านนี้ แต่การปลดการกระตุ้นนิวเคลียร์อาจเกิดขึ้นโดยการแปลงภายใน (internal conversion) ก็ได้เช่นกัน หลังการจับยึดอิเล็กตรอนรอบในโดยนิวเคลียส อิเล็กตรอนรอบนอกจะแทนที่อิเล็กตรอนที่ถูกจับยึดไปและโฟตอนลักษณะรังสีเอกซ์หนึ่งตัวหรือมากกว่าจะถูกปล่อยออกมาในกระบวนการนี​​้ การจับยึดอิเล็กตรอนบางครั้งยังเป็นผลมาจาก Auger effect ได้อีกด้วย ซึ่งในกระบวนการนี้อิเล็กตรอนจะถูกดีดออกมาจากเปลือกอิเล็กตรอนของอะตอมเนื่องจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนด้วยกันของอะตอมนั้นในกระบวนการของการแสวงหาสภาวะของอิเล็กตรอนพลังงานที่ต่ำกว่า ลูกโซ่การสลายจากตะกั่ว-212 กลายเป็นตะกั่ว-208, เป็นการแสดงผลผลิตที่ได้จากการสลายในช่วงกลาง แต่ละช่วงเป็นนิวไคลด์ลูกสาวของตัวบน(นิวไคลด์พ่อแม่) หลังการจับยึดอิเล็กตรอน เลขอะตอมจะลดลงไปหนึ่งหน่วย จำนวนนิวตรอนจะเพิ่มขึ้นไปหนึ่งหน่วย และไม่มีการเปลี่ยนแปลงในมวลอะตอม การจับอิเล็กตรอนง่าย ๆ เกิดในอะตอมที่เป็นกลางเนื่องจากการสูญเสียอิเล็กตรอนในเปลือกอิเล็กตรอนจะถูกทำให้สมดุลโดยการสูญเสียประจุนิวเคลียร์บวก อย่างไรก็ตามไอออนบวกอาจเกิดจากการปล่อยอิเล็กตรอนแบบ Auger มากขึ้น การจับยึดอิเล็กตรอนเป็นตัวอย่างหนึ่งของอันตรกิริยาอย่างอ่อน ซึ่งเป็นหนึ่งในสี่ของแรงพื้นฐาน การจับยึดอิเล็กตรอนเป็นโหมดขั้นปฐมของการสลายตัวสำหรับไอโซโทปที่มีโปรตอนอย่างมากในนิวเคลียส แต่ด้วยความแตกต่างของพลังงานไม่เพียงพอระหว่างไอโซโทปกับลูกสาวของมันในอนาคต (Isobar ที่มีประจุบวกน้อยลงหนึ่งหน่วย) สำหรับนิวไคลด์ที่จะสลายตัวโดยการปล่อยโพซิตรอน การจับยึดอิเล็กตรอนเป็นโหมดการสลายตัวแบบทางเลือกเสมอสำหรับไอโซโทปกัมมันตรังสีที่ไม่มีพลังงานเพียงพอที่จะสลายตัวโดยการปล่อยโพซิตรอน บางครั้งมันจึงถูกเรียกว่าการสลายให้บีตาผกผัน แม้ว่าคำนี้ยังสามารถหมายถึงปฏิสัมพันธ์ของอิเล็กตรอนปฏินิวทริโนกับโปรตอนอีกด้วย ถ้าความแตกต่างกันของพลังงานระหว่างอะตอมพ่อแม่และอะตอมลูกสาวมีน้อยกว่า 1.022 MeV, การปล่อยโพซิตรอนเป็นสิ่งต้องห้ามเนื่องจากพลังงานที่ใช้ในการสลายมีไม่เพียงพอที่จะยอมให้เกิดขึ้น ดังนั้นการจับยึดอิเล็กตรอนจึงเป็นโหมดการสลายตัวแต่เพียงอย่างเดียว ยกตัวอย่างเช่นรูบิเดียม-83 (37 โปรตอน, 46 นิวตรอน) จะสลายตัวไปเป็น Krypton-83 (36 โปรตอน, 47 นิวตรอน) โดยการจับยึดอิเล็กตรอนแต่เพียงอย่างเดียว (เพราะความแตกต่างพลังงานหรือพลังงานสลายมีค่าประมาณ 0.9 MeV เท่านั้น) โปรตอนอิสระปกติจะไม่สามารถเปลี่ยนไปเป็นนิวตรอนอิสระได้โดยกระบวนการนี​​้ โปรตอนและนิวตรอนจะต้องเป็นส่วนหนึ่งของนิวเคลียสที่มีขนาดใหญ่ \mathrm+\mathrm^- \rightarrow\mathrm+_e | \mathrm+\mathrm^- \rightarrow\mathrm+_e | ระลึกไว้ว่า ไอโซโทปกัมมันตภาพที่สามารถเกิด pure electron capture ได้ในทฤษฎีนั้นอาจถูกห้ามจาก radioactive decay หากพวกมันถูก ionized โดยสมบูรณ์ (คำว่า "stripped" ถูกใช้บางครั้งเพื่อบรรรยายไอออนเหล่านั้น) มีสมมติฐานว่าธาตุเหล่านั้น ถ้าหากถูกสร้างโดย r-process ในการระเบิด ซูเปอร์โนวา พวกมันจะถูกปลดปล่อยเป็น ionized โดยสมบูรณ์และจะไม่มี radioactive decay ตราบเท่าที่พวกมันไม่ได้ปะทะกับอิเล็กตรอนในสเปซภายนอก ความผิดปกติในการกระจายตัวของธาตุก็ถูกคิดว่าเป็นผลส่วนหนี่งจากผลกระทบของ electron capture นี้ พันธะเคมี ยังสามารถมีผลต่ออัตราของ electron capture ได้ระดับน้อย ๆ อีกด้วย (โดยทั่วไปน้อยกว่า 1%) ขึ้นอยู่กับความใกล้ของอิเล็กตรอนกับนิวเคลียส -->.

ใหม่!!: การแตกตัวเป็นไอออนและการจับยึดอิเล็กตรอน · ดูเพิ่มเติม »

การแปลงภายใน

การแปลงภายใน (Internal conversion) เป็นกระบวนการ การสลายให้กัมมันตรังสี ที่เมื่อ นิวเคลียส ที่ถูกกระตุ้นมีปฏิสัมพันธ์แบบ แม่เหล็กไฟฟ้า กับอิเล็กตรอนหนึ่งตัวในวงโคจรของอะตอม ทำให้อิเล็กตรอนถูกปล่อยออกมา (พุ่งออกมา) จากอะตอม ดังนั้นในกระบวนการการแปลงภายใน อิเล็กตรอนพลังงานสูงตัวหนึ่งจะถูกปล่อยออกมาจากอะตอมกัมมันตรังสี แต่ไม่ได้มาจากนิวเคลียส ด้วยเหตุนี้อิเล็กตรอนความเร็วสูงที่เกิดจากการแปลงภายในจึงไม่ใช่ อนุภาคบีตา เนื่องจากอนุภาคบีตาจะต้องมาจาก การสลายให้อนุภาคบีตา โดยที่พวกมันจะถูกสร้างขึ้นใหม่ในกระบวนการการสลายตัวของนิวเคลียส การแปลงภายในจะเป็นไปได้เมื่อใดก็ตามที่ การสลายให้อนุภาคแกมมา มีความเป็นไปได้ ยกเว้นในกรณีที่อะตอมถูกเปลี่ยนเป็นไอออนอย่างสมบูรณ์ ในระหว่างการแปลงภายใน, เลขอะตอม จะไม่มีการเปลี่ยนแปลง ดังนั้น (อย่างที่เป็นเหมือนกรณีการสลายตัวได้อนุภาคแกมมา) จึงไม่มีการแปรพันธ์ุขององค์ประกอบหนึ่งไปเป็นอีกองค์ประกอบหนึ่งเกิดขึ้น เนื่องจากอิเล็กตรอนหนึ่งตัวจะหายไปจากอะตอม หลุม(hole)หนึ่งตัวก็จะไปปรากฏในเปลือกอิเล็กตรอนซึ่งจะถูกเติมเต็มในภายหลังโดยอิเล็กตรอนอื่น ๆ กระบวนการนี​​้จะผลิต รังสีเอกซ์ลักษณะเฉพาะ, Auger อิเล็กตรอน, หรือทั้งสองอย่าง อะตอมจึงปลดปล่อยอิเล็กตรอนพลังงานสูงและโฟตอนรังสีเอกซ์ แต่อนุภาคเหล่านี้ไม่มีตัวไหนเลยที่เกิดในนิวเคลียส โดยที่นิวเคลียสจะจัดหาพลังงานที่จำเป็นให้เท่านั้น เนื่องจากพวกอิเล็กตรอนหลักจากการแปลงภายในจะมีชิ้นส่วน (ขนาดใหญ่) ที่คงที่ของพลังงานการสลายแบบลักษณะเฉพาะ พวกมันจึงมีสเปกตรัมพลังงานที่ไม่ต่อเนื่อง มากกว่าจะมีลักษณะของสเปกตรัมที่แพร่กระจาย (ต่อเนื่อง) ของ อนุภาคเบต้า ในขณะที่สเปกตรัมพลังงานของอนุภาคเบต้าจะวาดออกมาเป็นเนินกว้าง สเปกตรัมพลังงานของอิเล็กตรอนจากการแปลงภายในจะถูกวาดออกมาเป็นยอดคมอันเดียว (ดูตัวอย่างด้านล่าง).

ใหม่!!: การแตกตัวเป็นไอออนและการแปลงภายใน · ดูเพิ่มเติม »

รังสีก่อไอออน

รังสีก่อไอออน (ionizing radiation) เกิดจากการแผ่รังสีที่มีพลังงานพอที่จะปลดปล่อยอิเล็กตรอนให้เป็นอิสระจากอะตอมหรือโมเลกุล หรือเป็นการแผ่รังสีจากการแตกตัวเป็นไอออน (Ionization) การแผ่รังสีดังกล่าว (หรือสั้น ๆ ว่ารังสี) ถูกสร้างขึ้นจากอนุภาคย่อย, ไอออนหรืออะตอมที่มีพลัง, เคลื่อนที่ด้วยความเร็วสูง (ปกติเร็วกว่าความเร็วแสง 1%) และเป็นคลื่นแม่เหล็กไฟฟ้าที่ปลายสเปคตรัมของคลื่นแม่เหล็กไฟฟ้าพลังงานสูง รังสีแกมมา, รังสีเอกซ์, และส่วนที่เป็นอัลตราไวโอเลตที่สูงกว่าของสเปกตรัมแม่เหล็กไฟฟ้าเป็นพวกแตกตัวเป็นไอออน ในขณะที่ส่วนที่เป็นอัลตราไวโอเลตที่ต่ำกว่าของสเปกตรัมแม่เหล็กไฟฟ้าอีกทั้งส่วนล่างของสเปคตรัมที่ต่ำกว่ายูวีที่รวมทั้งแสงที่มองเห็นได้ (รวมเกือบทุกประเภทของแสงเลเซอร์), อินฟาเรด, ไมโครเวฟ และคลื่นวิทยุ ทั้งหมดนี้ถูกพิจารณาว่าเป็นรังสีที่ไม่มีการแตกตัวเป็นไอออน เขตแดนระหว่างรังสีแม่เหล็กไฟฟ้าแบบแตกตัวเป็นไอออนและที่ไม่ใช่แบบแตกตัวเป็นไอออนที่เกิดขึ้นในรังสีอัลตราไวโอเลตไม่ได้ถูกกำหนดไว้อย่างชัดเจน เนื่องจากโมเลกุลและอะตอมที่แตกต่างกันจะแตกตัวเป็นไอออนที่พลังงานแตกต่างกัน นิยามที่ตกลงกันกำหนดเขตแดนไว้ที่พลังงานของโฟตอนระหว่าง 10 eV ถึง 33 eV ในรังสีอัลตราไวโอเลต อนุภาคย่อยของอะตอมทั่วไปที่แตกตัวเป็นไอออนจากกัมมันตภาพรังสีรวมถึงอนุภาคแอลฟา, อนุภาคบีตา, และนิวตรอน เกือบทั้งหมดของผลิตภัณฑ์จากการสลายให้กัมมันตรังสีจะเป็นพวกที่แตกตัวเป็นไอออนเพราะพลังงานจากการสลายได้กัมมันตรังสีโดยทั่วไปจะสูงกว่าอย่างมากจากที่จำเป็นต้องใช้ในการแตกตัว อนุภาคย่อยของอะตอมที่มีการแตกตัวอื่น ๆที่เกิดขึ้นตามธรรมชาติก็มี มิวออน, มีซอน, โพสิตรอน, นิวตรอนและอนุภาคอื่น ๆ ที่ประกอบขึ้นเป็นรังสีคอสมิกขั้นที่สอง ที่มีการผลิตหลังจากรังสีคอสมิกขั้นที่นึ่งมีปฏิสัมพันธ์กับชั้นบรรยากาศของโลก รังสีคอสมิกยังอาจผลิตไอโซโทปรังสีในโลกอีกด้วย (ตัวอย่างเช่นคาร์บอน-14) ซึ่งเป็นผลให้เกิดการเสื่อมสลายและผลิตรังสีที่เกิดจากการแตกตัวเป็นไอออน รังสีคอสมิกและการเสื่อมสลายของไอโซโทปกัมมันตรังสีเป็นแหล่งที่มาหลักของรังสีที่เกิดจากการแตกตัวเป็นไอออนตามธรรมชาติบนโลกที่เรียกว่ารังสีพื้นหลัง ในอวกาศ การปล่อยรังสีความร้อนตามธรรมชาติจากสสารที่อุณหภูมิสูงมาก (เช่นการปล่อยพลาสมาหรือโคโรนาของดวงอาทิตย์) อาจเป็นการแตกตัวเป็นไอออน รังสีจากการเป็นไอออนอาจถูกผลิตขึ้นตามธรรมชาติโดยการเร่งความเร็วของอนุภาคที่มีประจุโดยสนามแม่เหล็กไฟฟ้าในธรรมชาติ (เช่นฟ้าผ่า), แม้ว่าจะหายากบนโลก การระเบิดแบบซูเปอร์โนวาตามธรรมชาติในอวกาศจะผลิตปริมาณมากของรังสีจากการแตกตัวเป็นไอออนใกล้กับการระเบิด ซึ่งจะเห็นได้จากผลกระทบของมันในเนบิวล่าที่แวววาวที่เกี่ยวข้องกับพวกมัน รังสีจากการแตกตัวยังสามารถสร้างแบบเทียมขึ้นมาได้โดยใช้หลอดรังสีเอกซ์, เครื่องเร่งอนุภาค และวิธีการต่างๆที่ผลิตไอโซโทปรังสีแบบเทียม รังสีจากการแตกตัวจะมองไม่เห็นและจะไม่สามารถตรวจพบได้โดยตรงจากความรู้สึกของมนุษย์, ดังนั้นเครื่องมือตรวจจับรังสีเช่นเครื่องไกเกอร์เคาน์เตอร์จึงจำเป็น อย่างไรก็ตามรังสีจากการแตกตัวอาจนำไปสู่​​การปล่อยครั้งที่สองของแสงที่มองเห็นได้หลังจากการมีปฏิสัมพันธ์กับสสาร เช่นในการฉายรังสีแบบ Cherenkov และการเรืองแสงรังสี (radioluminescence) รังสีจากการแตกตัวถูกนำไปใช้อย่างสร้างสรรค์ในหลากหลายสาขาเช่นยา, การวิจัย, การผลิต, การก่อสร้างและพื้นที่อื่น ๆ แต่ก็ทำให้เกิดอันตรายต่อสุขภาพถ้าไม่ปฏิบัติตามมาตรการที่เหมาะสมที่ต่อต้านกับการสัมผัสที่ไม่พึงประสงค์ การสัมผัสกับรังสีจากการแตกตัวจะทำให้เกิดความเสียหายให้กับเนื้อเยื่อที่มีชีวิตและสามารถส่งผลให้เกิดการกลายพันธุ์, การเจ็บป่วยเนื่องจากรังสี, มะเร็งและการเสียชีวิต.

ใหม่!!: การแตกตัวเป็นไอออนและรังสีก่อไอออน · ดูเพิ่มเติม »

อนุภาคย่อยของอะตอม

อนุภาคย่อยของอะตอม (subatomic particles) ในวิทยาศาสตร์ด้านกายภาพ เป็นอนุภาคที่เล็กกว่าอะตอมมาก มีสองชนิด ชนิดแรกได้แก่ อนุภาคมูลฐาน ซึ่งตามทฤษฎีปัจจุบันไม่ได้เกิดจากอนุภาคอื่น และชนิดที่สองได้แก่อนุภาคผสม ฟิสิกส์ของอนุภาคและฟิสิกส์ของนิวเคลียสจะศึกษาอนุภาคเหล่านี้และวิธีการที่พวกมันมีปฏิสัมพันธ์ต่อกัน ในฟิสิกส์ของอนุภาค แนวคิดของอนุภาคเป็นหนึ่งในแนวคิดหลากหลายที่สืบทอดมาจากฟิสิกส์ที่เป็นรูปแบบดั้งเดิม แต่มันมียังคงสะท้อนให้เห็นถึงความเข้าใจที่ทันสมัยที่ว่า ที่ระดับควอนตัม สสารและพลังงานประพฤติตัวแตกต่างอย่างมากจากสิ่งที่พบจากประสบการณ์ในชีวิตประจำวันที่จะนำเราไปสู่สิ่งที่คาดหวังไว้ แนวคิดของอนุภาคประสพกับการทบทวนอย่างจริงจังเมื่อการทดลองหลายครั้งแสดงให้เห็นว่าแสงสามารถปฏิบัติตัวเหมือนการไหลของอนุภาคจำนวนมาก (ที่เรียกว่าโฟตอน) เช่นเดียวกับการแสดงออกด้านคุณสมบัติทั้งหลายเหมือนของคลื่น นี้นำไปสู่​​แนวคิดใหม่ของทวิภาคของคลื่นกับอนุภาค (wave–particle duality) เพื่อสะท้อนให้เห็นว่า "อนุภาค" ที่ระดับควอนตัมจะทำตัวเหมือนเป็นทั้งอนุภาคและเป็นคลื่น (หรือเรียกว่า wavicles) อีกแนวคิดใหม่อันหนึ่ง "หลักของความไม่แน่นอน" กล่าวว่าบางส่วนของคุณสมบัติของพวกมันเมื่อนำมารวมกัน เช่นตำแหน่งเวกเตอร์และโมเมนตัมพร้อมกันของพวกมัน จะไม่สามารถวัดอย่างแม่นยำได้ ในช่วงเวลาไม่นานมานี้ ทวิภาคของคลื่นกับอนุภาคได้ถูกแสดงเพื่อนำไปใช้ไม่แต่เพียงกับโฟตอนเท่านั้น แต่จะนำไปใช้กับอนุภาคขนาดใหญ่มากขึ้นอีกด้วย ปฏิสัมพันธ์ของอนุภาคต่างๆในกรอบงานของทฤษฎีสนามควอนตัมถูกเข้าใจว่าเป็นการสร้างและการทำลายล้างของ"ควอนตัมทั้งหลาย"ของ"อันตรกิริยาพื้นฐาน"ที่สอดคล้องกัน สิ่งนี้จะผสมผสานฟิสิกส์ของอนุภาคเข้ากับทฤษฎีสนามควอนตัม.

ใหม่!!: การแตกตัวเป็นไอออนและอนุภาคย่อยของอะตอม · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Ionization

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »