โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ความถี่

ดัชนี ความถี่

วามถี่ (frequency) คือจำนวนการเกิดเหตุการณ์ซ้ำในหนึ่งหน่วยของเวลา ความถี่อาจเรียกว่า ความถี่เชิงเวลา (temporal frequency) หมายถึงแสดงให้เห็นว่าต่างจากความถี่เชิงพื้นที่ (spatial) และความถี่เชิงมุม (angular) คาบคือระยะเวลาของหนึ่งวงจรในเหตุการณ์ที่เกิดซ้ำ ดังนั้นคาบจึงเป็นส่วนกลับของความถี่ ตัวอย่างเช่น ถ้าหัวใจของทารกเกิดใหม่เต้นที่ความถี่ 120 ครั้งต่อนาที คาบ (ช่วงเวลาระหว่างจังหวะหัวใจ) คือครึ่งวินาที (นั่นคือ 60 วินาทีหารจาก 120 จังหวะ) ความถี่เป็นตัวแปรสำคัญในวิทยาศาสตร์และวิศวกรรม สำหรับระบุอัตราของปรากฏการณ์การแกว่งและการสั่น เช่น การสั่นของเครื่องจักร โสตสัญญาณ (เสียง) คลื่นวิทยุ และแสง.

123 ความสัมพันธ์: บันไดเสียงเมเจอร์ช่วงพร็อกซิมาคนครึ่งม้า บีพลังงานจากการแผ่รังสีพลาสมา (สถานะของสสาร)กฎของพลังค์กลุ่มอาการมือแปลกปลอมกลุ่มนิวเคลียส pulvinarกล้องโทรทรรศน์วิทยุการบําบัดทางความคิดและพฤติกรรมการกล้ำแอมพลิจูดการลวงประสาทเหมือนเวลาหยุดการวัดเปรียบเทียบสมรรถนะของคอมพิวเตอร์การหลั่งน้ำอสุจิการถ่ายโอนความรู้สึกการถ่ายเทความร้อนการทารุณเด็กทางเพศโดยเด็กการทำงานในสมองกับการเข้าสมาธิการขยายเสียงของคอเคลียการควบคุมอารมณ์ตนเองการแปลงฟูรีเยต่อเนื่องการใช้ดนตรีเป็นกลยุทธ์รับมือการเลื่อนไปทางแดงการเปลี่ยนความถี่ยีนอย่างไม่เจาะจงรอบต่อนาทีรอยนูนสมองกลีบขมับส่วนบนระบบการทรงตัวระบบการได้ยินระบบการเห็นระบบรับความรู้สึกทางกายระบบรางวัลระดับเสียงระดับเสียง (ดนตรี)รังสีแม่เหล็กไฟฟ้ารังสีไมโครเวฟพื้นหลังของจักรวาลรังสีเอกซ์ลำโพงวิวัฒนาการวิวัฒนาการของมนุษย์วงศ์หนูวงจรไฟตอนสหสัมพันธ์อัตโนมัติสัญญาณว้าว!สัญญาณแอนะล็อกสีสีแดงสเปกตรัมความถี่สเปกโทรสโกปีหลุมดำหูชั้นกลาง...หูชั้นในหน่วยอนุพันธ์เอสไออะตอมอาการปวดต่างที่อินเตอร์เฟอโรเมทรีอ็อกเทฟฮาร์มอนิกผลกระทบที่ผิวผลจากความใกล้ชิดผลต่อสุขภาพจากเสียงจิตพยาธิวิทยาสัตว์จิตสวนศาสตร์ทฤษฎีจลน์ของแก๊สทฤษฎีแม่เหล็กไฟฟ้าทวีตเตอร์ขดลวดเทสลาขนาดคลื่นพื้นผิวดรรชนีหักเหดาวฤกษ์ดาวแปรแสงคลื่นคลื่นสึนามิความยาวคลื่นความสนใจต่อสิ่งภายนอก-ความสนใจต่อสิ่งภายในความผิดปกติทางบุคลิกภาพความถี่มูลฐานความถี่เชิงพื้นที่ความถี่เสียงเปียโนความเร็วแนวเล็งความเหมาะสมค่าคงตัวของพลังค์คโลนะเซแพมตัวรับความรู้สึกที่หนังตัวรับแรงกลซันเอาท์เทจปฏิสสารประสบการณ์ผิดธรรมดาประสาทสัมผัสปรากฏการณ์ดอปเพลอร์นิวแบบสิ่งเร้าแสงแอมพลิจูดแผนที่ภูมิลักษณ์โพรโทบอร์ดโรคซึมเศร้าโลก (ดาวเคราะห์)โลมามหาสมุทรโซโนลูมิเนสเซนส์โน้ตดนตรีไฟบ้านเพอร์คัชชันเม็ดพาชีเนียนเม็ดรู้สัมผัสเรดาร์เรเดียนเวกเตอร์ลักษณะเฉพาะเวกเตอร์สี่มิติเสียงเสียงจากหูเสียงทุ้มแหลมผสมเฮิรตซ์เคยูแบนด์เครื่องรับวิทยุเครื่องสังเคราะห์เสียงเตตราโครมาซีเซลล์รับแสงเซลล์ประสาทเปลือกสมองส่วนการเห็นFLateral Intraparietal CortexRetinal ganglion cellSaccade ขยายดัชนี (73 มากกว่า) »

บันไดเสียงเมเจอร์

ันไดเสียงเมเจอร์ (major scale) หรือ บันไดเสียงไอโอเนียน เป็นบันไดเสียงหนึ่งที่ใช้กันมากที่สุด โดยเฉพาะดนตรีตะวันตก เป็นส่วนหนึ่งของบันไดเสียงไดอาโทนิก สร้างขึ้นจากโน้ต 7 ตัว เหมือนกับบันไดเสียงดนตรีส่วนใหญ่ โน้ตตัวที่แปดเป็นโน้ตตัวที่ซ้ำกับตัวที่หนึ่ง แต่มีความถี่เป็นสองเท่า หรือเรียกว่าออกเทฟที่สูงกว่าของโน้ตเดียวกัน (มาจากภาษาละติน "octavus" แปลว่า ลำดับที่แปด) บันเสียงเมเจอร์ที่ง่ายต่อการเขียนที่สุดคือ ซีเมเจอร์ ซึ่งเป็นบันไดเสียงเมเจอร์ที่ไม่มีชาร์ปหรือแฟลต บันไดเสียงเมเจอร์มีความสำคัญในดนตรียุโรป โดยเฉพาะในเพลงสมัยนิยม.

ใหม่!!: ความถี่และบันไดเสียงเมเจอร์ · ดูเพิ่มเติม »

ช่วง

วง อาจหมายถึง.

ใหม่!!: ความถี่และช่วง · ดูเพิ่มเติม »

พร็อกซิมาคนครึ่งม้า บี

ร็อกซิมาคนครึ่งม้า บี (Proxima Centauri b) หรือเรียก พร็อกซิมา บี (Proxima b) เป็นดาวเคราะห์นอกระบบในเขตอาศัยได้ โคจรรอบดาวฤกษ์พร็อกซิมาคนครึ่งม้า ซึ่งเป็นดาวฤกษ์ประเภทดาวแคระแดงในกลุ่มดาวคนครึ่งม้า และถือเป็นดาวฤกษ์ที่อยู่ใกล้ดวงอาทิตย์มากที่สุด โดยห่างจากโลกราว 4.2 ปีแสง (1.3 พาร์เซก หรือ 40 ล้านล้านกิโลเมตร) ทำให้ดาวเคราะห์นอกระบบดวงนี้เป็นดาวเคราะห์ที่มีศักยภาพต่อการอยู่อาศัยได้ที่อยู่ใกล้ระบบสุริยะมากที่สุดเท่าที่รู้จัก ดาวพร็อกซิมาคนครึ่งม้า บี ค้นพบโดยคณะนักดาราศาสตร์จากหอดูดาวท้องฟ้าซีกใต้แห่งยุโรป ประกาศการค้นพบในเดือนสิงหาคม..

ใหม่!!: ความถี่และพร็อกซิมาคนครึ่งม้า บี · ดูเพิ่มเติม »

พลังงานจากการแผ่รังสี

ตัวอย่างของพลังงานที่ถูกแผ่รังสีมาจากแหล่งพลังงานดวงอาทิตย์ซึ่งสามารถมองเห็นได้ด้วยตาเปล่า พลังงานจากการแผ่รังสี (Radiant Energy) เป็นพลังงานของคลื่นแม่เหล็กไฟฟ้า คำนวณได้จากผลรวมของฟลักซ์ (flux หรือ กำลัง) ที่แผ่ออกมาเมื่อเทียบกับเวลา มีหน่วยเป็น จูล พลังงานจะถูกส่งออกมาจากแหล่งใดแหล่งหนึ่งสู่สิ่งแวดล้อมโดยรอบ อาจมองเห็นหรืออาจมองไม่เห็นได้ด้วยตาเปล.

ใหม่!!: ความถี่และพลังงานจากการแผ่รังสี · ดูเพิ่มเติม »

พลาสมา (สถานะของสสาร)

หลอดไฟพลาสมา แสดงปรากฏการณ์ที่ซับซ้อนบางประการ รวมทั้งปรากฏการณ์ "ฟิลาเมนเตชั่น" (filamentation) พลาสมา ในทางฟิสิกส์และเคมี คือ แก๊สที่มีสภาพเป็นไอออน และมักจะถือเป็นสถานะหนึ่งของสสาร การมีสภาพเป็นไอออนดังกล่าวนี้ หมายความว่า จะมีอิเล็กตรอนอย่างน้อย 1 ตัว ถูกดึงออกจากโมเลกุล ประจุไฟฟ้าอิสระทำให้พลาสมามีสภาพการนำไฟฟ้าเกิดขึ้น สถานะที่ 4 ของสสารนี้ มีการเอ่ยถึงครั้งแรก โดยเซอร์ วิลเลียม ครูกส์ (Sir William Crookes) เมื่อ ค.ศ. 1879 และในปี ค.ศ. 1928 นั้น เออร์วิง แลงเมียร์ (Irving Langmuir) คิดคำว่าพลาสมา (plasma) ขึ้นมาแทนสถานะของสสารนี้เนื่องจากเขานึกถึงพลาสมาของเลือด พลาสมาจัดได้ว่าเป็นสถานะที่ 4 ของสสาร เนื่องจากมีลักษณะเฉพาะที่แตกต่างไปจากสถานะอื่นอย่างชัดเจน พลาสมาประกอบด้วยอนุภาคที่มีประจุทั้งประจุบวกและลบ ในสัดส่วนที่ทำให้ประจุสุทธิเป็นศูนย์ การอยู่รวมกันของอนุภาคเหล่านี้เป็นแบบประหนึ่งเป็นกลาง (quasineutral) ซึ่งหมายความว่าอิเล็กตรอนและไอออนในบริเวณนั้น โดยรวมแล้วมีจำนวนเท่า ๆ กัน และแสดงพฤติกรรมร่วม (collective behavior) พฤติกรรมร่วมนี้หมายถึง การเคลื่อนที่ของอนุภาคในพลาสมา ไม่เพียงแต่จะขึ้นอยู่กับเงื่อนไขในบริเวณนั้นๆ เท่านั้น แต่เป็นผลโดยรวมจากพลาสมาส่วนใหญ่ มากกว่าจะเป็นผลมาจากการชนกันของอนุภาคที่อยู่ใกล้เคียงกัน เนื่องจากอนุภาคในพลาสมาที่สถานะสมดุล จะมีการสั่นด้วยความถี่ที่สูงกว่าความถี่ในการชนกันของอนุภาค 2 ตัวที่อยู่ใกล้กัน ดังนั้นอาจกล่าวได้ว่าพฤติกรรมร่วมนี้เป็นพฤติกรรมที่กลุ่มพลาสมาแสดงออกมาร่วมกัน พลาสมาสามารถเกิดได้โดย การให้สนามไฟฟ้าปริมาณมากแก่ก๊าซที่เป็นกลาง เมื่อพลังงานส่งผ่านไปยังอิเล็กตรอนอิสระมากพอ จะทำให้อิเล็กตรอนอิสระชนกับอะตอม และทำให้อิเล็กตรอนหลุดออกจากอะตอม กระบวนการนี้เรียกว่ากระบวนการแตกตัวเป็นไอออน (ionization) ซึ่งจะเกิดขึ้นอย่างรวดเร็ว ทำให้จำนวนอิเล็กตรอนที่หลุดออกมานี้เพิ่มจำนวนขึ้นอย่างมากซึ่งจะทำให้ก๊าซแตกตัวและกลายเป็นพลาสมาในที่สุด พลาสมามีความแตกต่างจากสถานะของแข็ง สถานะของเหลว และสถานะก๊าซ โดยมีเงื่อนไข 3 ประการ ในเรื่องดังต่อไปนี้คือ ความยาวคลื่นเดอบาย จำนวนอนุภาค และความถี่พลาสมา ซึ่งทำให้พลาสมามีความจำเพาะเจาะจงที่แตกต่างจากสถานะอื่นออกไป หมวดหมู่:ฟิสิกส์พลาสมา หมวดหมู่:ฟิสิกส์ หมวดหมู่:เคมี หมวดหมู่:สถานะของสสาร หมวดหมู่:หลักการสำคัญของฟิสิกส์.

ใหม่!!: ความถี่และพลาสมา (สถานะของสสาร) · ดูเพิ่มเติม »

กฎของพลังค์

ปคตรัมการแผ่รังสีของวัตถุดำที่อุณหภูมิต่าง ๆ กฎของพลังค์ (Planck's law) เป็นกฎที่อธิบายสเปคตรัมการแผ่รังสี (spectral radiance) คลื่นแม่เหล็กไฟฟ้าที่ทุกความยาวคลื่นจากวัตถุดำที่อุณหภูมิหนึ่ง ๆ กฎนี้ค้นพบโดย มักซ์ พลังค์ นักฟิสิกส์ชาวเยอรมัน กฎของพลังค์เขียนในรูปฟังก์ชันของความถี่ \nu ได้เป็น หรือเขียนในรูปฟังก์ชันของความยาวคลื่น λ ได้เป็น โปรดสังเกตว่าสองสมการมีหน่วยต่างกัน สมการแรกหน่วยของสเปคตรัมการแผ่รังสีเป็นต่อความถี่ ส่วนสมการที่สองคิดต่อความยาวคลื่น สมการทั้งสองไม่สามารถแปลงกลับไปมาโดยการแทนตัวแปรตรง ๆ แต่ต้องอาศัยความสัมพันธ์ ความหมายและหน่วยในระบบเอสไอของแต่ละตัวแปรสรุปในตารางข้างล่างนี้ |- style.

ใหม่!!: ความถี่และกฎของพลังค์ · ดูเพิ่มเติม »

กลุ่มอาการมือแปลกปลอม

กลุ่มอาการมือแปลกปลอม (alien hand syndrome, Dr Strangelove syndrome) หรือ กลุ่มอาการมือต่างดาว เป็นความผิดปกติทางประสาทที่มือของคนไข้เหมือนกับมีใจเป็นของตน เป็นกลุ่มอาการที่มีการรายงานมากที่สุดในกรณีที่คนไข้ได้รับการตัด corpus callosumcorpus callosum หรือเรียกอีกอย่างหนึ่งว่า colossal commissure เป็นกลุ่มใยประสาทที่กว้างและแบนใต้เปลือกสมองของสัตว์เลี้ยงลูกด้วยนม (มีรก) ประเภท eutheria อยู่ที่ ร่อง longitudinal fissure (ที่แบ่งสมองออกเป็น 2 ข้าง) เป็นโครงสร้างที่เชื่อมซีกสมองซ้ายขวาเข้าด้วยกัน และอำนวยให้เขตในสมองทั้งสองซีกสื่อสารกันได้ เป็นส่วน white matter (ส่วนในสมองที่โดยมากประกอบด้วยแอกซอน) ที่ใหญ่ที่สุดในสมองมีแอกซอนส่งเชื่อมซีกสมองถึง 200-250 ล้านแอกซอน ออก ซึ่งบางครั้งใช้เป็นวิธีบรรเทาอาการเกี่ยวกับโรคลมชัก (epilepsy) ชนิดรุนแรง แต่ก็เป็นกลุ่มอาการที่เกิดขึ้นด้วยในกรณีอื่น ๆ เช่นการผ่าตัดสมอง โรคหลอดเลือดสมอง การติดเชื้อ เนื้องอก หลอดเลือดโป่งพอง และโรคสมองเสื่อมบางชนิดเช่นโรคอัลไซเมอร์ และ Creutzfeldt-Jakob diseaseBellows, A. (2009).

ใหม่!!: ความถี่และกลุ่มอาการมือแปลกปลอม · ดูเพิ่มเติม »

กลุ่มนิวเคลียส pulvinar

กลุ่มนิวเคลียส pulvinar (pulvinar nuclei, pulvinar thalami, nuclei pulvinaris) หรือเรียกสั้น ๆ ว่า pulvinar เป็นกลุ่มนิวเคลียสที่อยู่ในทาลามัส pulvinar ปกติจัดอยู่ในกลุ่มนิวเคลียส lateral thalamic nuclei ในสัตว์ฟันแทะและสัตว์กินเนื้อ แต่เป็นคอมเพล็กซ์ต่างหากในไพรเมต เป็นคำที่ย่อมาจากคำในภาษาละตินว่า "pulvinus" ซึ่งแปลว่า เบาะ ในศาสนาของโรมโบราณ เป็นคำที่หมายถึงเก้าอี้ยาวมีเบาะสำหรับให้เทพใช้.

ใหม่!!: ความถี่และกลุ่มนิวเคลียส pulvinar · ดูเพิ่มเติม »

กล้องโทรทรรศน์วิทยุ

กล้องโทรทรรศน์วิทยุ Very Large Array ที่ รัฐนิวเม็กซิโก สหรัฐอเมริกา กล้องโทรทรรศน์วิทยุ เป็นอุปกรณ์ทางดาราศาสตร์ ใช้บันทึกและวัดสัญญาณคลื่นวิทยุจากวัตถุท้องฟ้าต่าง ๆ กล้องโทรทรรศน์วิทยุต่างจากกล้องโทรทรรศน์เชิงแสงตรงที่ปฏิบัติงานในความถี่ของคลื่นวิทยุที่ความยาวคลื่นตั้งแต่ 10 มิลลิเมตร ไปจนถึง 10-20 เมตร โดยทั่วไปจานเสาอากาศของกล้องโทรทรรศน์วิทยุจะมีรูปร่างเป็นพาราโบลา อาจอยู่เดี่ยว ๆ หรือประกอบกันเป็นแถวลำดับ ทำหน้าที่เปรียบเทียบได้กับกระจกของกล้องโทรทรรศน์สะท้อนแสง กล้องโทรทรรศน์วิทยุนำไปสู่การค้นพบวัตถุใหม่และปรากฏการณ์ เช่น เควซาร์ พัลซาร์ และไมโครเวฟพื้นหลัง.

ใหม่!!: ความถี่และกล้องโทรทรรศน์วิทยุ · ดูเพิ่มเติม »

การบําบัดทางความคิดและพฤติกรรม

การบําบัดทางความคิดและพฤติกรรม (Cognitive behavioral therapy ตัวย่อ CBT) เป็นรูปแบบหนึ่งของจิตบำบัด (psychotherapy) ซึ่งดั้งเดิมออกแบบเพื่อรักษาโรคซึมเศร้า แต่ปัจจุบันใช้รักษาความผิดปกติทางจิตอย่างอื่น ๆ ด้วย ซึ่งมีประสิทธิผลโดยแก้ปัญหาปัจจุบันและเปลี่ยนความคิดและพฤติกรรมที่ไร้ประโยชน์ ชื่อของวิธีบำบัดอ้างอิงถึงการบำบัดชนิดต่าง ๆ รวมทั้งการบำบัดพฤติกรรม (behavior therapy) การบำบัดความคิด (cognitive therapy) และการบำบัดที่รวมหลักต่าง ๆ ในการศึกษาเกี่ยวกับพฤติกรรมและจิตวิทยาประชาน ผู้บำบัดคนไข้ที่มีปัญหาเรื่องโรควิตกกังวลและโรคซึมเศร้า จะใช้วิธีที่รวมการบัดบัดทั้งทางพฤติกรรมและทางความคิด เป็นเทคนิคที่ยอมรับความจริงว่า อาจมีพฤติกรรมที่ไม่สามารถควบคุมได้โดยความคิดที่สมเหตุผล เพราะเป็นพฤติกรรมที่เกิดจากการปรับสภาวะ (conditioning) ในอดีตต่อสิ่งแวดล้อมและสิ่งเร้าทั้งภายในภายนอก เป็นเทคนิคที่เพ่งความสนใจไปที่ปัญหาโดยเฉพาะ ๆ และช่วยคนไข้ให้เลือกกลยุทธ์ในการรับมือปัญหาเหล่านั้น ซึ่งต่างจากวิธีการรักษาแบบจิตวิเคราะห์ ที่ผู้รักษาจะสืบหาความหมายใต้สำนึกของพฤติกรรมของคนไข้เพื่อจะวินิจฉัยปัญหา คือ ในการบำบัดแบบพฤติกรรม ผู้รักษาเชื่อว่า ความผิดปกติที่มี เช่นความซึมเศร้า เกิดเนื่องมาจากความสัมพันธ์ระหว่างสิ่งเร้าที่กลัวกับการตอบสนองแบบหลีกเลี่ยง ซึ่งมีผลเป็นความกลัวที่มีเงื่อนไข เหมือนดังในการปรับสภาวะแบบดั้งเดิม (Classical Conditioning) และในการบำบัดความคิด ผู้รักษาเชื่อว่า ตัวความคิดเอง จะมีอิทธิพลต่อพฤติกรรมของบุคคล ดังนั้น การบำบัดสองอย่างหลังนี้จึงรวมกันเป็น CBT CBT มีประสิทธิผลต่อความผิดปกติหลายอย่างรวมทั้งความผิดปกติทางอารมณ์ (mood disorder) โรควิตกกังวล ความผิดปกติทางบุคลิกภาพ ความผิดปกติของการรับประทาน (Eating disorder) การติดสิ่งต่าง ๆ (addiction) การใช้สารเสพติด (substance dependence) ความผิดปกติที่มีอาการกล้ามเนื้อกระตุก (Tic disorder) และ psychotic disorder (รวมทั้งโรคจิตเภทและโรคหลงผิด) โปรแกรมการบำบัดแบบ CBT ได้รับประเมินสัมพันธ์กับการวินิจฉัยอาการ และปรากฏว่า มีผลดีกว่าวิธีการอื่น ๆ เช่น การบำบัดแบบ psychodynamic แต่ว่าก็มีนักวิจัยที่ตั้งความสงสัยในความสมเหตุสมผลของข้ออ้างว่ามีผลดีกว่าวิธีการอื่น ๆ การบำบัดโดยการปรับเปลี่ยนความคิดและพฤติกรรมมีประวัติความเป็นมาตั้งแต่ยุคที่เน้นการปรับพฤติกรรมเป็นหลัก ผู้ที่ถือเป็นบิดาแห่งการบำบัดในรูปแบบที่เข้าใจและนิยมใช้ที่สุดในปัจจุบันคือ.

ใหม่!!: ความถี่และการบําบัดทางความคิดและพฤติกรรม · ดูเพิ่มเติม »

การกล้ำแอมพลิจูด

การกล้ำแอมพลิจูด (amplitude modulation, AM) เป็นเทคนิคการกล้ำที่ใช้ในการสื่อสารอิเล็กทรอนิกส์ ซึ่งใช้มากที่สุดในการส่งผ่านสารสนเทศโดยทางคลื่นพาห์วิทยุ (radio carrier wave) ในแอมพิลจูดมอดูเลชัน แอมพลิจูด (ความเข้มสัญญาณ) ของคลื่นพาห์แปรผันเป็นสัดส่วนกับรูปคลื่นที่ส่งผ่าน ตัวอย่างเช่น รูปคลื่นสอดคล้องกับเสียงที่ผลิตซ้ำโดยลำโพง หรือความเข้มแสงของพิกเซลโทรทัศน์ เทคนิคนี้ตรงข้ามกับการกล้ำความถี่ (frequency modulation) ซึ่งความถี่ของสัญญาณพาห์แรผัน และการกล้ำเฟส ซึ่งเฟสแปรผัน หมวดหมู่:วิธีการกล้ำวิทยุ.

ใหม่!!: ความถี่และการกล้ำแอมพลิจูด · ดูเพิ่มเติม »

การลวงประสาทเหมือนเวลาหยุด

การลวงประสาทเหมือนเวลาหยุด (Chronostasis, จาก χρόνος, chrónos, แปลว่า "เวลา" และ στάσις, stásis, แปลว่า "หยุด") เป็นการรับรู้เวลาผิดอย่างหนึ่ง ที่เกิดความรู้สึกเมื่อเริ่มกิจกรรมใหม่ว่า เวลายืดออกไป ยกตัวอย่างเช่น ความรู้สึกเหมือนเวลาหยุดจะเกิดขึ้นเมื่อกำลังตรึงตาที่จุด ๆ หนึ่ง แล้วทำการเคลื่อนไหวตาแบบรวดเร็วที่เรียกว่า saccade (เหลือบตา) ไปมองที่จุดที่สอง ซึ่งทำให้เกิดความรู้สึกว่าได้มองอยู่ที่จุดที่สองเป็นระยะเวลานานกว่าที่ได้มองแล้วจริง ๆ โดยสามารถเกิดความรู้สึกเหมือนเวลายืดออกไปแบบนี้ถึง 500 มิลลิวินาที (ครึ่งวินาที) เป็นปรากฏการณ์ที่ไม่ขัดแย้งกับไอเดีย (หรือทฤษฎี) ที่ว่า ระบบการมองเห็นทำการจำลองเหตุการณ์ที่กำลังเป็นไปก่อนจะเกิดการรับรู้เหตุการณ์นั้นจริง ๆ รูปแบบของการลวงประสาทที่รู้จักกันดีที่สุดก็คือ ภาพลวงตาเหมือนนาฬิกาหยุด (stopped-clock illusion) ที่หลังจากการเหลือบตาแบบ saccade ไปดูนาฬิกา การเคลื่อนไปของเข็มวินาทีเป็นครั้งแรกเหมือนจะใช้เวลานานกว่าครั้งที่สอง โดยที่เข็มวินาทีอาจจะดูเหมือนกับหยุดอยู่กับที่สักระยะหนึ่งหลังจากการเหลือบดู การแปลสิ่งเร้าผิดเช่นนี้สามารถเกิดขึ้นทางหูและทางสัมผัสได้เช่นกัน ยกตัวอย่างเช่น งานวิจัยหนึ่งบอกเป็นนัยว่า เมื่อกำลังฟังเสียงสัญญาณโทรศัพท์ที่บอกว่า โทรศัพท์เบอร์ที่โทรไปกำลังดังอยู่ ถ้ามีการสลับหูเพื่อจะฟังเสียงนั้น คนโทรจะประเมินระยะเวลาระหว่างสัญญาณโทรศัพท์ดังมากเกินไป.

ใหม่!!: ความถี่และการลวงประสาทเหมือนเวลาหยุด · ดูเพิ่มเติม »

การวัดเปรียบเทียบสมรรถนะของคอมพิวเตอร์

การวัดเปรียบเทียบสมรรถนะของคอมพิวเตอร์ คือ การวัดประสิทธิภาพของระบบคอมพิวเตอร์โดยทั่วไปนั้นจะเน้นที่ตัวประมวลผลเป็นหลัก ซึ่งการมุ่งเน้นไปที่ตัวประมวลผลนั้นเป็นเพียงส่วนหนึ่งของการวัดประสิทธิภาพโดยรวมทั้งร.

ใหม่!!: ความถี่และการวัดเปรียบเทียบสมรรถนะของคอมพิวเตอร์ · ดูเพิ่มเติม »

การหลั่งน้ำอสุจิ

ต่อเนื่อง การหลั่งน้ำอสุจิ (http://commons.wikimedia.org/wiki/Image:Ejaculation_educational_ani_short.gif วิดีโอวนซ้ำ) การหลั่งน้ำอสุจิ (ejaculation) คือการหลั่งน้ำอสุจิออกจากองคชาต มักเกิดพร้อมกับการถึงจุดสุดยอดทางเพศ ถือเป็นด่านสุดท้ายและเป็นเป้าหมายทางธรรมชาติของการเร้าอารมณ์ทางเพศการเร้าอารมณ์ทางเพศ (sexual stimulation) เป็นตัวกระตุ้นอะไรก็ได้ รวมทั้งสัมผัสทางกาย ที่เพิ่มและรักษาอารมณ์เพศ ซึ่งอาจนำไปสู่การหลั่งน้ำอสุจิและ/หรือจุดสุดยอดทางเพศในที่สุด ถึงแม้ว่าอารมณ์เพศอาจเกิดขึ้นได้โดยไม่ต้องอาศัยการกระตุ้น แต่จะถึงจุดสุดยอดทางเพศได้ ปกติต้องมีการกระตุ้นทางเพศ และเป็นสิ่งที่จำเป็นในการให้เกิดปฏิสนธิ (คือการตั้งครรภ์) การหลั่งอาจเกิดขึ้นได้เพราะโรคในต่อมลูกหมาก แม้จะเป็นกรณีที่หายาก และบางครั้งอาจเกิดขึ้นเองในขณะหลับ (เป็นการหลั่งในช่วงกลางคืน หรือที่เรียกว่า ฝันเปียก) มีภาวะหลายอย่างที่ทำให้ไม่สามารถหลั่งน้ำอสุจิ (เช่นอวัยวะเพศชายไม่แข็งตัว) หรือที่ทำให้เกิดมีความเจ็บปวดไม่รู้สึกสบายเมื่อมีการหลั่งน้ำอ.

ใหม่!!: ความถี่และการหลั่งน้ำอสุจิ · ดูเพิ่มเติม »

การถ่ายโอนความรู้สึก

ในสรีรวิทยา การถ่ายโอนความรู้สึก (sensory transduction) เป็นการแปลงตัวกระตุ้นความรู้สึกจากรูปแบบหนึ่ง ไปเป็นอีกรูปแบบหนึ่ง การถ่ายโอนในระบบประสาทโดยปกติหมายถึงการส่งสัญญาณเพื่อแจ้งการตรวจพบตัวกระตุ้น โดยที่ตัวกระตุ้นเชิงกล ตัวกระตุ้นเชิงเคมี หรือเชิงอื่นๆ แปลงไปเป็นศักยะงานประสาท แล้วส่งไปทางแอกซอน ไปสู่ระบบประสาทกลางซึ่งเป็นศูนย์รวบรวมสัญญาณประสาทเพื่อประมวลผล เซลล์รับความรู้สึก (receptor cell) เปลี่ยนพลังงานของตัวกระตุ้นไปเป็นความต่างศักย์ไฟฟ้าระหว่างภายในภายนอกของเซลล์ ข้ามเยื่อหุ้มเซลล์ ซึ่งนำไปสู่การลดขั้ว (depolarization) ของเยื่อหุ้มเซลล์ และนำไปสู่การสร้างศักยะงานประสาทที่ส่งไปยังสมองเพื่อประมวลผล.

ใหม่!!: ความถี่และการถ่ายโอนความรู้สึก · ดูเพิ่มเติม »

การถ่ายเทความร้อน

http://www.roasterproject.com/2010/01/heat-transfer-the-basics/การถ่ายเทความร้อนจะมี3รูปแบบดังที่เห็นในรูปซึ่งทั้ง3แบบจะมีความสัมพันธ์กัน การถ่ายเทความร้อน (heat transfer) คือการถ่ายเทของพลังงานความร้อน.

ใหม่!!: ความถี่และการถ่ายเทความร้อน · ดูเพิ่มเติม »

การทารุณเด็กทางเพศโดยเด็ก

การทารุณเด็กทางเพศโดยเด็ก (Child-on-child sexual abuse) หรือ ทารุณกรรมทางเพศต่อเด็กโดยเด็ก เป็นรูปแบบหนึ่งของการทารุณเด็กทางเพศที่เด็กก่อนวัยเริ่มเจริญพันธุ์ถูกทารุณทางเพศโดยเด็กหรือเด็กวัยรุ่นอื่น ๆ ที่ผู้ใหญ่ไม่มีส่วนร่วม มีนิยามว่าเป็นกิจกรรมทางเพศระหว่างเด็ก ที่เกิดขึ้นโดย "ไม่ยินยอม ไม่เท่าเทียม หรือโดยบีบบังคับ" ซึ่งรวมทั้งสถานการณ์ที่เด็กคนหนึ่งใช้กำลังกาย คำข่มขู่ การหลอกลวง หรือกลอุบายทางจิตวิทยา เพื่อให้เหยื่อร่วมมือ เป็นกิจกรรมที่ต่างจากการเล่นทางเพศ ความอยากรู้อยากเห็นในเรื่องเพศ และการสำรวจทางเพศของเด็กปกติ (เช่น เล่นเป็นหมอ) เพราะว่าเป็นการจงใจเพื่อกระตุ้นความรู้สึกทางเพศ รวมถึงการให้ถึงความเสียวสุดยอด ในหลายกรณี เด็กผู้ริเริ่มจะฉวยประโยชน์อาศัยความไร้เดียงสาของเด็กอีกคนหนึ่งที่เป็นเหยื่อ ผู้ไม่รู้ว่าอะไรกำลังจะเกิดขึ้น เป็นเรื่องที่สามารถทำโดยพี่น้องของเหยื่อ โดยเป็นทารุณกรรมระหว่างพี่น้อง (intersibling abuse).

ใหม่!!: ความถี่และการทารุณเด็กทางเพศโดยเด็ก · ดูเพิ่มเติม »

การทำงานในสมองกับการเข้าสมาธิ

ตสมองที่มีสีเน้นเป็นเขต anterior cingulate cortex ซึ่งทำงานเมื่อมีการเจริญกรรมฐาน การเจริญกรรมฐาน (meditation) ผลต่อการทำงานของสมอง และผลต่อระบบประสาทกลาง ได้กลายมาเป็นประเด็นงานวิจัยข้ามสาขาในประสาทวิทยาศาสตร์ จิตวิทยา และชีววิทยาประสาท (neurobiology) ในช่วงท้ายคริสต์ศตวรรษที่ 20 งานวิจัยได้พยายามที่จะกำหนดและแสดงลักษณะของการเจริญกรรมฐาน/การเจริญภาวนา/การนั่งสมาธิ แบบต่าง ๆ ผลการเจริญกรรมฐานต่อสมองมีสองแบบ คือผลต่อภาวะสมองระยะสั้นเมื่อกำลังเจริญกรรมฐาน และผลต่อลักษณะที่มีในระยะยาว ประเด็นการศึกษาบ่อยครั้งจะเป็นเรื่องการเจริญสติ ซึ่งเป็นกรรมฐานของชาวพุทธทั้งในแบบวิปัสสนา และในรูปแบบของนิกายเซน.

ใหม่!!: ความถี่และการทำงานในสมองกับการเข้าสมาธิ · ดูเพิ่มเติม »

การขยายเสียงของคอเคลีย

การขยายเสียงของคอเคลีย (cochlear amplifier) เป็นกลไกป้อนกลับเชิงบวกในหูชั้นในรูปหอยโข่ง (คอเคลีย) ที่ทำให้ระบบการได้ยินของสัตว์เลี้ยงลูกด้วยนมไวเสียงมาก กลไกหลักก็คือ เซลล์ขนด้านนอก (OHC) ซึ่งช่วยเพิ่มทั้งแอมพลิจูด (ความดัง) และความไวความถี่เสียง ผ่านกระบวนการป้อนกลับโดยไฟฟ้าและแรงกล (electromechanical feedback).

ใหม่!!: ความถี่และการขยายเสียงของคอเคลีย · ดูเพิ่มเติม »

การควบคุมอารมณ์ตนเอง

การควบคุมอารมณ์ตนเอง (Emotional self-regulation) เป็นความสามารถในการตอบสนองทางอารมณ์ต่อประสบการณ์ในรูปแบบที่สังคมยอมรับได้แต่ยืดหยุ่นพอที่จะเป็นปฏิกิริยาแบบฉับพลัน และเป็นความสามารถในการผัดผ่อนปฏิกิริยาแบบฉับพลันถ้าจำเป็น หรือสามารถนิยามได้ว่า เป็นกระบวนการไม่ว่าจะเป็นภายนอกหรือภายในที่มีหน้าที่ตรวจสอบ ประเมิน และเปลี่ยนปฏิกิริยาทางอารมณ์ การควบคุมอารมณ์ของตัวเองเป็นส่วนหนึ่งของกระบวนการควบคุมอารมณ์ ซึ่งรวมการควบคุมทั้งตัวเองและผู้อื่น การควบคุมอารมณ์เป็นกระบวนการที่ซับซ้อนรวมทั้งการเริ่ม การยับยั้ง หรือปรับสภาพหรือพฤติกรรมในสถานการณ์หนึ่ง ๆ เช่นปรับความรู้สึกในใจที่เป็นอัตวิสัย การรู้คิด การตอบสนองทางสรีรภาพที่สัมพันธ์กับอารมณ์ (เช่นการเต้นของหัวใจหรือการทำงานทางฮอร์โมน) และพฤติกรรมที่สัมพันธ์กับอารมณ์ (ไม่ว่าจะเป็นทางกายหรือทางสีหน้า) นอกจากนั้น โดยกิจ การควบคุมอารมณ์ยังอาจหมายถึงกระบวนการต่าง ๆ เช่น การใส่ใจในงานที่กำลังทำ และการหยุดพฤติกรรมที่ไม่เหมาะสมที่คนอื่นบอก การควบคุมอารมณ์เป็นกิจที่สำคัญมากในชีวิตมนุษย์ ทุก ๆ วัน มนุษย์ได้รับสิ่งเร้ามากมายหลายอย่างที่อาจทำให้เกิดการตื่นตัว ปฏิกิริยาทางอารมณ์ที่ไม่เหมาะสม สุด ๆ หรือไม่ระวัง อาจจะทำให้เข้ากับสังคมไม่ได้ ดังนั้น ทุกคนต้องควบคุมอารมณ์ของตนในรูปแบบต่าง ๆ เกือบตลอดเวลา ในเรื่องสุขภาพจิต การควบคุมอารมณ์ที่ผิดปกติ (emotional dysregulation) นิยามว่าเป็นความลำบากในการควบคุมอิทธิพลของความตื่นตัวทางอารมณ์ต่อรูปแบบและคุณภาพทางความคิด ทางการกระทำ และทางปฏิสัมพันธ์กับผู้อื่น/สิ่งอื่น บุคคลที่มีการควบคุมอารมณ์ผิดปกติจะแสดงรูปแบบการตอบสนองที่เป้าหมาย การตอบสนอง และ/หรือวิธีการแสดงออก ไม่เข้ากับสิ่งที่สังคมยอมรับได้ ยกตัวอย่างเช่น การควบคุมอารมณ์ผิดปกติสัมพันธ์อย่างสำคัญกับอาการของโรคซึมเศร้า โรควิตกกังวล ความผิดปกติในการรับประทาน และการติดสารเสพติด การควบคุมอารมณ์ได้น่าจะสัมพันธ์กับสมรรถภาพทางสังคมและกับการแสดงออกทางอารมณ์ที่เหมาะสม.

ใหม่!!: ความถี่และการควบคุมอารมณ์ตนเอง · ดูเพิ่มเติม »

การแปลงฟูรีเยต่อเนื่อง

การแปลงฟูรีเยต่อเนื่อง (continuous Fourier transform) เป็นตัวดำเนินการเชิงเส้นแบบหนึ่งซึ่งทำการแมพฟังก์ชันหนึ่งไปยังอีกฟังก์ชันหนึ่ง อีกนัยหนึ่งการแปลงฟูรีเยนั้นเป็นการแยกองค์ประกอบของฟังก์ชัน ตามสเปกตรัมของความถี่ที่มีค่าต่อเนื่อง และใช้หมายถึง ค่าสัญญาณใน "โดเมนของความถี่" ในทางฟิสิกส์และวิศวกรรม (ดูเพิ่มเติมที่บทความหลัก การแปลงฟูรีเย).

ใหม่!!: ความถี่และการแปลงฟูรีเยต่อเนื่อง · ดูเพิ่มเติม »

การใช้ดนตรีเป็นกลยุทธ์รับมือ

การใช้ดนตรีเป็นกลยุทธ์รับมือ (Music as a coping strategy) เป็นการใช้ดนตรี ไม่ว่าจะโดยฟังหรือเล่น เพื่อลดอาการของความเครียดทางกายใจ และลดตัวความเครียดเองด้วย การใช้ดนตรีรับมือกับความเครียดเป็นตัวอย่างกลยุทธ์การรับมือที่เพ่งอารมณ์ โดยมองว่าเป็นการปรับตัวที่ดี (adaptive) เพราะลดหรือกำจัดความรู้สึกที่เกิดขึ้นตอบสนองต่อความเครียด ไม่ใช่จัดการตัวก่อความเครียดโดยตรง ผู้ที่สนับสนุนการบำบัดเช่นนี้อ้างว่า การใช้ดนตรีช่วยลดระดับความเครียดที่คนไข้รู้สึก และยังลดลักษณะที่วัดได้ทางชีวภาพ เช่น ระดับฮอร์โมนอีพิเนฟรินและคอร์ติซอล ซึ่งหลั่งเมื่อเครียดอีกด้วย นอกจากนั้นแล้ว โปรแกรมบำบัดด้วยดนตรียังมีหลักฐานที่ทำซ้ำได้ว่า ช่วยลดอาการซึมเศร้าและวิตกกังวลโดยระยะยาว.

ใหม่!!: ความถี่และการใช้ดนตรีเป็นกลยุทธ์รับมือ · ดูเพิ่มเติม »

การเลื่อนไปทางแดง

แถบการดูดกลืนแสงในสเปกตรัมของแสงที่ได้จากกระจุกดาราจักรอันห่างไกล (ด้านขวา) เปรียบเทียบกับแถบการดูดกลืนแสงในสเปกตรัมของแสงดวงอาทิตย์ (ด้านซ้าย) ลูกศรชี้แสดงถึงการเลื่อนไปทางแดง ความยาวคลื่นจะเพิ่มขึ้นและความถี่ลดลง ในวิชาฟิสิกส์และดาราศาสตร์ การเลื่อนไปทางแดง (Redshift) เกิดขึ้นเมื่อการแผ่รังสีคลื่นแม่เหล็กไฟฟ้า (โดยมากเป็นแสงที่ตามองเห็น) มีการเปล่งแสงหรือสะท้อนกับวัตถุ แล้วเกิดปรากฏการณ์ดอปเพลอร์ทำให้สเปกตรัมของคลื่นเลื่อนตัวไปในทางฝั่งสีแดงของสเปกตรัมแม่เหล็กไฟฟ้า (ซึ่งมีพลังงานน้อยกว่า) การเลื่อนไปทางแดงจึงหมายถึงการที่ผู้สังเกตหรืออุปกรณ์ตรวจจับได้รับรังสีคลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นเพิ่มขึ้นเมื่อเทียบกับแหล่งกำเนิด การที่ความยาวคลื่นเพิ่มขึ้นสัมพันธ์กับการที่ความถี่คลื่นแม่เหล็กไฟฟ้าลดลง ดังนั้นในทางตรงกันข้าม หากตรวจพบว่าความยาวคลื่นลดลงก็จะเรียกปรากฏการณ์นั้นว่า การเลื่อนไปทางน้ำเงิน การเลื่อนไปทางแดงที่เกิดจากปรากฏการณ์ดอปเพลอร์เกิดขึ้นเมื่อแหล่งกำเนิดแสงเคลื่อนที่ห่างออกไปจากผู้สังเกต เช่นเดียวกับการเคลื่อนดอปเปลอร์ซึ่งความถี่จะเปลี่ยนแปลงลดลงเมื่อต้นกำเนิดเสียงเคลื่อนห่างออกไป ฟิสิกส์ดาราศาสตร์สเปกโตรสโกปีอาศัยปรากฏการณ์ดอปเพลอร์เช่นนี้ในการคำนวณการเคลื่อนที่ของวัตถุทางดาราศาสตร์ที่อยู่ในที่ห่างไกล.

ใหม่!!: ความถี่และการเลื่อนไปทางแดง · ดูเพิ่มเติม »

การเปลี่ยนความถี่ยีนอย่างไม่เจาะจง

ร์วินให้เป็น '''ทฤษฎีวิวัฒนาการสังเคราะห์แบบปัจจุบัน''' (Modern evolutionary synthesis) การเปลี่ยนความถี่ยีนอย่างไม่เจาะจง (Genetic drift, allelic drift, Sewall Wright effect) เป็นการเปลี่ยนความถี่รูปแบบยีน (คือ อัลลีล) ในกลุ่มประชากรเพราะการชักตัวอย่างอัลลีลแบบสุ่มของสิ่งมีชีวิต คือ อัลลีลที่พบในสิ่งมีชีวิตรุ่นลูก จะเป็นตัวอย่างของอัลลีลที่ชักมาจากพ่อแม่ โดยความสุ่มจะมีบทบาทกำหนดว่า สิ่งมีชีวิตรุ่นลูกนั้น ๆ จะรอดชีวิตแล้วสืบพันธุ์ต่อไปหรือไม่ ส่วน ความถี่อัลลีล (allele frequency) ก็คืออัตราที่ยีนหนึ่ง ๆ จะมีรูปแบบเดียวกันในกลุ่มประชากร การเปลี่ยนความถี่ยีนอาจทำให้อัลลีลหายไปโดยสิ้นเชิงและลดความแตกต่างของยีน (genetic variation) เมื่ออัลลีลมีก๊อปปี้น้อย ผลของการเปลี่ยนความถี่จะมีกำลังกว่า และเมื่อมีก๊อปปี้มาก ผลก็จะน้อยกว่า ในคริสต์ทศวรรษที่ 20 มีการอภิปรายอย่างจริงจังว่า การคัดเลือกโดยธรรมชาติสำคัญเทียบกับกระบวนการที่เป็นกลาง ๆ รวมทั้งการเปลี่ยนความถี่ยีนอย่างไม่เจาะจงแค่ไหน.

ใหม่!!: ความถี่และการเปลี่ยนความถี่ยีนอย่างไม่เจาะจง · ดูเพิ่มเติม »

รอบต่อนาที

รอบต่อนาที (RPM หรือ rpm ย่อมาจาก Revolutions per minute) นิยมใช้เป็นหน่วยวัดอัตราการหมุนของเครื่องยนต์และมอเตอร์ โดยเขียนระบุหน่วยเป็น rpm, RPM, r/min หรือ min-1 อัตราเร็วรอบต่อนาที เป็นค่าความถี่ (frequency) แบบหนึ่ง หน่วยเอสไอของความถี่คือ เฮิรตซ์ (Hz) โดย 1\ Hz.

ใหม่!!: ความถี่และรอบต่อนาที · ดูเพิ่มเติม »

รอยนูนสมองกลีบขมับส่วนบน

รอยนูนสมองกลีบขมับส่วนบน (superior temporal gyrus, gyrus temporalis superior, ตัวย่อ STG) เป็นหนึ่งในสามรอยนูน (แต่บางครั้งปรากฏแค่สอง) ในสมองกลีบขมับของมนุษย์ อยู่ด้านข้างของศีรษะเหนือหูเล็กน้อย รอยนูนสมองกลีบขมับส่วนบนล้อมรอบด้ว.

ใหม่!!: ความถี่และรอยนูนสมองกลีบขมับส่วนบน · ดูเพิ่มเติม »

ระบบการทรงตัว

ห้องหูชั้นใน (labyrinth of the inner ear) ของหูด้านขวา ประกอบด้วย '''คอเคลีย''' (cochlea) เป็นอวัยวะปลายประสาทของระบบการได้ยิน ส่วนอวัยวะรับความรู้สึกของระบบการทรงตัวรวมทั้ง '''หลอดกึ่งวงกลม''' (semicircular ducts) ซึ่งทำหน้าที่รับรู้การเคลื่อนไหวแบบหมุน (คือความเร่งเชิงมุม) '''saccule''' และ '''utricle''' ทำหน้าที่รับรู้ความเร่งเชิงเส้น คอเคลียและ vestibular system ในสัตว์เลี้ยงลูกด้วยนมโดยมาก ระบบการทรงตัว (vestibular system) เป็นระบบรับความรู้สึกที่ให้ข้อมูลสำคัญที่สุดเกี่ยวกับการกำหนดรู้การทรงตัว (equilibrioception หรือ sense of balance) และการรู้ทิศทางของร่างกายภายในปริภูมิ (spatial orientation) ระบบการทรงตัวพร้อมกับคอเคลียซึ่งเป็นส่วนของระบบการได้ยิน เป็นส่วนประกอบของห้องหูชั้นใน (labyrinth of the inner ear) สำหรับสัตว์เลี้ยงลูกด้วยนมโดยมาก เพราะการเคลื่อนไหวร่างกายมีทั้งแบบหมุนและแบบเลื่อน ระบบการทรงตัวจึงมีส่วนประกอบสองอย่างเหมือนกัน คือ ระบบหลอดกึ่งวงกลม (semicircular canal) ซึ่งบอกการเคลื่อนไหวแบบหมุน และระบบ otoliths ซึ่งบอกความเร่งในแนวเส้น ระบบการทรงตัวโดยหลักจะส่งข้อมูลไปยังโครงสร้างประสาทที่ควบคุมการเคลื่อนไหวของตา เช่นการเคลื่อนไหวแบบ vestibulo-ocular reflex ซึ่งจำเป็นในการเห็นที่ชัดเจน และไปยังกล้ามเนื้อที่ทำให้สามารถทรงตัวไว้ได้ ระบบการทรงตัวมีบทบาทในเรื่อง.

ใหม่!!: ความถี่และระบบการทรงตัว · ดูเพิ่มเติม »

ระบบการได้ยิน

ระบบการได้ยิน (auditory system) เป็นระบบรับความรู้สึก/ระบบประสาทสัมผัส ซึ่งรวมทั้งอวัยวะการฟังคือหู และระบบประสาทเกี่ยวกับการฟัง กายวิภาคของหู แม้ว่าช่องหูจะยาวเกินสัดส่วนในรูป.

ใหม่!!: ความถี่และระบบการได้ยิน · ดูเพิ่มเติม »

ระบบการเห็น

ังไม่มี เผื่ออนาคต mammalian visual systemsEye -refined.svg||thumb|200px|ระบบการเห็นประกอบด้วตา และ วิถีประสาทที่เชื่อมตากับpostscript.

ใหม่!!: ความถี่และระบบการเห็น · ดูเพิ่มเติม »

ระบบรับความรู้สึกทางกาย

การเห็นบกพร่อง สัมผัสเป็นประสาทสัมผัสที่สำคัญเพื่อรับรู้สิ่งแวดล้อม ระบบรับความรู้สึกทางกาย"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ somato-gnosis ว่า "ความรู้สึก-ทางกาย" และของ sensory ว่า "-รับความรู้สึก" แต่สิ่งที่ตีพิมพ์ในวรรณกรรมมักใช้คำอังกฤษว่า somatosensory system โดยไม่แปล (somatosensory system) เป็นส่วนของระบบรับความรู้สึกที่สามารถรับรู้อย่างหลายหลาก ประกอบด้วยตัวรับความรู้สึก/ปลายประสาทรับความรู้สึก (sensory receptor) ที่ระบบประสาทนอกส่วนกลาง และศูนย์ประมวลผลต่าง ๆ ที่ระบบประสาทกลางมากมาย ทำให้รับรู้ตัวกระตุ้นได้หลายแบบรวมทั้งสัมผัส อุณหภูมิ อากัปกิริยา และโนซิเซ็ปชั่น (ซึ่งอาจให้เกิดความเจ็บปวด) ตัวรับความรู้สึกมีอยู่ที่ผิวหนัง เนื้อเยื่อบุผิว กล้ามเนื้อโครงร่าง กระดูก ข้อต่อ อวัยวะภายใน และระบบหัวใจและหลอดเลือด ถึงแม้จะสืบทอดมาตั้งแต่ครั้งโบราณว่า สัมผัสเป็นความรู้สึกอย่างหนึ่งในทวารทั้ง 5 (เช่น "โผฏฐัพพะ" ในพระพุทธศาสนา) แต่ความจริงแล้ว "สัมผัส" เป็นความรู้สึกต่าง ๆ หลายแบบ ดังนั้น การแพทย์จึงมักจะใช้ศัพท์ภาษาอังกฤษว่า "somatic senses (ความรู้สึกทางกาย)" แทนศัพท์ว่า "touch (สัมผัส)" เพื่อให้ครอบคลุมกลไกความรู้สึกทางกายทั้งหมด ความรู้สึกทางกายบางครั้งเรียกว่า "somesthetic senses" โดยที่คำว่า "somesthesis" นั้น รวมการรับรู้สัมผัส (touch) การรับรู้อากัปกิริยา และในบางที่ การรับรู้วัตถุโดยสัมผัส (haptic perception) ระบบรับความรู้สึกทางกายมีปฏิสัมพันธ์กับสิ่งเร้ามากมายหลายแบบ โดยอาศัยตัวรับความรู้สึกประเภทต่าง ๆ รวมทั้งตัวรับอุณหภูมิ โนซิเซ็ปเตอร์ ตัวรับแรงกล และตัวรับรู้สารเคมี ข้อมูลความรู้สึกจะส่งไปจากตัวรับความรู้สึกผ่านเส้นประสาทรับความรู้สึก (sensory nerve) ผ่านลำเส้นใยประสาทในไขสันหลัง ตรงเข้าไปยังสมอง การประมวลผลโดยหลักเกิดขึ้นที่คอร์เทกซ์รับความรู้สึกทางกายปฐมภูมิ (primary somatosensory cortex) ในสมองกลีบข้าง cortical homunculus ที่แสดงไว้โดยไวล์เดอร์ เพ็นฟิลด์ กล่าวอย่างง่าย ๆ ที่สุด ระบบรับความรู้สึกทางกายจะเริ่มทำงานเมื่อตัวรับความรู้สึกที่กายเขตหนึ่งเริ่มทำงาน โดยถ่ายโอนคุณสมบัติของตัวกระตุ้นบางอย่างเช่นความร้อนไปเป็นสัญญาณประสาท ซึ่งในที่สุดก็จะเดินทางไปถึงเขตสมองที่มีหน้าที่เฉพาะเจาะจงต่อเขตกายนั้น และเพราะเฉพาะเจาะจงอย่างนี้ จึงสามารถระบุเขตกายที่เกิดความรู้สึกโดยเฉพาะซึ่งเป็นผลแปลของสมอง ความสัมพันธ์จุดต่อจุดเช่นนี้ปรากฏเป็นแผนที่ผิวกายในสมองที่เรียกว่า homunculus แปลว่า "มนุษย์ตัวเล็ก ๆ" และเป็นส่วนสำคัญในการรับรู้ความรู้สึกที่ส่วนต่าง ๆ ของร่างกาย แต่แผนที่ในสมองเช่นนี้ ไม่ใช่ว่าจะเปลี่ยนแปลงไม่ได้ และจริง ๆ สามารถเปลี่ยนแปลงได้อย่างน่าทึ่งใจ เพื่อตอบสนองต่อโรคหลอดเลือดสมองหรือความบาดเจ็บอื่น.

ใหม่!!: ความถี่และระบบรับความรู้สึกทางกาย · ดูเพิ่มเติม »

ระบบรางวัล

ติดตั้งเป้าที่ศูนย์ความสุขในสมอง (รูปซ้าย) แสดงวิถีประสาทแบบโดพามีน คือระบบรางวัล วงจรประสาทเหล่านี้สำคัญในการตอบสนองต่อรางวัลตามธรรมชาติ เช่น การได้อาหารและเพศสัมพันธ์ (รูปกลางและขวา) แสดงการปล่อยสารสื่อประสาทโดพามีน รูปกลางแสดงการปล่อยเมื่อได้อาหาร รูปกลมสีส้มเป็นโดพามีน รูปขวาแสดงการปล่อยเมื่อได้โคเคนซึ่งปล่อยโดพามีนมากกว่าตามธรรมชาติเป็นการเปลี่ยนแปลงการสื่อสารระหว่างเซลล์ประสาท วงกลมสีแดงคือโคเคน ระบบรางวัล หรือ ระบบการให้รางวัล (reward system) เป็นโครงสร้างทางประสาทที่จำเป็นเพื่ออำนวยผลของการเสริมแรง (reinforcement) พฤติกรรม คือเพิ่มความถี่ของพฤติกรรมนั้น ๆ ส่วนรางวัล (reward) เป็นสิ่งเร้าที่สร้างความหิวกระหายให้กับมนุษย์หรือสัตว์อื่น ๆ เพื่อให้เปลี่ยนพฤติกรรม โดยปกติทำงานเป็นตัวเสริมแรง (reinforcer) ซึ่งเป็นสิ่งที่เมื่อให้หลังจากมีพฤติกรรมอย่างใดอย่างหนึ่ง จะทำให้พฤติกรรมนั้นมีโอกาสการเกิดเพิ่มขึ้น ให้สังเกตว่า แม้ว่าสิ่งหนึ่ง ๆ อาจจะเรียกว่ารางวัล แต่ไม่จำเป็นที่มันจะเป็นตัวเสริมแรง เพราะว่ารางวัลจะเป็นตัวเสริมแรงได้ก็ต่อเมื่อถ้าให้แล้วเพิ่มความน่าจะเป็นของพฤติกรรมนั้น ๆ รางวัลหรือการเสริมแรง เป็นเครื่องวัดที่เป็นกลาง ๆ เพื่อวัดคุณค่าที่บุคคลให้กับวัตถุ กับพฤติกรรม หรือกับสรีรภาพภายในอะไรอย่างหนึ่ง รางวัลปฐมภูมิ (Primary reward) รวมสิ่งที่จำเป็นต่อการรอดพันธุ์ของสปีชีส์ เช่น การได้อาหารและเพศสัมพันธ์ ส่วนรางวัลทุติยภูมิจะมีค่าสืบจากรางวัลปฐมภูมิ เงินทองเป็นตัวอย่างที่ดีอย่างหนึ่ง รางวัลทุติยภูมิสามารถสร้างได้ในการทดลองโดยการจับคู่สิ่งเร้าที่เป็นกลาง (รางวัลทุติยภูมิ) กับรางวัลปฐมภูมิ บ่อยครั้ง สัมผัสที่เป็นสุขหรือว่าเสียงดนตรีที่ไพเราะจัดว่าเป็นรางวัลทุติยภูมิ แต่นี่อาจจะไม่เป็นอย่างนั้น เพราะว่า มีหลักฐานจำนวนหนึ่งที่แสดงว่า สัมผัสทางกาย เช่น การโอบกอดหรือการดูแลแต่งกายให้กันและกัน ไม่ใช่รางวัลที่ต้องเรียนรู้ คือเป็นรางวัลปฐมภูมิ รางวัลโดยทั่วไปมองว่าดีกว่าการทำโทษเพื่อเปลี่ยนพฤติกรรม.

ใหม่!!: ความถี่และระบบรางวัล · ดูเพิ่มเติม »

ระดับเสียง

ระดับเสียง อาจหมายถึง.

ใหม่!!: ความถี่และระดับเสียง · ดูเพิ่มเติม »

ระดับเสียง (ดนตรี)

ระดับเสียง (Pitch) หมายถึง เสียงสูงเสียงต่ำ ระดับเสียงเกิดจากความถี่ของการสั่นสะเทือนของวัตถุ วัตถุที่สั่นสะเทือนเร็วกว่าทำให้เกิดเสียงระดับสูงกว่า ในขณะที่วัตถุที่สั่นสะเทือนช้ากว่าทำให้เกิดระดับเสียงต่ำกว่า ความถี่ซึ่งเป็นตัวกำหนดระดับเสียงได้มาจากการวัดความสั่นสะเทือนของวัตถุ โดยมีหน่วยเป็นรอบต่อวินาที หรือเฮิรตซ์ (Hz) ของโน้ตแต่ละตัว วัตถุที่สั่นสะเทือนมากว่าจะมีความถี่มากกว่า ทำให้เกิดเสียงสูงมากกว่า ถ้าความถี่มากขึ้นเท่าตัว ระดับเสียงจะสูงขึ้น 1 ช่วงคู่แปด (อ็อกเทฟ) เช่น โน้ตที่มีความถี่ 220 รอบต่อวินาที จะมีระดับเสียงสูงกว่าโน้ตที่มีความถี่ 110 รอบต่อวินาทีอยู่ 1 ช่วงคู่แปด และเช่นเดียวกันในกรณีที่ความถี่น้อยลง 1 เท่าตัว ระดับเสียงจะต่ำลง 1 ช่วงคู่แปด เช่น โน้ตที่มีความถี่ 440 รอบต่อวินาที จะมีระดับเสียงต่ำกว่าโน้ตที่มีความถี่ 880 รอบต่อวินาทีเป็นระยะ 1 ช่วงคู่แปด เช่น ความถี่เสียงเปียโน.

ใหม่!!: ความถี่และระดับเสียง (ดนตรี) · ดูเพิ่มเติม »

รังสีแม่เหล็กไฟฟ้า

ในวิชาฟิสิกส์ รังสีแม่เหล็กไฟฟ้า (electromagnetic radiation) หมายถึงคลื่น (หรือควอนตัมโฟตอน) ของสนามแม่เหล็กไฟฟ้าที่แผ่ผ่านปริภูมิโดยพาพลังงานจากการแผ่รังสีแม่เหล็กไฟฟ้า โดยคลาสสิก รังสีแม่เหล็กไฟฟ้าประกอบด้วยคลื่นแม่เหล็กไฟฟ้าซึ่งเป็นการสั่นประสานของสนามไฟฟ้าและแม่เหล็กซึ่งแผ่ผ่านสุญญากาศด้วยความเร็วแสง การสั่นองสนามทั้งสองนี้ตั้งฉากกันและตั้งฉากกับทิศทางของการแผ่พลังงานและคลื่น ทำให้เกิดคลื่นตามขวาง แนวคลื่นของคลื่นแม่เหล็กไฟฟ้าเปล่งจากแหล่งกำเนิดจุด (เช่น หลอดไฟ) เป็นทรงกลม ตำแหน่งของคลื่นแม่เหล็กไฟฟ้าในสเปกตรัมแม่เหล็กไฟฟ้าสามารถจำแนกลักษณะได้โดยความถี่ของการสั่นหรือความยาวคลื่น สเปกตรัมแม่เหล็กไฟฟ้ามีคลื่นวิทยุ ไมโครเวฟ รังสีอินฟราเรด แสงที่มองเห็นได้ รังสีอัลตราไวโอเลต รังสีเอกซ์และรังสีแกมมา โดยเรียงความถี่จากน้อยไปมากและความยาวคลื่นจากมากไปน้อย คลื่นแม่เหล็กไฟฟ้าเกิดเมื่ออนุภาคมีประจุถูกเร่ง แล้วคลื่นเหล่านี้จะสามารถมีอันตรกิริยากับอนุภาคมีประจุอื่น คลื่นแม่เหล็กไฟฟ้าพาพลังงาน โมเมนตัมและโมเมนตัมเชิงมุมจากอนุภาคแหล่งกำเนิดและสามารถส่งผ่านคุณสมบัติเหล่านี้แก่สสารซึ่งไปทำอันตรกิริยาด้วย ควอนตัมของคลื่นแม่เหล็กไฟฟ้าเรียก โฟตอน ซึ่งมีมวลนิ่งเป็นศูนย์ แต่พลังงานหรือมวลรวม (โดยสัมพัทธ์) สมมูลไม่เป็นศูนย์ ฉะนั้นจึงยังได้รับผลจากความโน้มถ่วง รังสีแม่เหล็กไฟฟ้าสัมพันธ์กับคลื่นแม่เหล็กไฟฟ้าเหล่านั้นซึ่งสามารถแผ่ตนเองได้โดยปราศจากอิทธิพลต่อเนื่องของประจุเคลื่อนที่ที่ผลิตมัน เพราะรังสีนั้นมีระยะห่างเพียงพอจากประจุเหล่านั้นแล้ว ฉะนั้น บางทีจึงเรียกรังสีแม่เหล็กไฟฟ้าว่าสนามไกล ในภาษานี้สนามใกล้หมายถึงสนามแม่เหล็กไฟฟ้าใกล้ประจุและกระแสที่ผลิตมันโดยตรง โดยเจาะจงคือ ปรากฏการณ์การเหนี่ยวนำแม่เหล็กไฟฟ้าและการเหนี่ยวนำไฟฟ้าสถิต ในทฤษฎีควอนตัมแม่เหล็กไฟฟ้า รังสีแม่เหล็กไฟฟ้าประกอบด้วยโฟตอน อนุภาคมูลฐานซึ่งทำให้เกิดอันตรกิริยาแม่เหล็กไฟฟ้าทั้งสิ้น ฤทธิ์ควอนตัมทำให้เกิดแหล่งรังสีแม่เหล็กไฟฟ้าเพิ่ม เช่น การส่งผ่านอิเล็กตรอนไประดับพลังงานต่ำกว่าในอะตอมและการแผ่รังสีวัตถุดำ โฟตอนความถี่สูงขึ้นจะมีพลังงานมากขึ้น ความสัมพันธ์นี้เป็นไปตามสมการของพลังค์ E.

ใหม่!!: ความถี่และรังสีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

รังสีไมโครเวฟพื้นหลังของจักรวาล

รังสีไมโครเวฟพื้นหลังของจักรวาล (cosmic microwave background radiation; เรียกย่อว่า CMB, MBR, หรือ CMBR) เป็นคลื่นแม่เหล็กไฟฟ้ารูปแบบหนึ่งที่แผ่อยู่ในเอกภพ กล่าวให้เข้าใจง่าย เมื่อเรามองดูท้องฟ้าด้วยกล้องโทรทรรศน์วิทยุ ห้วงอวกาศระหว่างดาวและดาราจักรต่างๆ จะไม่เป็นสีดำ แต่กลับมีการเรืองแสงน้อยๆ อยู่ที่เกือบจะเป็นไปในทิศทางเดียวกัน โดยเส้นเรืองแสงนั้นไม่ได้มาจากดาวฤกษ์หรือดาราจักรใดๆ เลย เส้นเรืองแสงนี้จะเข้มที่สุดในย่านคลื่นไมโครเวฟของสเปกตรัมวิทยุ มันจึงได้ชื่อว่า รังสีไมโครเวฟพื้นหลังของจักรวาล ส่วนที่เกี่ยวข้องกับรังสีก็เนื่องมาจากทฤษฎีซึ่งเป็นที่แพร่หลายที่อธิบายว่า การแผ่รังสีนี้เป็นสิ่งหลงเหลือจากเอกภพยุคแรกเริ่ม การตรวจวัดการแผ่รังสีพื้นหลังของจักรวาลอย่างแม่นยำมีความสำคัญมากในการศึกษาจักรวาลวิทยา เพราะแบบจำลองของเอกภพใดๆ ก็ตามจะต้องสามารถอธิบายการแผ่รังสีที่ตรวจพบนี้ได้ด้วย การค้นพบเกิดขึ้นในปี ค.ศ. 1965 ที่ว่ากันว่าเป็นรังสีที่แผ่ปกคลุมทั้งเอกภพ มีสเปกตรัมคล้ายกับวัตถุดำที่มีอุณหภูมิ 2.725 เคลวินในช่วงความถี่160.2 กิโลเฮิร์ตซ์ หรือคำนวณเป็นความยาวคลื่นประมาณ 1.9 มิลลิเมตรนักจักรวาลวิทยาส่วนใหญ่คิดว่าไมโครเวฟพื้นหลังนี้เป็นหลักฐานที่ดีที่สุดสำหรับการสนับสนุนทฤษฎีบิ๊กแบง อันเป็นทฤษฎีการกำเนิดเอกภพที่ได้รับความเชื่อถือมากที่สุดในปัจจุบัน.

ใหม่!!: ความถี่และรังสีไมโครเวฟพื้นหลังของจักรวาล · ดูเพิ่มเติม »

รังสีเอกซ์

รังสีเอกซ์มือของอัลแบร์ต ฟอน คืลลิเคอร์ ถ่ายโดยวิลเฮล์ม คอนราด เรินต์เกน รังสีเอกซ์ (X-ray หรือ Röntgen ray) เป็นรังสีแม่เหล็กไฟฟ้า ที่มีความยาวคลื่นในช่วง 10 ถึง 0.01 นาโนเมตร ตรงกับความถี่ในช่วง 30 ถึง 30,000 เพตะเฮิรตซ์ (1015 เฮิรตซ์) ในเบื้องต้นมีการใช้รังสีเอกซ์สำหรับถ่ายภาพเพื่อการวินิจฉัยโรค และงานผลึกศาสตร์ (crystallography) รังสีเอกซ์เป็นการแผ่รังสีแบบแตกตัวเป็นไอออน และมีอันตรายต่อมนุษย์ รังสีเอกซ์ค้นพบโดยวิลเฮล์ม คอนราด เรินต์เกน เมื่อ ค.ศ. 1895 ทฤษฎีอิเล็กตรอนสมัยปัจจุบัน อธิบายถึงการเกิดรังสีเอกซ์ว่า ธาตุประกอบด้วยอะตอมจำนวนมากในอะตอมแต่ละตัวมีนิวเคลียสเป็นใจกลาง และมีอิเล็กตรอนวิ่งวนเป็นชั้น ๆ ธาตุเบาจะมีอิเล็กตรอนวิ่งวนอยู่น้อยชั้น และธาตุหนักจะมีอิเล็กตรอนวิ่งวนอยู่หลายชั้น เมื่ออะตอมธาตุหนักถูกยิงด้วยกระแสอิเล็กตรอน จะทำให้อิเล็กตรอนที่อยู่ชั้นในถูกชนกระเด็นออกมาวิ่งวนอยู่รอบนอกซึ่งมีภาวะไม่เสถียรและจะหลุดตกไปวิ่งวนอยู่ชั้นในอีก พร้อมกับปล่อยพลังงานออกในรูปรังสี ถ้าอิเล็กตรอนที่ยิงเข้าไปมีพลังงานมาก ก็จะเข้าไปชนอิเล็กตรอนในชั้นลึก ๆ ทำให้ได้รังสีที่มีพลังงานมาก เรียกว่า ฮาร์ดเอกซเรย์ (hard x-ray) ถ้าอิเล็กตรอนที่ใช้ยิงมีพลังงานน้อยเข้าไปได้ไม่ลึกนัก จะให้รังสีที่เรียกว่า ซอฟต์เอกซเรย์ (soft x-ray) กระบวนการเกิดหรือการผลิตรังสีเอกซ์ทั้งโดยฝีมือมนุษย์และในธรรมชาติ มีอยู่ 2 วิธีใหญ่ ๆ คือ.

ใหม่!!: ความถี่และรังสีเอกซ์ · ดูเพิ่มเติม »

ลำโพง

ลำโพงทั้งตู้ ลำโพง (loudspeaker, speaker) เป็นอุปกรณ์ไฟฟ้าเชิงกลอย่างหนึ่ง ทำหน้าที่แปลงสัญญาณไฟฟ้าให้เป็นเสียง มีด้วยกันหลายแบบ คำว่า ลำโพงมักจะเรียกรวมกัน ทั้งดอกลำโพง หรือตัวขับ (driver) และลำโพงทั้งตู้ (speaker system) ที่ประกอบด้วยลำโพงและวงจรอิเล็กทรอนิกส์สำหรับแบ่งย่านความถี่ (ครอสโอเวอร์เน็ตเวิร์ก) ลำโพงนับเป็นองค์ประกอบที่สำคัญในระบบเครื่องเสียง โดยมีขนาดตั้งแต่เล็กเท่าปลายนิ้ว จนถึงใหญ่ขนาดเส้นผ่าศูนย์กลางนับสิบนิ้ว โดยมีโครงสร้างที่แตกต่างกัน และให้เสียงที่แตกต่างกันด้ว.

ใหม่!!: ความถี่และลำโพง · ดูเพิ่มเติม »

วิวัฒนาการ

ในด้านชีววิทยา วิวัฒนาการ (Evolution) คือการเปลี่ยนแปลงทางพันธุกรรมในประชากรของสิ่งมีชีวิต จากรุ่นหนึ่งสู่อีกรุ่นหนึ่ง วิวัฒนาการเกิดจากกระบวนการหลัก 3 กระบวนการ ได้แก่ ความแปรผัน การสืบพันธุ์ และการคัดเลือก โดยอาศัยยีนเป็นตัวกลางในการส่งผ่านลักษณะทางพันธุกรรม อันเป็นพื้นฐานของการเกิดวิวัฒนาการ ลักษณะเช่นนี้เกิดขึ้นในประชากรเพื่อให้เกิดความแปรผันทางพันธุกรรมเมื่อสิ่งมีชีวิตให้กำเนิดลูกหลานย่อมเกิดลักษณะใหม่ หรือเปลี่ยนแปลงลักษณะเดิม โดยลักษณะใหม่ที่เกิดขึ้นนี้มีสาเหตุสำคัญ 2 ประการ ประการหนึ่ง เกิดจากกระบวนการกลายพันธุ์ของยีน และอีกประการหนึ่ง เกิดจากการแลกเปลี่ยนยีนระหว่างประชากร และระหว่างสปีชีส์ ในสิ่งมีชีวิตที่มีการสืบพันธุ์แบบอาศัยเพศ สิ่งมีชีวิตใหม่ที่เกิดขึ้นจะผ่านกระบวนการแลกเปลี่ยนยีน อันก่อให้เกิดความแปรผันทางพันธุกรรมที่หลากหลายในสิ่งมีชีวิต วิวัฒนาการเกิดขึ้นเมื่อความแตกต่างทางพันธุกรรมเกิดขึ้น จนเกิดความแตกต่างมากขึ้นเรื่อยๆ จนกลายเป็นลักษณะที่แตกต่างกัน กลไกในการเกิดวิวัฒนาการแบ่งได้ 2 กลไก กลไกหนึ่งคือการคัดเลือกโดยธรรมชาติ (natural selection) อันเป็นกระบวนการคัดเลือกสิ่งมีชีวิตที่มีลักษณะเหมาะสมที่จะอยู่รอด และสืบพันธุ์จนได้ลักษณะที่เหมาะสมที่สุด และลักษณะที่ไม่เหมาะสมจะเหลือน้อยลง กลไกนี้เกิดขึ้นเพื่อคัดเลือกลักษณะของประชากรที่เกิดประโยชน์ในการสืบพันธุ์สูงสุด เมื่อสิ่งมีชีวิตหลายรุ่นได้ผ่านพ้นไป ก็จะเกิดกระบวนการปรับตัวของสิ่งมีชีวิต เพื่อให้อยู่ในสิ่งแวดล้อมได้อย่างเหมาะสม กลไกที่สองในการขับเคลื่อนกระบวนการวิวัฒนาการคือการแปรผันทางพันธุกรรม (genetic drift) อันเป็นกระบวนการอิสระจากการคัดเลือกความถี่ของยีนประชากรแบบสุ่ม การแปรผันทางพันธุกรรมเป็นผลมาจากการอยู่รอด และการสืบพันธุ์ของสิ่งมีชีวิต แม้ว่าการแปรผันทางพันธุกรรมในแต่ละรุ่นนั้นจะเปลี่ยนแปลงเพียงเล็กน้อย แต่ลักษณะเหล่านี้จะสะสมจากรุ่นสู่รุ่น เกิดการเปลี่ยนแปลงทีละเล็กละน้อยในสิ่งมีชีวิต จนกระทั่งเวลาผ่านไปเป็นระยะเวลานาน จะทำให้เกิดการเปลี่ยนแปลงขึ้นในลักษณะของสิ่งมีชีวิต กระบวนการดังกล่าวเมื่อถึงจุดสูงสุดจะทำให้กำเนิดสปีชีส์ชนิดใหม่ แม้กระนั้น ความคล้ายคลึงกันระหว่างสิ่งมีชีวิตมีข้อเสนอที่เป็นที่รู้จักกันดีคือการสืบเชื้อสายจากบรรพบุรุษ (หรือยีนพูลของบรรพบุรุษ) เมื่อผ่านกระบวนการนี้จะก่อให้เกิดความหลากหลายมากขึ้นทีละเล็กละน้อย เอกสารหลักฐานทางชีววิทยาวิวัฒนาการชี้ให้เห็นว่ากระบวนการวิวิฒนาการเป็นสิ่งที่เกิดขึ้นจริง ทฤษฎีอยู่ในช่วงของการทดลอง และพัฒนาในสาเหตดังกล่าว การศึกษาซากฟอสซิล และความหลากหลายทางชีวภาพของสิ่งมีชีวิตทำให้นักวิทยาศาสตร์ช่วงกลางคริสศตวรรษที่ 19 ส่วนใหญ่เชื่อว่าสปีชีส์มีการเปลี่ยนแปลงมาตลอดในระยะเวลาที่ผ่านมา อย่างไรก็ตาม กระบวนการที่ขับเคลื่อนการเปลี่ยนแปลงนี้เป็นปริศนาต่อนักวิทยาศาสตร์ทั่วไป จนกระทั่งปี พ.ศ. 2402 ชาร์ล ดาวิน ตีพิมพ์หนังสือ กำเนิดสปีชีส์ ซึ่งได้อธิบายทฤษฎีวิวัฒนาการโดยกระบวนการคัดเลือกโดยธรรมชาต.

ใหม่!!: ความถี่และวิวัฒนาการ · ดูเพิ่มเติม »

วิวัฒนาการของมนุษย์

''Homo sapiens sapiens'' ชาวอาข่าในประเทศไทย วิวัฒนาการของมนุษย์ (Human evolution) เป็นกระบวนการวิวัฒนาการที่นำไปสู่การปรากฏขึ้นของ "มนุษย์ปัจจุบัน" (modern human มีนามตามอนุกรมวิธานว่า Homo sapiens หรือ Homo sapiens sapiens) ซึ่งแม้ว่าจริง ๆ แล้วจะเริ่มต้นตั้งแต่บรรพบุรุษแรกของสิ่งมีชีวิตทั้งหมด แต่บทความนี้ครอบคลุมเพียงแค่ประวัติวิวัฒนาการของสัตว์อันดับวานร (primate) โดยเฉพาะของสกุล โฮโม (Homo) และการปรากฏขึ้นของมนุษย์สปีชีส์ Homo sapiens ที่จัดเป็นสัตว์วงศ์ลิงใหญ่เท่านั้น การศึกษาเกี่ยวกับวิวัฒนาการมนุษย์นั้นต้องอาศัยความรู้ทางวิทยาศาสตร์หลายสาขา รวมทั้งมานุษยวิทยาเชิงกายภาพ (หรือ มานุษยวิทยาเชิงชีวภาพ), วานรวิทยา, โบราณคดี, บรรพชีวินวิทยา, พฤติกรรมวิทยา, ภาษาศาสตร์, จิตวิทยาเชิงวิวัฒนาการ (evolutionary psychology), คัพภวิทยา และพันธุศาสตร์ กระบวนการวิวัฒนาการเป็นความเปลี่ยนแปลงของลักษณะสืบสายพันธุ์ (trait) ของกลุ่มสิ่งมีชีวิตผ่านหลายชั่วยุคชีวิต เป็นกระบวนการที่ทำให้เกิดความหลายหลากกับสิ่งมีชีวิตในทุกระดับชั้น รวมทั้งระดับสปีชีส์ ระดับสิ่งมีชีวิตแต่ละชีวิต และแม้กระทั่งโครงสร้างระดับโมเลกุลเช่นดีเอ็นเอและโปรตีน สิ่งมีชีวิตทั้งหมดในโลกสืบสายมาจากบรรพบุรุษเดียวกันที่มีชีวิตประมาณ 3.8 พันล้านปีก่อน การเกิดสปีชีส์ใหม่ ๆ และการแยกสายพันธุ์ออกจากกันของสิ่งมีชีวิต สามารถอนุมานได้จากลักษณะสืบสายพันธุ์ทางสัณฐานและทางเคมีชีวภาพ หรือโดยลำดับดีเอ็นเอที่มีร่วมกัน คือ ลักษณะสืบสายพันธุ์และลำดับดีเอ็นเอที่มีกำเนิดเดียวกัน จะมีความคล้ายคลึงกันระหว่างสปีชีส์ที่มีบรรพบุรุษร่วมกันเร็ว ๆ นี้มากกว่าระหว่างสปีชีส์ที่มีบรรพบุรุษร่วมกันมานานแล้ว ดังนั้นความคล้ายคลึงกันและความแตกต่างกันจึงสามารถใช้สร้างแบบของต้นไม้สายพันธุ์สิ่งมีชีวิต ที่แสดงความสัมพันธ์เชิงญาติ โดยใช้สิ่งมีชีวิตที่ยังมีอยู่หรือใช้ซากดึกดำบรรพ์เป็นหลักฐานข้อมูล รูปแบบความหลากหลายของสิ่งมีชีวิตในโลกเปลี่ยนแปลงไปเพราะการเกิดขึ้นของสปีชีส์ใหม่ ๆ และการสูญพันธุ์ไปของสิ่งมีชีวิตที่มีอยู่ งานวิจัยต่าง ๆ ทางพันธุศาสตร์แสดงว่า สัตว์อันดับวานรรวมทั้งมนุษย์แยกออกจากสัตว์เลี้ยงลูกด้วยนมประเภทอื่น ๆ เมื่อประมาณ โดยมีซากดึกดำบรรพ์ปรากฏเป็นครั้งแรกสุดเมื่อประมาณ ส่วนลิงวงศ์ชะนี (Hylobatidae) แยกสายพันธุ์ออกจากสายพันธุ์วงศ์ลิงใหญ่ (Hominidae) รวมทั้งมนุษย์ ซึ่งเป็นวงศ์หนึ่ง ๆ ของสัตว์อันดับวานรนั้น เมื่อ แล้วลิงวงศ์ Ponginae (ลิงอุรังอุตัง) ก็แยกออกจากสายพันธุ์เมื่อประมาณ จากนั้น การเดินด้วยสองเท้า (bipedalism) ซึ่งเป็นการปรับตัวพื้นฐานที่สุดของสัตว์เผ่า Hominini ซึ่งเป็นสายพันธุ์ของมนุษย์ที่ลิงชิมแปนซีได้แยกออกไปแล้ว ก็เริ่มปรากฏในสัตว์สองเท้าแรกสุดในสกุล Sahelanthropus หรือ Orrorin โดยมีสกุล Ardipithecus ซึ่งเป็นสัตว์สองเท้าที่มีหลักฐานชัดเจนกว่า ตามมาทีหลัง ส่วนลิงกอริลลาและลิงชิมแปนซีแยกออกจากสายพันธุ์ในช่วงเวลาใกล้ ๆ กัน คือลิงกอริลลาเมื่อ และลิงชิมแปนซีเมื่อ โดยอาจจะมี Sahelanthropus เป็นบรรพบุรุษสุดท้ายร่วมกันระหว่างชิมแปนซีและมนุษย์ สัตว์สองเท้ายุคเริ่มต้นเหล่านี้ในที่สุดก็วิวัฒนาการมาเป็นเผ่า hominini เผ่าย่อย Australopithecina (australopithecine ปกติรวมสกุล Australopithecus, Paranthropus, และในบางที่ Ardipithecus) ที่ และหลังจากนั้นจึงเป็นเผ่าย่อย Hominina ซึ่งรวมเอามนุษย์สกุล โฮโม เท่านั้น มนุษย์สกุลโฮโมที่มีหลักฐานยืนยันพวกแรกที่สุดเป็นสปีชีส์ Homo habilis ซึ่งเกิดขึ้นประมาณ โดยเชื่อกันว่า สืบสายพันธุ์มาจาก homonin ในสกุล Australopithecus เป็นสปีชีส์แรก ๆ ที่มีหลักฐานชัดเจนว่าใช้เครื่องมือหิน และการปรับตัวของสายพันธุ์มนุษย์อีกอย่างหนึ่งคือ การขยายขนาดของสมอง (encephalization) ก็ได้เริ่มขึ้นที่มนุษย์ยุคต้นนี้ ซึ่งมีขนาดสมองที่ประมาณ 610 ซม3 คือมีขนาดใหญ่กว่าของลิงชิมแปนซีเล็กน้อย (ระหว่าง 300-500 ซม3) มีนักวิทยาศาสตร์ที่เสนอว่า นี้อยู่ในช่วงเวลาที่ยีนมนุษย์ประเภท SRGAP2 มีจำนวนเป็นสองเท่าเทียบกับสัตว์เลี้ยงลูกด้วยนมอื่น ๆ ซึ่งทำให้เกิดการพัฒนาของสมองกลีบหน้าได้รวดเร็วกว่าในสัตว์อื่น ๆ ต่อมา มนุษย์สปีชีส์ Homo erectus/ergaster ก็เกิดขึ้นในช่วงประมาณ ที่มีปริมาตรกะโหลกศีรษะเพิ่มขึ้นเป็นสองเท่าของลิงชิมแปนซีคือ 850 ซม3 การขยายขนาดของสมองเช่นนี้เทียบเท่ากับมีเซลล์ประสาทเพิ่มขึ้น 125,000 เซลล์ทุกชั่วยุคคน สปีชีส์นี้เชื่อว่าเป็นพวกแรก ๆ ที่สามารถควบคุมไฟ และใช้เครื่องมือหินที่มีเทคโนโลยีที่ซับซ้อนยิ่งขึ้น เป็นมนุษย์สกุล Homo พวกแรกที่อพยพออกไปตั้งถิ่นฐานทั่วทวีปแอฟริกา ทวีปเอเชีย และทวีปยุโรป อาจเริ่มตั้งแต่ ดังนั้น การวิวัฒนาการของสายพันธุ์มนุษย์ก่อนหน้านี้ล้วนเป็นไปในแอฟริกาเท่านั้น ส่วนกลุ่มมนุษย์โบราณที่เรียกในภาษาอังกฤษว่า Archaic humans ก็เกิดวิวัฒนาการขึ้นต่อมาประมาณ 600,000 ปีก่อน สืบสายพันธุ์มาจาก H. erectus/ergaster เป็นกลุ่มมนุษย์ที่อาจเป็นบรรพบุรุษของมนุษย์ปัจจุบัน โดยเฉพาะคือมนุษย์โบราณ H. heidelbergensis/rhodesiensis หลังจากนั้น มนุษย์สปีชีส์ ''Homo sapiens'' ที่มีกายวิภาคปัจจุบัน (anatomically modern human) ก็เกิดขึ้นโดยมีวิวัฒนาการมาจากมนุษย์โบราณในยุคหินกลาง (แอฟริกา) คือประมาณ 300,000 ปีก่อน ตามทฤษฎี "กำเนิดมนุษย์ปัจจุบันเร็ว ๆ นี้จากแอฟริกา" มนุษย์ปัจจุบันได้วิวัฒนาการในทวีปแอฟริกาแล้วจึงอพยพออกจากทวีปประมาณ 50,000-100,000 ปีก่อน (ต่างหากจากมนุษย์ในยุคก่อน ๆ) ไปตั้งถิ่นฐานแทนที่กลุ่มมนุษย์สปีชีส์ H. erectus, H. denisova, H. floresiensis และ H. neanderthalensis ในที่ต่าง ๆ ที่เป็นเชื้อสายของมนุษย์ที่อพยพออกมาจากทวีปแอฟริกาในยุคก่อน ๆ โดยอาจได้ผสมพันธุ์กับมนุษย์โบราณก่อน ๆ เหล่านั้น หลักฐานโดยดีเอ็นเอในปี..

ใหม่!!: ความถี่และวิวัฒนาการของมนุษย์ · ดูเพิ่มเติม »

วงศ์หนู

วงศ์หนู (Rat, Mice, Mouse; วงศ์: Muridae) เป็นวงศ์ของสัตว์เลี้ยงลูกด้วยนมวงศ์หนึ่ง ในอันดับสัตว์ฟันแทะ (Rodentia) ใช้ชื่อวงศ์ว่า Muridae นับเป็นสัตว์ที่มนุษย์รู้จักกันเป็นอย่างดี และนับเป็นวงศ์ของสัตว์ฟันแทะที่มีความหลากหลายและจำนวนสมาชิกมากที่สุดด้วย ด้วยมีจำนวนสมาชิกมากกว่า 700 ชนิด ตั้งแต่อาร์กติกเซอร์เคิลจนถึงปลายสุดของทวีปอเมริกาใต้ โดยยังแบ่งออกเป็นวงศ์ย่อยได้อีก 5 วงศ์ (ดูในตาราง).

ใหม่!!: ความถี่และวงศ์หนู · ดูเพิ่มเติม »

วงจรไฟตอน

วงจรไฟตอน (track circuit) เป็นวงจรไฟฟ้าอย่างง่ายสำหรับตรวจสอบความเคลื่อนไหวของขบวนรถไฟ วงจรแบบแรกสุด อาศัยการปล่อยกระแสไฟฟ้าเข้าที่ราวทั้งสองข้างของรางรถไฟ ในเวลาต่อมาได้มีการพัฒนาวงจรไฟตอนสำหรับรางรถไฟแบบเชื่อมยาว โดยอาศัยคลื่นวิทยุเป็นตัวตรวจจับความเคลื่อนไหว ระบบวงจรไฟตอนสามารถนำไปใช้ในระบบติดตามความเคลื่อนไหวขบวนรถ และระบบอาณัติสัญญาณประจำที่ในเขตสถานีรถไฟได้ ในบทความนี้ "ราว" (rail) หมายถึงเหล็กเส้นที่เมื่อนำมาประกอบกับหมอน (sleeper) จะได้เป็นรางรถไฟ (track).

ใหม่!!: ความถี่และวงจรไฟตอน · ดูเพิ่มเติม »

สหสัมพันธ์อัตโนมัติ

หสัมพันธ์อัตโนมัติ (autocorrelation) หรือ สหสัมพันธ์เชิงอนุกรม (serial correlation) เป็นสหสัมพันธ์ระหว่างสัญญาณหนึ่ง ๆ กับตัวสัญญาณเองที่หน่วงเวลาตามฟังก์ชันการหน่วงเวลา โดยอรูปนัยแล้ว มันก็คือความคล้ายคลึงกันระหว่างสัญญาณช่วงต่าง ๆ ตามฟังก์ชันของระยะเวลาระหว่างสัญญาณ การวิเคราะห์สหสัมพันธ์อัตโนมัติเป็นวิธีการทางคณิตศาสตร์เพื่อหารูปแบบที่เกิดซ้ำ ๆ เช่น สัญญาณเป็นคาบที่อำพรางโดยเสียงรบกวน หรือเพื่อระบุความถี่มูลฐานที่ไม่มีซึ่งความถี่ของฮาร์มอนิกในสัญญาณจะบอกเป็นนัย เป็นวิธีที่บ่อยครั้งใช้ในการประมวลผลสัญญาณเพื่อวิเคราะห์หาฟังก์ชันของค่าเป็นชุด ๆ เช่นสัญญาณที่เกิดตามเวลา (time domain) โดย Unit root process, trend stationary process, autoregressive process, และ moving average process ล้วนเป็นรูปแบบกระบวนการโดยเฉพาะ ๆ ที่มีสหสัมพันธ์อัตโนมัติ สาขาการศึกษาต่าง ๆ นิยามสหสัมพันธ์อัตโนมัติไว้ไม่เหมือนกัน และนิยามเหล่านี้ไม่ได้สมมูลกันทั้งหมด ในบางสาขา คำนี้ใช้ในความหมายเดียวกับคำว่า autocovariance.

ใหม่!!: ความถี่และสหสัมพันธ์อัตโนมัติ · ดูเพิ่มเติม »

สัญญาณว้าว!

The WOW! Signal Wow! signal เป็นชื่อเรียกสัญญาณวิทยุ ที่ตรวจพบโดย ดร.

ใหม่!!: ความถี่และสัญญาณว้าว! · ดูเพิ่มเติม »

สัญญาณแอนะล็อก

ัญญาณแอนะล็อก (Analog Signal) เป็นสัญญาณแบบต่อเนื่อง มีลักษณะเป็นคลื่นไซน์ (sine wave) โดยที่แต่ละคลื่นจะมีความถี่และความเข้มของสัญญาณที่ต่างกัน เมื่อนำสัญญาณข้อมูลเหล่านี้ผ่านอุปกรณ์รับสัญญาณและแปลงสัญญาณก็จะได้ข้อมูลที่ต้องการ ตัวอย่างของการส่งข้อมูลที่มีสัญญาณแบบแอนะล็อก คือ การส่งผ่านระบบโทรศัพท์ สัญญาณแอนะล็อกเป็นสัญญาณที่มักเกิดขึ้นในธรรมชาติเป็นสัญญาณที่มีความต่อเนื่อง ไม่ได้มีการเปลี่ยนแปลงอย่างรวดเร็ว สัญญาณแบบนี้ เช่น เสียงพูด เสียงดนตรี เป็นต้น.

ใหม่!!: ความถี่และสัญญาณแอนะล็อก · ดูเพิ่มเติม »

สี

วงล้อสี สี คือการรับรู้ความถี่ (ความกว้างคลื่นหรือความยาวคลื่น) ของแสง ในทำนองเดียวกันกับที่ระดับเสียง มนุษย์สามารถรับรู้สีได้เนื่องจากโครงสร้างอันละเอียดอ่อนของดวงตา ซึ่งมีความสามารถในการรับรู้แสงในช่วงความถี่ที่ต่างกัน การรับรู้สีนั้นขึ้นกับปัจจัยทางชีวภาพ (คนบางคนตาบอดสี ซึ่งหมายถึงคนคนนั้นเห็นสีบางค่าต่างจากคนอื่นหรือไม่สามารถแยกแยะสีที่มีค่าความอิ่มตัวใกล้เคียงกันได้ หรือแม้กระทั่งไม่สามารถเห็นสีได้เลยมาแต่กำเนิด), ความทรงจำระยะยาวของบุคคลผู้นั้น, และผลกระทบระยะสั้น เช่น สีที่อยู่ข้างเคียง บางครั้งเราเรียกแขนงของวิชาที่ศึกษาเรื่องของสีว่า รงคศาสตร์ วิชานี้จะครอบคลุมเรื่องของการรับรู้ของสีโดยดวงตาของมนุษย์, แหล่งที่มาของสีในวัตถุ, ทฤษฎีสีในวิชาศิลปะ, และฟิสิกส์ของสีในสเปกตรัมแม่เหล็กไฟฟ้.

ใหม่!!: ความถี่และสี · ดูเพิ่มเติม »

สีแดง

ีแดง คือสีมีความถี่ของแสงที่ต่ำที่สุด ที่ตามนุษย์สามารถแยกแยะได้ แสงสีแดงมีบริเวณช่วงคลื่นระหว่าง 630-760 นาโนเมตร สีแดงเป็นสีอย่างสีเลือดหรือสีชาด, ใช้ประกอบสิ่งต่าง ๆ บางอย่างโดยอนุโลมตามลักษณะสี เป็นชื่อเรียกเฉพาะ เช่น มดแดง ผ้าแดง จัดเป็น 1 ในแม่สี 3 สี ร่วมกับสีเขียว, สีน้ำเงิน.

ใหม่!!: ความถี่และสีแดง · ดูเพิ่มเติม »

สเปกตรัมความถี่

การแผ่รังสีคลื่นแม่เหล็กไฟฟ้าของเหล็ก ในย่านแสงที่ตามองเห็น สเปกตรัมความถี่ (frequency spectrum) ของสัญญาณอิเล็กทรอนิกส์ที่แปรเปลี่ยนตามเวลา คือการแสดงค่าสัญญาณในโดเมนของความถี่ สามารถสร้างสเปกตรัมความถี่ได้โดยอาศัยการแปลงสัญญาณแบบฟูรีเย ผลลัพธ์ที่ได้มักจะแสดงเป็นแอมพลิจูดและเฟส โดยพล็อตอ้างอิงกับความถี่ สัญญาณทุกชนิดที่สามารถแสดงค่าแอมพลิจูดที่แปรตามเวลา จะมีสเปกตรัมความถี่ที่เกี่ยวข้องเสมอ ซึ่งรวมไปถึง แสงที่ตามองเห็น (สี) โน้ตดนตรี ช่องสัญญาณโทรทัศน์หรือวิทยุ แม้แต่การหมุนของโลก เมื่อสามารถแสดงปรากฏการณ์ทางกายภาพเหล่านี้ในรูปแบบของสเปกตรัมความถี่ได้ ก็จะสามารถอธิบายถึงลักษณะทางกายภาพได้โดยง่าย โดยมากสเปกตรัมความถี่มักจะแสดงให้เห็นฮาร์โมนิกอย่างชัดเจน ซึ่งทำให้สามารถวิเคราะห์ถึงกลไกภายในที่สร้างสัญญาณชนิดนั้นขึ้นมาได้.

ใหม่!!: ความถี่และสเปกตรัมความถี่ · ดูเพิ่มเติม »

สเปกโทรสโกปี

ลื่อนไหวแสดงการกระเจิงของแสง เมื่อแสงเคลื่อนที่ผ่านปริซึม สเปกโทรสโกปี (spectroscopy) แต่เดิมหมายถึงการศึกษาปฏิกิริยาระหว่างการแผ่รังสีกับสสารในรูปของฟังก์ชันความยาวคลื่น (λ) สเปกโทรสโกปีจะอ้างถึงการกระเจิงของแสงที่ตามองเห็นตามขนาดความยาวคลื่นของมัน เช่น การกระเจิงของแสงผ่านปริซึม ต่อมาหลักการนี้ได้ขยายออกไปครอบคลุมการวัดปริมาณใดๆ ที่อยู่ในรูปฟังก์ชันของทั้งความยาวคลื่นและความถี่ ดังนั้นมันจึงเกี่ยวข้องกับการเปลี่ยนแปลงของสนามหรือความถี่ (ν) ด้วย ขอบเขตการศึกษายังขยายไปครอบคลุมเรื่องของพลังงาน (E) ในฐานะตัวแปร ทั้งนี้เนื่องมาจากความสัมพันธ์กันระหว่างพลังงานและความถี่ ตามสมการ E.

ใหม่!!: ความถี่และสเปกโทรสโกปี · ดูเพิ่มเติม »

หลุมดำ

มุมมองจำลองของหลุมดำด้านหน้าของทางช้างเผือก โดยมีมวลเทียบเท่าดวงอาทิตย์ 10 ดวงจากระยะทาง 600 กิโลเมตร หลุมดำ (black hole) หมายถึงเทหวัตถุในเอกภพที่มีแรงโน้มถ่วงสูงมาก ไม่มีอะไรออกจากบริเวณนี้ได้แม้แต่แสง ยกเว้นหลุมดำด้วยกัน เราจึงมองไม่เห็นใจกลางของหลุมดำ หลุมดำจะมีพื้นที่หนึ่งที่เป็นขอบเขตของตัวเองเรียกว่าขอบฟ้าเหตุการณ์ ที่ตำแหน่งรัศมีชวาร์สชิลด์ ถ้าหากวัตถุหลุดเข้าไปในขอบฟ้าเหตุการณ์ วัตถุจะต้องเร่งความเร็วให้มากกว่าความเร็วแสงจึงจะหลุดออกจากขอบฟ้าเหตุการณ์ได้ แต่เป็นไปไม่ได้ที่วัตถุใดจะมีความเร็วมากกว่าแสง วัตถุนั้นจึงไม่สามารถออกมาได้อีกต่อไป เมื่อดาวฤกษ์ที่มีมวลมหึมาแตกดับลง มันอาจจะทิ้งสิ่งที่ดำมืดที่สุด ทว่ามีอำนาจทำลายล้างสูงสุดไว้เบื้องหลัง นักดาราศาสตร์เรียกสิ่งนี้ว่า "หลุมดำ" เราไม่สามารถมองเห็นหลุมดำด้วยกล้องโทรทรรศน์ใดๆ เนื่องจากหลุมดำไม่เปล่งแสงหรือรังสีใดเลย แต่สามารถตรวจพบได้ด้วยกล้องโทรทรรศน์วิทยุ และคลื่นโน้มถ่วงของหลุมดำ (ในเชิงทฤษฎี โครงการแอลไอจีโอ) และจนถึงปัจจุบันได้ค้นพบหลุมดำในจักรวาลแล้วอย่างน้อย 6 แห่ง หลุมดำเป็นซากที่สิ้นสลายของดาวฤกษ์ที่ถึงอายุขัยแล้ว สสารที่เคยประกอบกันเป็นดาวนั้นได้ถูกอัดตัวด้วยแรงดึงดูดของตนเองจนเหลือเป็นเพียงมวลหนาแน่นที่มีขนาดเล็กยิ่งกว่านิวเคลียสของอะตอมเดียว ซึ่งเรียกว่า ภาวะเอกฐาน หลุมดำแบ่งได้เป็น 4 ประเภท คือ หลุมดำมวลยวดยิ่ง เป็นหลุมดำในใจกลางของดาราจักร, หลุมดำขนาดกลาง, หลุมดำจากดาวฤกษ์ ซึ่งเกิดจากการแตกดับของดาวฤกษ์, และ หลุมดำจิ๋วหรือหลุมดำเชิงควอนตัม ซึ่งเกิดขึ้นในยุคเริ่มแรกของเอกภพ แม้ว่าจะไม่สามารถมองเห็นภายในหลุมดำได้ แต่ตัวมันก็แสดงการมีอยู่ผ่านการมีผลกระทบกับวัตถุที่อยู่ในวงโคจรภายนอกขอบฟ้าเหตุการณ์ ตัวอย่างเช่น หลุมดำอาจจะถูกสังเกตเห็นได้โดยการติดตามกลุ่มดาวที่โคจรอยู่ภายในศูนย์กลางหลุมดำ หรืออาจมีการสังเกตก๊าซ (จากดาวข้างเคียง) ที่ถูกดึงดูดเข้าสู่หลุมดำ ก๊าซจะม้วนตัวเข้าสู่ภายใน และจะร้อนขึ้นถึงอุณหภูมิสูง ๆ และปลดปล่อยรังสีขนาดใหญ่ที่สามารถตรวจจับได้จากกล้องโทรทรรศน์ที่โคจรอยู่รอบโลก การสำรวจให้ผลในทางวิทยาศาสตร์เห็นพ้องต้องกันว่าหลุมดำนั้นมีอยู่จริงในเอกภพ แนวคิดของวัตถุที่มีแรงดึงดูดมากพอที่จะกันไม่ให้แสงเดินทางออกไปนั้นถูกเสนอโดยนักดาราศาสตร์มือสมัครเล่นชาวอังกฤษ จอห์น มิเชล ในปี 1783 และต่อมาในปี 1795 นักฟิสิกส์ชาวฝรั่งเศส ปีแยร์-ซีมง ลาปลาส ก็ได้ข้อสรุปเดียวกัน ตามความเข้าใจล่าสุด หลุมดำถูกอธิบายโดยทฤษฎีสัมพัทธภาพทั่วไป ซึ่งทำนายว่าเมื่อมีมวลขนาดใหญ่มากในพื้นที่ขนาดเล็ก เส้นทางในพื้นที่ว่างนั้นจะถูกทำให้บิดเบี้ยวไปจนถึงศูนย์กลางของปริมาตร เพื่อไม่ให้วัตถุหรือรังสีใดๆ สามารถออกมาได้ ขณะที่ทฤษฏีสัมพัทธภาพทั่วไปอธิบายว่าหลุมดำเป็นพื้นที่ว่างที่มีความเป็นภาวะเอกฐานที่จุดศูนย์กลางและที่ขอบฟ้าเหตุการณ์บริเวณขอบ คำอธิบายนี่เปลี่ยนไปเมื่อค้นพบกลศาสตร์ควอนตัม การค้นคว้าในหัวข้อนี้แสดงให้เห็นว่านอกจากหลุมดำจะดึงวัตถุไว้ตลอดกาล แล้วยังมีการค่อย ๆ ปลดปล่อยพลังงานภายใน เรียกว่า รังสีฮอว์คิง และอาจสิ้นสุดลงในที่สุด อย่างไรก็ตาม ยังไม่มีคำอธิบายเกี่ยวกับหลุมดำที่ถูกต้องตามทฤษฎีควอนตัม.

ใหม่!!: ความถี่และหลุมดำ · ดูเพิ่มเติม »

หูชั้นกลาง

หูชั้นกลาง (middle ear, auris media) คือหูส่วนที่อยู่หลังแก้วหู แต่ก่อนช่องรูปไข่ (oval window) ของหูชั้นใน ในสัตว์เลี้ยงลูกด้วยนม หูชั้นกลางจะมีกระดูกหู (ossicles) เล็ก ๆ 3 ท่อน ซึ่งถ่ายโอนแรงสั่นที่แก้วหูไปเป็นคลื่นภายในหูชั้นใน ช่องในหูชั้นกลางเรียกว่า โพรงหูส่วนกลาง (tympanic cavity) โดยมีท่อยูสเตเชียน เชื่อมกับคอหอยส่วนจมูก (nasopharynx) ท่อยูสเตเชียนจะช่วยรักษาดุลความดันระหว่างหูชั้นกลางและคอ หน้าที่หลักของหูชั้นกลางก็คือถ่ายโอนพลังงานเสียงจากคลื่นในอากาศไปเป็นคลื่นในน้ำและในเยื่อของหูชั้นในรูปหอยโข่ง (คอเคลีย).

ใหม่!!: ความถี่และหูชั้นกลาง · ดูเพิ่มเติม »

หูชั้นใน

หูชั้นใน หูชั้นใน (inner ear, internal ear, auris interna) เป็นหูชั้นในสุดของสัตว์มีกระดูกสันหลัง มีหน้าที่ตรวจจับเสียงและการทรงตัว ในสัตว์เลี้ยงลูกด้วยนม มันจะประกอบด้วยกระดูกห้องหูชั้นใน (bony labyrinth) ซึ่งเป็นช่อง ๆ หนึ่งในกระดูกขมับของกะโหลกศีรษะ เป็นระบบท่อที่มีส่วนสำคัญสองส่วน คือ.

ใหม่!!: ความถี่และหูชั้นใน · ดูเพิ่มเติม »

หน่วยอนุพันธ์เอสไอ

หน่วยอนุพันธ์เอสไอ คือหน่วยที่เกิดจากการรวมกันของหน่วยฐานเอสไอโดยการคูณหรือหาร เพื่อใช้ในเรื่องการวัดและการแสดงปริมาณต่างๆ ซึ่งหน่วยอนุพันธ์สามารถมีได้มากมายไม่จำกัด เนื่องจากปริมาณต่างๆในโลกนี้ที่คนเราอยากรู้ก็ไม่สามารถจำกัดได้ เพียงแต่เลือกหน่วยพื้นฐานมาประกอบเข้าด้วยกันให้ถูกต้อง.

ใหม่!!: ความถี่และหน่วยอนุพันธ์เอสไอ · ดูเพิ่มเติม »

อะตอม

อะตอม (άτομον; Atom) คือหน่วยพื้นฐานของสสาร ประกอบด้วยส่วนของนิวเคลียสที่หนาแน่นมากอยู่ตรงศูนย์กลาง ล้อมรอบด้วยกลุ่มหมอกของอิเล็กตรอนที่มีประจุลบ นิวเคลียสของอะตอมประกอบด้วยโปรตอนที่มีประจุบวกกับนิวตรอนซึ่งเป็นกลางทางไฟฟ้า (ยกเว้นในกรณีของ ไฮโดรเจน-1 ซึ่งเป็นนิวไคลด์ชนิดเดียวที่เสถียรโดยไม่มีนิวตรอนเลย) อิเล็กตรอนของอะตอมถูกดึงดูดอยู่กับนิวเคลียสด้วยแรงแม่เหล็กไฟฟ้า ในทำนองเดียวกัน กลุ่มของอะตอมสามารถดึงดูดกันและกันก่อตัวเป็นโมเลกุลได้ อะตอมที่มีจำนวนโปรตอนและอิเล็กตรอนเท่ากันจะมีสภาพเป็นกลางทางไฟฟ้า มิฉะนั้นแล้วมันอาจมีประจุเป็นบวก (เพราะขาดอิเล็กตรอน) หรือลบ (เพราะมีอิเล็กตรอนเกิน) ซึ่งเรียกว่า ไอออน เราจัดประเภทของอะตอมด้วยจำนวนโปรตอนและนิวตรอนที่อยู่ในนิวเคลียส จำนวนโปรตอนเป็นตัวบ่งบอกชนิดของธาตุเคมี และจำนวนนิวตรอนบ่งบอกชนิดไอโซโทปของธาตุนั้น "อะตอม" มาจากภาษากรีกว่า ἄτομος/átomos, α-τεμνω ซึ่งหมายความว่า ไม่สามารถแบ่งได้อีกต่อไป หลักการของอะตอมในฐานะส่วนประกอบที่เล็กที่สุดของสสารที่ไม่สามารถแบ่งได้อีกต่อไปถูกเสนอขึ้นครั้งแรกโดยนักปรัชญาชาวอินเดียและนักปรัชญาชาวกรีก ซึ่งจะตรงกันข้ามกับปรัชญาอีกสายหนึ่งที่เชื่อว่าสสารสามารถแบ่งแยกได้ไปเรื่อยๆ โดยไม่มีสิ้นสุด (คล้ายกับปัญหา discrete หรือ continuum) ในคริสต์ศตวรรษที่ 17-18 นักเคมีเริ่มวางแนวคิดทางกายภาพจากหลักการนี้โดยแสดงให้เห็นว่าวัตถุหนึ่งๆ ควรจะประกอบด้วยอนุภาคพื้นฐานที่ไม่สามารถแบ่งแยกได้อีกต่อไป ระหว่างช่วงปลายคริสต์ศตวรรษที่ 19 และต้นคริสต์ศตวรรษที่ 20 นักฟิสิกส์ค้นพบส่วนประกอบย่อยของอะตอมและโครงสร้างภายในของอะตอม ซึ่งเป็นการแสดงว่า "อะตอม" ที่ค้นพบตั้งแต่แรกยังสามารถแบ่งแยกได้อีก และไม่ใช่ "อะตอม" ในความหมายที่ตั้งมาแต่แรก กลศาสตร์ควอนตัมเป็นทฤษฎีที่สามารถนำมาใช้สร้างแบบจำลองทางคณิตศาสตร์ของอะตอมได้เป็นผลสำเร็จ ตามความเข้าใจในปัจจุบัน อะตอมเป็นวัตถุขนาดเล็กที่มีมวลน้อยมาก เราสามารถสังเกตการณ์อะตอมเดี่ยวๆ ได้โดยอาศัยเครื่องมือพิเศษ เช่น กล้องจุลทรรศน์แบบส่องกราดในอุโมงค์ มวลประมาณ 99.9% ของอะตอมกระจุกรวมกันอยู่ในนิวเคลียสไอโซโทปส่วนมากมีนิวคลีออนมากกว่าอิเล็กตรอน ในกรณีของ ไฮโดรเจน-1 ซึ่งมีอิเล็กตรอนและนิวคลีออนเดี่ยวอย่างละ 1 ตัว มีโปรตอนอยู่ \begin\frac \approx 0.9995\end, หรือ 99.95% ของมวลอะตอมทั้งหมด โดยมีโปรตอนและนิวตรอนเป็นมวลที่เหลือประมาณเท่า ๆ กัน ธาตุแต่ละตัวจะมีอย่างน้อยหนึ่งไอโซโทปที่มีนิวเคลียสซึ่งไม่เสถียรและเกิดการเสื่อมสลายโดยการแผ่รังสี ซึ่งเป็นสาเหตุให้เกิดการแปรนิวเคลียสที่ทำให้จำนวนโปรตอนและนิวตรอนในนิวเคลียสเปลี่ยนแปลงไป อิเล็กตรอนที่โคจรรอบอะตอมจะมีระดับพลังงานที่เสถียรอยู่จำนวนหนึ่งในลักษณะของวงโคจรอะตอม และสามารถเปลี่ยนแปลงระดับไปมาระหว่างกันได้โดยการดูดซับหรือปลดปล่อยโฟตอนที่สอดคล้องกับระดับพลังงานที่ต่างกัน อิเล็กตรอนเหล่านี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ และมีอิทธิพลอย่างมากต่อคุณสมบัติทางแม่เหล็กของอะตอม แนวคิดที่ว่าสสารประกอบด้วยหน่วยย่อยๆ ไม่ต่อเนื่องกันและไม่สามารถแบ่งออกเป็นชิ้นส่วนที่เล็กไปได้อีก เกิดขึ้นมานับเป็นพันปีแล้ว แนวคิดเหล่านี้มีรากฐานอยู่บนการให้เหตุผลทางปรัชญา นักปรัชญาได้เรียกการศึกษาด้านนี้ว่า ปรัชญาธรรมชาติ (Natural Philosophy) จนถึงยุคหลังจากเซอร์ ไอแซค นิวตัน จึงได้มีการบัญญัติศัพท์คำว่า 'วิทยาศาสตร์' (Science) เกิดขึ้น (นิวตันเรียกตัวเองว่าเป็น นักปรัชญาธรรมชาติ (natural philosopher)) ทดลองและการสังเกตการณ์ ธรรมชาติของอะตอม ของนักปรัชญาธรรมชาติ (นักวิทยาศาสตร์) ทำให้เกิดการค้นพบใหม่ ๆ มากมาย การอ้างอิงถึงแนวคิดอะตอมยุคแรก ๆ สืบย้อนไปได้ถึงยุคอินเดียโบราณในศตวรรษที่ 6 ก่อนคริสตกาล โดยปรากฏครั้งแรกในศาสนาเชน สำนักศึกษานยายะและไวเศษิกะได้พัฒนาทฤษฎีให้ละเอียดลึกซึ้งขึ้นว่าอะตอมประกอบกันกลายเป็นวัตถุที่ซับซ้อนกว่าได้อย่างไร ทางด้านตะวันตก การอ้างอิงถึงอะตอมเริ่มขึ้นหนึ่งศตวรรษหลังจากนั้นโดยลิวคิพพุส (Leucippus) ซึ่งต่อมาศิษย์ของเขาคือ ดีโมครีตุส ได้นำแนวคิดของเขามาจัดระเบียบให้ดียิ่งขึ้น ราว 450 ปีก่อนคริสตกาล ดีโมครีตุสกำหนดคำว่า átomos (ἄτομος) ขึ้น ซึ่งมีความหมายว่า "ตัดแยกไม่ได้" หรือ "ชิ้นส่วนของสสารที่เล็กที่สุดไม่อาจแบ่งแยกได้อีก" เมื่อแรกที่ จอห์น ดาลตัน ตั้งทฤษฎีเกี่ยวกับอะตอม นักวิทยาศาสตร์ในสมัยนั้นเข้าใจว่า 'อะตอม' ที่ค้นพบนั้นไม่สามารถแบ่งแยกได้อีกแล้ว ถึงแม้ต่อมาจะได้มีการค้นพบว่า 'อะตอม' ยังประกอบไปด้วย โปรตอน นิวตรอน และอิเล็กตรอน แต่นักวิทยาศาสตร์ในปัจจุบันก็ยังคงใช้คำเดิมที่ดีโมครีตุสบัญญัติเอาไว้ ลัทธินิยมคอร์พัสคิวลาร์ (Corpuscularianism) ที่เสนอโดยนักเล่นแร่แปรธาตุในคริสต์ศตวรรษที่ 13 ซูโด-กีเบอร์ (Pseudo-Geber) หรือบางครั้งก็เรียกกันว่า พอลแห่งทารันโท แนวคิดนี้กล่าวว่าวัตถุทางกายภาพทุกชนิดประกอบด้วยอนุภาคขนาดละเอียดเรียกว่า คอร์พัสเคิล (corpuscle) เป็นชั้นภายในและภายนอก แนวคิดนี้คล้ายคลึงกับทฤษฎีอะตอม ยกเว้นว่าอะตอมนั้นไม่ควรจะแบ่งต่อไปได้อีกแล้ว ขณะที่คอร์พัสเคิลนั้นยังสามารถแบ่งได้อีกในหลักการ ตัวอย่างตามวิธีนี้คือ เราสามารถแทรกปรอทเข้าไปในโลหะอื่นและเปลี่ยนแปลงโครงสร้างภายในของมันได้ แนวคิดนิยมคอร์พัสคิวลาร์อยู่ยั่งยืนยงเป็นทฤษฎีหลักตลอดเวลาหลายร้อยปีต่อมา ในปี..

ใหม่!!: ความถี่และอะตอม · ดูเพิ่มเติม »

อาการปวดต่างที่

อาการปวดต่างที่ (Referred pain, reflective pain) เป็นความเจ็บปวดต่างที่จากส่วนร่างกายซึ่งได้รับสิ่งเร้าอันก่อความเจ็บปวด ตัวอย่างหนึ่งก็คือ อาการปวดเค้นหัวใจ (angina pectoris) ซึ่งเกิดจากกล้ามเนื้อหัวใจตายเหตุขาดเลือด (หัวใจวาย) แต่มักจะทำให้รู้สึกปวดคอ ไหล่ และหลัง ไม่ใช่ที่อกซึ่งเป็นแหล่งปัญหา แต่องค์การมาตรฐานนานาชาติ (รวมทั้ง International Association for the Study of Pain) ก็ยังไม่ได้นิยามคำนี้ ดังนั้น ผู้เขียนต่าง ๆ อาจใช้คำโดยความหมายที่ไม่เหมือนกัน มีการกล่าวถึงอาการเช่นนี้ตั้งแต่ปลายคริสต์ทศวรรษ 1880 แล้ว แม้จะมีวรรณกรรมในเรื่องนี้เขียนเพิ่มขึ้นเรื่อย ๆ แต่กลไกการทำงานของมันก็ยังไม่ชัดเจน ถึงจะมีสมมติฐานต่าง.

ใหม่!!: ความถี่และอาการปวดต่างที่ · ดูเพิ่มเติม »

อินเตอร์เฟอโรเมทรี

อินเตอร์เฟอโรเมทรี (Interferometry) คือศาสตร์ที่กล่าวถึงเทคนิคหลายประการในการใช้คลื่นแม่เหล็กไฟฟ้าเพื่อถอดความข้อมูลที่อยู่ในรูปคลื่น เครื่องมือที่ใช้ในการตรวจจับคลื่นเรียกว่า อินเตอร์เฟอโรมิเตอร์ (interferometer) อินเตอร์เฟอโรเมทรีเป็นเทคนิคการตรวจสอบที่สำคัญในการศึกษาดาราศาสตร์ในภาคสนาม การศึกษาไฟเบอร์ออพติก มาตรวิทยาทางวิศวกรรม สมุทรศาสตร์ วิทยาแผ่นดินไหว กลศาสตร์ควอนตัม ฟิสิกส์นิวเคลียร์ ฟิสิกส์อนุภาค ฟิสิกส์พลาสมา กาตรวจจับในระยะไกล รวมถึงปฏิกิริยาระหว่างโมเลกุลทางชีววิทยา อินเตอร์เฟอโรเมทรีอาศัยหลักการพื้นฐานของคลื่นที่แตกต่างกันเมื่อนำเข้ามารวมกันในวิธีที่ทำให้เกิดผลรวมซึ่งมีคุณสมบัติที่มีความหมายบางอย่างที่สามารถวิเคราะห์สถานะต้นกำเนิดของคลื่นเหล่านั้นได้ ที่เป็นเช่นนั้นเพราะเมื่อคลื่นสองชนิดที่มีความถี่เดียวกันมารวมกัน รูปแบบผลลัพธ์จะสามารถอธิบายได้โดยเฟสของคลื่นที่แตกต่างกันของคลื่นทั้งสองนั่นเอง คลื่นที่มีเฟสเดียวกัน (in phase) จะเสริมแรงกัน ขณะที่คลื่นที่มีเฟสตรงข้ามกัน (out of phase) จะหักล้างกัน อินเตอร์เฟอโรมิเตอร์ส่วนมากใช้แสงหรือคลื่นแม่เหล็กไฟฟ้าในรูปแบบอื่นๆ ในการศึกษ.

ใหม่!!: ความถี่และอินเตอร์เฟอโรเมทรี · ดูเพิ่มเติม »

อ็อกเทฟ

อ็อกเทฟ (octave) หรือ ขั้นคู่แปดเพอร์เฟกต์ (perfect eighth) มักเขียนย่อเป็น 8ve หรือ P8 คือขั้นคู่เสียง (interval) ที่เทียบจากโน้ตดนตรีตัวหนึ่งไปสู่โน้ตตัวหนึ่งในระดับเสียงที่ต่างกัน ซึ่งโน้ตตัวนั้นมีความถี่เป็นครึ่งหนึ่งหรือเป็นสองเท่าจากโน้ตตัวเดิม และเหตุที่เรียกว่าขั้นคู่แปด เนื่องจากตัวโน้ตสองตัวที่อยู่ห่างกัน 8 ขั้นบนบันไดเสียง (หรือ 12 ครึ่งเสียง) จะเกิดสมบัติดังกล่าว ไม่ว่าจะเป็นบันไดเสียงเมเจอร์หรือบันไดเสียงไมเนอร.

ใหม่!!: ความถี่และอ็อกเทฟ · ดูเพิ่มเติม »

ฮาร์มอนิก

ต่าง ๆ ของสายเครื่องดนตรีที่สั่นแล้วสร้างเสียงฮาร์มอนิก การเขียนโน้ตดนตรีสำหรับเสียงฮาร์มอนิกตามธรรมชาติของเชลโล อันแรกตามเสียงที่ได้ยินซึ่งสามัญกว่า และอันที่สองตามที่กดด้วยนิ้วซึ่งอ่านตามเพื่อเล่นได้ง่ายกว่า ฮาร์มอนิก (harmonic) เป็นสมาชิกอันใดอันหนึ่งก็ได้ของอนุกรมฮาร์มอนิก (harmonic series) ซึ่งเป็นอนุกรมแบบอนันต์และลู่ออก (divergent infinite series) ชื่อของมันมาจากแนวคิดเกี่ยวกับ overtone หรือฮาร์มอนิกที่เกิดในเครื่องดนตรี ซึ่งก็คือ ความยาวคลื่นของเสียง overtone จากสายเครื่องดนตรีหรือคอลัมน์อากาศในเครื่องดนตรี (เช่นในทูบา) ที่กำลังสั่น จะเป็นอนุพันธ์จากความยาวคลื่นมูลฐานของสายเครื่องดนตรี คำนี้ใช้ในสาขาวิชาต่าง ๆ ที่มาจากประเทศตะวันตก รวมทั้งดนตรี ฟิสิกส์ สวนศาสตร์ สัญญาณอิเล็กทรอนิกส์ เทคโนโลยีวิทยุ และสาขาอื่น ๆ ซึ่งปกติจะใช้กับสัญญาณที่เกิดซ้ำ ๆ เช่นคลื่นรูปไซน์ ฮาร์มอนิกของคลื่นเช่นนี้ ก็คือคลื่นที่มีความถี่เป็นพหุคูณจำนวนเต็มของคลื่นดั้งเดิม โดยความถี่คลื่นดั้งเดิมจะเรียกว่า ความถี่มูลฐาน คลื่นดั้งเดิมนี้ก็เรียกได้ด้วยว่า ฮาร์มอนิกแรก โดยคลื่นที่มีความถี่สูงยิ่ง ๆ กว่านั้นจะเป็นฮาร์มอนิกที่สูงกว่า (higher harmonic) เนื่องจากฮาร์มอนิกทั้งหมดจะเป็นคาบตรงที่ความถี่มูลฐานด้วย ฮาร์มอนิกรวมกันทั้งหมดก็จะเป็นคาบที่ความถี่นั้นด้วย ยกตัวอย่างเช่น ถ้าความถี่มูลฐานอยู่ที่ 50 เฮิรตซ์ (Hz) ความถี่ของฮาร์มอนิกสูงกว่า 3 อันแรกก็จะอยู่ที่ 100 Hz (ฮาร์มอนิกที่สอง) 150 Hz (ฮาร์มอนิกที่สาม) 200 Hz (ฮาร์มอนิกที่สี่) และคลื่นอื่น ๆ ที่มีความถี่เป็นคาบที่ 50 Hz ด้วย ในดนตรี แนวคิดเกี่ยวกับฮาร์มอนิกจะใช้ในเครื่องดนตรีแบบสายและแบบเป่า เพื่อสร้างเสียงโดยเฉพาะเพื่อให้เกิดเสียงที่สูงกว่า และในเครื่องดนตรีแบบสาย เพื่อให้ได้คุณสมบัติของเสียงโดยเฉพาะที่ภาษาอังกฤษเรียกว่า tone colour (น้ำเสียง) ในเครื่องดนตรีแบบสาย นักดนตรีจะเล่นฮาร์มอนิกต่าง ๆ โดยแตะ (แต่ไม่ได้กดลงที่สายอย่างเต็มที่) ตรงจุดใดจุดหนึ่งโดยเฉพาะบนสายในขณะที่สร้างเสียง ไม่ว่าจะโดยดีดสายหรือสีเป็นต้น ซึ่งก็จะสร้างเสียงฮาร์มอนิก โดยจะฟังเป็นเสียงทุ้มแหลมที่มีความถี่สูงกว่าความถี่มูลฐานของสายนั้น.

ใหม่!!: ความถี่และฮาร์มอนิก · ดูเพิ่มเติม »

ผลกระทบที่ผิว

ผลกระทบที่ผิว (skin effect) เป็นแนวโน้มของ กระแสไฟฟ้าสลับ (AC) ที่จะกระจายอยู่ภายในตัวนำในแบบที่ว่า ความหนาแน่นของกระแส จะมีมากที่สุดใกล้กับผิวหน้าของตัวนำและลดลงตามระดับความลึกที่มากขึ้นในตัวนำ กระแสไฟฟ้าจะไหลที่ "ผิว" (skin) ของตัวนำเป็นหลัก ระหว่างพื้นผิวด้านนอกจนถึงระดับที่เรียกว่า ความลึกของผิว (skin depth) ผลกระทบที่ผิวทำให้เกิด ความต้านทาน ที่มีประสิทธิผล (effective resistance) ของตัวนำเพิ่มขึ้นใน ความถี่ ที่สูงขึ้นโดยที่ระดับความลึกของผิวมีขนาดเล็กลง ดังนั้นภาคตัดขวางที่ใช้งานจริงของตัวนำจึงลดลง ผลกระทบที่ผิวจะทำหน้าที่ต่อต้านกับ กระแสเอ็ดดี้ ที่เหนี่ยวนำขึ้นโดยการเปลี่ยนแปลงสนามแม่เหล็กที่เกิดจากกระแสสลั.

ใหม่!!: ความถี่และผลกระทบที่ผิว · ดูเพิ่มเติม »

ผลจากความใกล้ชิด

ในตัวนำที่มี กระแสสลับ ไหลในตัวมัน ถ้ามีกระแสอื่นกำลังไหลผ่านตัวนำอื่นที่อยู่ใกล้เคียง เช่นภายในขดลวดที่อยู้ใกล้ชิดกัน การกระจายของกระแสไฟฟ้าภายในตัวนำแรกจะถูกจำกัดอยู่ในภูมิภาคขนาดเล็ก หรือเรียกว่า กระแสแออัด (current crowding) ผลที่เกิดขึ้นจะเรียกว่าเป็น ผลจากความใกล้ชิด (proximity effect) การแออัดนี้จะทำให้มีการเพิ่มขึ้นของความต้านทานที่มีประสิทธิผล (effective resistance) ของวงจร ซึ่งจะเพิ่มขึ้นตามความถี่ที่เพิ่มขึ้น.

ใหม่!!: ความถี่และผลจากความใกล้ชิด · ดูเพิ่มเติม »

ผลต่อสุขภาพจากเสียง

การจราจรเป็นแหล่งมลภาวะทางเสียงหลักในเมือง ผลต่อสุขภาพจากเสียง (Noise health effects) เป็นผลต่าง ๆ จากการได้รับเสียงดังจากที่ทำงานหรือที่อื่น ๆ ซึ่งอาจทำให้การได้ยินพิการ เกิดความดันสูง โรคหลอดเลือดเลี้ยงหัวใจ ความรำคาญ และปัญหาในการนอน นอกจากนั้น ปัญหาระบบภูมิคุ้มกัน และความพิการของทารกแรกเกิด อาจมีเหตุจากเสียงดัง แม้ว่า หูตึงเหตุสูงอายุ (presbycusis) ก็อาจเกิดตามธรรมชาติได้เหมือนกัน แต่ว่าในประเทศพัฒนาแล้วหลายประเทศ ปัญหาสะสมจากเสียงก็พอสร้างความเสียหายต่อประชากรเป็นจำนวนมากภายในชั่วชีวิตแล้ว การได้รับเสียงดังยังก่ออาการเสียงในหู (tinnitus) ความดันสูง การตีบของหลอดเลือด (vasoconstriction) และปัญหาทางหัวใจหลอดเลือดอื่น ๆ นอกจากผลเหล่านี้ เสียงดังยังสามารถทำให้เครียด เพิ่มอัตราอุบัติเหตุในที่ทำงาน และก่อความก้าวร้าวและพฤติกรรมต้านสังคมอื่น ๆ แหล่งเสียงที่สำคัญที่สุดคือจากรถยนต์กับเครื่องบิน การฟังเสียงดนตรีดัง ๆ บ่อย ๆ และเสียงจากอุตสาหกรรม ในประเทศนอร์เวย์ เสียงจราจรพบว่า เป็นเหตุต่อความรำคาญเสียงถึง 88% ที่รายงาน เสียงอาจจะมีผลให้เกิดโรคจิตอีกด้วย เช่น เสียงประทัดอาจทำทั้งสัตว์เลี้ยงสัตว์ป่า หรือบุคคลที่ได้รับความบอบช้ำทางจิตใจให้แตกตื่น (คนที่บอบช้ำทางจิตใจรวมทั้งคนที่ผ่านสงครามมา) แต่เพียงแค่กลุ่มคนเสียงดังก็อาจจะก่อการร้องทุกข์หรือปัญหาพฤติกรรมอื่น ๆ แล้ว แม้ทารกก็ตื่นเสียงได้ง่ายอีกด้วย ค่าเสียหายทางสังคมเนื่องจากเสียงจราจรในประเทศยุโรป 22 ประเทศอาจมีค่าถึง 4 หมื่นล้านยูโรต่อปีโดยปี 2550 (ประมาณ 1.5 ล้านล้านบาท) โดยรถโดยสารและรถบรรทุกเป็นเหตุหลักของปัญหา เสียงจราจรอย่างเดียวทำให้สุขภาพของคนเกือบ 1/3 ในเขตยุโรปเสียหาย โดยประชากรยุโรป 1 ใน 5 จะได้รับเสียงตอนกลางคืนเป็นปกติในระดับที่อาจทำให้สุขภาพเสียหายอย่างสำคัญ เสียงยังเป็นอัตรายต่อระบบนิเวศทั้งทางบกและทางน้ำอีกด้ว.

ใหม่!!: ความถี่และผลต่อสุขภาพจากเสียง · ดูเพิ่มเติม »

จิตพยาธิวิทยาสัตว์

ตพยาธิวิทยาสัตว์ (Animal psychopathology) เป็นการศึกษาโรคจิตและพฤติกรรมในสัตว์ที่ไม่ใช่มนุษย์ โดยประวัติแล้ว ศาสตร์มักจะเอามนุษย์เป็นศูนย์ (มานุษยประมาณนิยม) เมื่อศึกษาจิตพยาธิวิทยาในสัตว์เพื่อใช้เป็นแบบจำลองสำหรับโรคจิตในมนุษย์ แต่จากมุมมองทางวิวัฒนาการ จิตพยาธิของสัตว์จะพิจารณาได้อย่างเหมาะสมกว่าว่า เป็นพฤติกรรมที่ไม่ปรับตัว (non-adaptive) เพราะความพิการทางความรู้คิด ความพิการทางอารมณ์ หรือความทุกข์บางอย่าง บทความนี้แสดงจิตพยาธิสัตว์จำนวนหนึ่งแต่ไม่สมบูรณ.

ใหม่!!: ความถี่และจิตพยาธิวิทยาสัตว์ · ดูเพิ่มเติม »

จิตสวนศาสตร์

ตสวนศาสตร์ (คำอ่าน: จิด-ตะ-สะ-วะ-นะ-สาด; Psychoacoustics) เป็นการศึกษาเกี่ยวกับประสาทสัมผัสของมนุษย์ด้านการได้ยิน.

ใหม่!!: ความถี่และจิตสวนศาสตร์ · ดูเพิ่มเติม »

ทฤษฎีจลน์ของแก๊ส

อุณหภูมิของก๊าซอุดมคติเป็นเครื่องชี้วัดพลังงานจลน์เฉลี่ยของอะตอมในระบบ ทฤษฎีจลน์ของแก๊ส (Kinetic Theory of Gases) เป็นทฤษฎีที่พยายามอธิบายสมบัติต่างๆ ของแก๊สโดยศึกษาจากทิศทางเคลื่อนที่ของโมเลกุลแก๊สและลักษณะของโมเลกุลแก๊ส ในช่วงแรก การเริ่มศึกษาทฤษฎีนี้โดยเจมส์ คลาร์ก แมกซ์เวลล์ นับเป็นจุดเริ่มต้นของการศึกษาอุณหพลศาสตร์ในมุมมองจุลภาค คือศึกษาความสัมพันธ์ระหว่างพลังงาน อุณหภูมิ และการเคลื่อนที่ของอะตอม โดยใช้กฎการเคลื่อนที่ของนิวตันโดยตรง.

ใหม่!!: ความถี่และทฤษฎีจลน์ของแก๊ส · ดูเพิ่มเติม »

ทฤษฎีแม่เหล็กไฟฟ้า

ทฤษฎีแม่เหล็กไฟฟ้า (Electromagnetism) เป็นสาขาหนึ่งของวิชาฟิสิกส์ที่เกี่ยวข้องกับการศึกษา แรงแม่เหล็กไฟฟ้า ซึ่งเป็นปฏิสัมพันธ์ทางกายภาพชนิดหนึ่งที่เกิดขึ้นระหว่างอนุภาคใดๆที่มีประจุไฟฟ้า แรงแม่เหล็กไฟฟ้ามักจะแสดงสนามแม่เหล็กไฟฟ้าเช่นสนามไฟฟ้า, สนามแม่เหล็ก, และแสง แรงแม่เหล็กไฟฟ้าเป็นหนึ่งในสี่ปฏิสัมพันธ์พื้นฐานในธรรมชาติ อีกสามแรงพื้นฐานได้แก่ อันตรกิริยาอย่างเข้ม, อันตรกิริยาอย่างอ่อน และแรงโน้มถ่วง ฟ้าผ่าเป็นการระบายออกของไฟฟ้าสถิตแบบหนึ่งที่ไฟฟ้าสถิตจะเดินทางระหว่างสองภูมิภาคท​​ี่มีประจุไฟฟ้า แม่เหล็กไฟฟ้ามาจากภาษาอังกฤษ electromagnet คำนี้ป็นรูปแบบผสมของคำภาษากรีกสองคำได้แก่ ἤλεκτρον หมายถึง อิเล็กตรอน และ μαγνῆτιςλίθος (Magnetis Lithos) ซึ่งหมายถึง "หินแม่เหล็ก" ซึ่งเป็นแร่เหล็กชนิดหนึ่ง วิทยาศาสตร์ของปรากฏการณ์แม่เหล็กไฟฟ้าถูกกำหนดไว้ในความหมายของแรงแม่เหล็กไฟฟ้า บางครั้งถูกเรียกว่าแรงลอเรนซ์ (Lorentz force) ซึ่งประกอบด้วยทั้งไฟฟ้าและแม่เหล็กในฐานะที่เป็นสององค์ประกอบของปรากฏการณ์ แรงแม่เหล็กไฟฟ้ามีบทบาทสำคัญในการกำหนดคุณสมบัติภายในของวัตถุส่วนใหญ่ที่พบในชีวิตประจำวัน สสารทั่วไปจะได้รูปแบบของมันจากผลของแรงระหว่างโมเลกุลของโมเลกุลแต่ละตัวในสสาร อิเล็กตรอนจะถูกยึดเหนี่ยวตามกลไกคลื่นแม่เหล็กไฟฟ้าเข้ากับวงโคจรรอบนิวเคลียสเพื่อก่อตัวขึ้นเป็นอะตอมซึ่งเป็นองค์ประกอบหลักของโมเลกุล กระบวนการนี้จะควบคุมกระบวนการที่เกี่ยวข้องทั้งหลายในทางเคมีซึ่งเกิดขึ้นจากการมีปฏิสัมพันธ์ระหว่างอิเล็กตรอนในวงโคจรของอะตอมหนึ่งกับอิเล็กตรอนอื่นในวงโคจรของอะตอมที่อยู่ใกล้เคียงซึ่งจะถูกกำหนดโดยการปฏิสัมพันธ์ระหว่างแรงแม่เหล็กไฟฟ้ากับโมเมนตัมของอิเล็กตรอนเหล่านั้น มีคำอธิบายของสนามแม่เหล็กไฟฟ้าทางคณิตศาสตร์จำนวนมาก ในไฟฟ้าพลศาสตร์แบบคลาสสิก (classical electrodynamics) สนามไฟฟ้าจะอธิบายถึงศักย์ไฟฟ้าและกระแสไฟฟ้า ในกฎของฟาราเดย์ สนามแม่เหล็กจะมาพร้อมกับการเหนี่ยวนำแม่เหล็กไฟฟ้าและแม่เหล็ก, และสมการของแมกซ์เวลจะอธิบายว่า สนามไฟฟ้าและสนามแม่เหล็กถูกสร้างขึ้นได้อย่างไร มีการเปลี่ยนแปลงซึ่งกันและกันอย่างไร และมีการเปลี่ยนแปลงโดยประจุและกระแสได้อย่างไร การแสดงเจตนาเป็นนัยในทางทฤษฎีของแรงแม่เหล็กไฟฟ้า โดยเฉพาะในการจัดตั้งของความเร็วของแสงที่ขึ้นอยู่กับคุณสมบัติของ "ตัวกลาง" ของการกระจายคลื่น (ความสามารถในการซึมผ่าน (permeability) และแรงต้านสนามไฟฟ้า (permittivity)) นำไปสู่​​การพัฒนาทฤษฎีสัมพัทธภาพพิเศษโดย อัลเบิร์ต ไอน์สไตน์ในปี 1905 แม้ว่าแรงแม่เหล็กไฟฟ้าถือเป็นหนึ่งในสี่แรงพื้นฐาน แต่ที่ระดับพลังงานสูงอันตรกิริยาอย่างอ่อนและแรงแม่เหล็กไฟฟ้าถูกรวมเป็นสิ่งเดียวกัน ในประวัติศาสตร์ของจักรวาล ในช่วงยุคควาร์ก แรงไฟฟ้าอ่อน (electroweak) จะหมายถึงแรง(แม่เหล็ก)ไฟฟ้า + (อันตรกิริยาอย่าง)อ่อน.

ใหม่!!: ความถี่และทฤษฎีแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

ทวีตเตอร์

ทวีตเตอร์ เป็นลำโพงขนาดเล็กสุดบนตู้ลำโพง ทวีตเตอร์ (tweeter) เป็นลำโพงชนิดหนึ่งที่ออกแบบไว้สำหรับเสียงที่ความถี่สูง ซึ่งมีความถี่จาก 2,000 - 20,000 เฮิตช์ ซึ่งเป็นความถี่สูงสุดที่มนุษย์สามารถได้ยิน คำว่าทวีตเตอร์มาจากเสียงของนกทวีตเตอร์ที่มีความถี่สูง ซึ่งตรงข้ามกับวูฟเฟอร์ที่เป็นเสียงความถี่ต่ำจากเสียงของสุนัข จากเสียง วูฟ วูฟ หมวดหมู่:ลำโพง.

ใหม่!!: ความถี่และทวีตเตอร์ · ดูเพิ่มเติม »

ขดลวดเทสลา

ลวดเทสลา ขดลวดเทสลา (Tesla coil) เป็นหม้อแปลงที่อาศัยหลักการเรโซแนนซ์ในวงจรไฟฟ้า โดยมีแกนเป็นอากาศ สามารถสร้างแรงดันไฟฟ้าระดับสูงได้อย่างน่าตกใจ ซึ่งเป็นหนทางนำส่งคลื่นวิทยุและทีวีในเวลาต่อมา นอกจากนั้น การค้นพบที่น่าสนใจที่สุดในเทสลาคอยส์ก็คือ สามารถส่งพลังไฟฟ้าผ่านอากาศที่เบาบางได้ เทสลาคอยส์ถูกสร้างขึ้นโดย นิโคลา เทสลา ซึ่งเป็นนักฟิสิกส์วิทยาศาสตร์ชาวโครเอเชีย เขาเคยได้ลองสร้างเทสลาคอยส์ ขนาดยักษ์เพื่อสร้างสนามแม่เหล็กไฟฟ้าที่มีความถี่สูงมาก จนสามารถส่งกระแสไฟ 10,000 วัตต์ ผ่านอากาศและสามารถจุดดวงไฟที่อยู่ห่างออกไป 40 กิโลเมตรได้มากกว่า 200 ดวง โดยในปัจจุบันภาพยนตร์หลายเรื่องนิยมนำเทสลาคอยส์มาใช้ เมื่อต้องการฉากฟ้าผ่าฟ้าแลบ หรือการสปาร์กของกระแสไฟฟ้า ยกตัวอย่างเช่นหนังเรื่อง ฅนเหล็ก 2029 ภาค 2 (terminator II) ศึกอภินิหารพ่อมดถล่มโลก (the sorcerer’s Apprentice) เป็นต้น นอกจากในวงการภาพยนตร์แล้วในวงการดนตรีเองก็นิยมนำเสียงที่เกินจากแรงดันกระแสไฟฟ้ามาใช้ เพื่อเป็นเสียงประกอบที่สร้างความแปลกใหม่ไปในตัวอีกด้วย ส่วนประกอบเทสล่าคอ.

ใหม่!!: ความถี่และขดลวดเทสลา · ดูเพิ่มเติม »

ขนาดคลื่นพื้นผิว

มาตราขนาดคลื่นพื้นผิว (M_s) เป็นหนึ่งในขนาดมาตราที่ใช้ในวิทยาแผ่นดินไหว เพื่ออธิบายขนาดของแผ่นดินไหว มาตราดังกล่าวใช้ค่าที่ได้จากการวัดคลื่นพื้นผิวเรย์ลี ซึ่งเดินทางตามชั้นบนสุดของผิวโลกเป็นหลัก ปัจจุบันมาตราดังกล่าวใช้ในสาธารณรัฐประชาชนจีน เป็นมาตรฐานแห่งชาติ (GB 17740-1999) ในการจัดหมวดหมู่แผ่นดินไหว ขนาดคลื่นพื้นผิวเดิมได้รับการพัฒนาขึ้นในคริสต์ทศวรรษ 1950 โดยนักวิจัยคนเดียวกับที่พัฒนามาตราขนาดท้องถิ่น (ML) เพื่อพัฒนาความละเอียดในแผ่นดินไหวที่มีขนาดใหญ่ขึ้น.

ใหม่!!: ความถี่และขนาดคลื่นพื้นผิว · ดูเพิ่มเติม »

ดรรชนีหักเห

รรชนีหักเหของวัสดุ คืออัตราส่วนที่ความเร็วของคลื่นแม่เหล็กไฟฟ้าลดลงภายในวัสดุชนิดนั้น (เทียบกับความเร็วในสุญญากาศ) ความเร็วของคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ c นั้นคงที่เสมอและมีค่าประมาณ 3×108 เมตรต่อวินาที ถ้าคลื่นแม่เหล็กไฟฟ้าความถี่หนึ่งมีความเร็วเท่ากับ v ในตัวกลาง ให้ดรรชนีหักเหของตัวกลางที่ความถี่นั้นมีค่าเท่ากับ ตัวเลขดรรชนีหักเหนั้นโดยทั่วไปมีค่ามากกว่าหนึ่ง โดยยิ่งวัสดุมีความหนาแน่นมากเท่าไหร่ แสงก็จะเดินทางได้ช้าลงเท่านั้น แต่ในบางกรณี (เช่นสำหรับรังสีเอกซ์ หรือที่ความถี่ใกล้กับความถี่สั่นพ้องของวัสดุ) ดรรชนีหักเหอาจมีค่าน้อยกว่าหนึ่งได้ สถานการณ์นี้ไม่ได้ขัดกับทฤษฎีสัมพัธภาพซึ่งกล่าวว่าสัญญาณไม่สามารถเดินทางได้เร็วกว่า c เนื่องจากความเร็วเฟส v นั้นเป็นคนละปริมาณกับความเร็วกลุ่ม ซึ่งเป็นปริมาณที่บ่งบองความเร็วที่สัญญาณเดินทาง นิยามของความเร็วเฟสนั้นคือ อัตราเร็วที่สันคลื่นเดินทาง นั้นคือเป็นอัตราเร็วที่เฟสของคลื่นมีการเปลี่ยนแปลง ส่วนความเร็วกลุ่มนั้นเป็นอัตราเร็วที่ รูปคลื่น เดินทาง นั่นคือเป็นอัตราเร็วที่แอมพลิจูดของคลื่นเปลี่ยนแปลง ความเร็วกลุ่มเป็นปริมาณที่บอกถึงความเร็วที่คลื่นส่งสัญญาณและพลังงาน บางครั้งเราเรียก ดรรชนีหักเหของความเร็วกลุ่ม ว่า ดรรชนีกลุ่ม (group index) ซึ่งนิยามเป็น ในการอธิบายปรากฏการที่เกิดขึ้นระหว่างแสงกับวัสดุให้สมบูรณ์ บางครั้งจะสะดวกขึ้นถ้ามองดรรชนีหักเหเป็นจำนวนเชิงซ้อน \tilde ซึ่งประกอบขึ้นจากส่วนจริง และส่วนเสมือน ในกรณีนี้ n คือดรรชนีหักเหในความหมายปกติ และ k คือ extinction coefficient ในวัสดุที่เป็นฉนวน เช่น แก้ว ค่า k เท่ากับศูนย์และแสงก็ไม่ถูกดูดซับในวัสดุจำพวกนี้ แต่ในโลหะ ค่าการดูดซับแสงในช่วงความยาวคลื่นสั้น (ช่วงที่ตามองเห็น) นั้นมีค่ามาก และการอธิบายดรรชนีหักเหให้สมบูรณ์จำเป็นต้องรวมส่วน k ด้วย ส่วนจริงและส่วนเสมือนของดรรชนีหักเหนั้นเกี่ยวข้องกันด้วยความสัมพันธ์ของ เครเมอร์-โครนิก (Kramers-Kronig relations) ตัวอย่างของการใช้ประโยชน์จากความสัมพันธ์นี้ได้แก่ การที่เราสามารถหาดรรชนีหักเหเชิงซ้อนของวัสดุได้สมบูรณ์โดยการวัดสเปคตรัมการดูดซับแสงเท่านั้น เมื่อพิจารณาที่สเกลเล็กๆ การที่คลื่นแม่เหล็กไฟฟ้าเดินทางช้าลงในวัสดุนั้น เกิดจากการที่สนามไฟฟ้าทำให้ประจุไฟฟ้าในอะตอมมีการเคลื่นที่ (ส่วนใหญ่อิเล็กตรอนคือสิ่งที่เคลื่อนที่) การสั่นของประจุไฟฟ้าเองนั้นสร้างรังสีแม่เหล็กไฟฟ้าขึ้นเอง โดยรังสีแม่เหล็กไฟฟ้านี้มีความต่างเฟสกับคลื่นแม่เหล็กไฟฟ้าตั้งต้นเล็กน้อย ผลรวมของคลื่นทั้งสองได้ออกมาเป็นคลื่นที่ความถี่เดิมแต่ความยาวคลื่นสั้นลง ซึ่งทำให้ความเร็วในการเดินทางลดลงนั่นเอง ถ้าเรารู้ดรรชนีหักเหของวัสดุสองชนิดที่ความถี่หนึ่งๆ เราสามารถคำนวณมุมที่หักเหที่ผิวระหว่างตัวกลางสองชนิดนั้นได้ด้วยกฎของสเนล (Snell's law).

ใหม่!!: ความถี่และดรรชนีหักเห · ดูเพิ่มเติม »

ดาวฤกษ์

นก่อตัวของดาวฤกษ์ในดาราจักรเมฆแมเจลแลนใหญ่ ภาพจาก NASA/ESA ดาวฤกษ์ คือวัตถุท้องฟ้าที่เป็นก้อนพลาสมาสว่างขนาดใหญ่ที่คงอยู่ได้ด้วยแรงโน้มถ่วง ดาวฤกษ์ที่อยู่ใกล้โลกมากที่สุด คือ ดวงอาทิตย์ ซึ่งเป็นแหล่งพลังงานหลักของโลก เราสามารถมองเห็นดาวฤกษ์อื่น ๆ ได้บนท้องฟ้ายามราตรี หากไม่มีแสงจากดวงอาทิตย์บดบัง ในประวัติศาสตร์ ดาวฤกษ์ที่โดดเด่นที่สุดบนทรงกลมท้องฟ้าจะถูกจัดเข้าด้วยกันเป็นกลุ่มดาว และดาวฤกษ์ที่สว่างที่สุดจะได้รับการตั้งชื่อโดยเฉพาะ นักดาราศาสตร์ได้จัดทำบัญชีรายชื่อดาวฤกษ์เพิ่มเติมขึ้นมากมาย เพื่อใช้เป็นมาตรฐานในการตั้งชื่อดาวฤกษ์ ตลอดอายุขัยส่วนใหญ่ของดาวฤกษ์ มันจะเปล่งแสงได้เนื่องจากปฏิกิริยาเทอร์โมนิวเคลียร์ฟิวชั่นที่แกนของดาว ซึ่งจะปลดปล่อยพลังงานจากภายในของดาว จากนั้นจึงแผ่รังสีออกไปสู่อวกาศ ธาตุเคมีเกือบทั้งหมดซึ่งเกิดขึ้นโดยธรรมชาติและหนักกว่าฮีเลียมมีกำเนิดมาจากดาวฤกษ์ทั้งสิ้น โดยอาจเกิดจากการสังเคราะห์นิวเคลียสของดาวฤกษ์ระหว่างที่ดาวยังมีชีวิตอยู่ หรือเกิดจากการสังเคราะห์นิวเคลียสของซูเปอร์โนวาหลังจากที่ดาวฤกษ์เกิดการระเบิดหลังสิ้นอายุขัย นักดาราศาสตร์สามารถระบุขนาดของมวล อายุ ส่วนประกอบทางเคมี และคุณสมบัติของดาวฤกษ์อีกหลายประการได้จากการสังเกตสเปกตรัม ความสว่าง และการเคลื่อนที่ในอวกาศ มวลรวมของดาวฤกษ์เป็นตัวกำหนดหลักในลำดับวิวัฒนาการและชะตากรรมในบั้นปลายของดาว ส่วนคุณสมบัติอื่นของดาวฤกษ์ เช่น เส้นผ่านศูนย์กลาง การหมุน การเคลื่อนที่ และอุณหภูมิ ถูกกำหนดจากประวัติวิวัฒนาการของมัน แผนภาพคู่ลำดับระหว่างอุณหภูมิกับความสว่างของดาวฤกษ์จำนวนมาก ที่รู้จักกันในชื่อ ไดอะแกรมของแฮร์ทสชปรุง-รัสเซลล์ (H-R ไดอะแกรม) ช่วยทำให้สามารถระบุอายุและรูปแบบวิวัฒนาการของดาวฤกษ์ได้ ดาวฤกษ์ถือกำเนิดขึ้นจากเมฆโมเลกุลที่ยุบตัวโดยมีไฮโดรเจนเป็นส่วนประกอบหลัก รวมไปถึงฮีเลียม และธาตุอื่นที่หนักกว่าอีกจำนวนหนึ่ง เมื่อแก่นของดาวฤกษ์มีความหนาแน่นมากเพียงพอ ไฮโดรเจนบางส่วนจะถูกเปลี่ยนเป็นฮีเลียมผ่านกระบวนการนิวเคลียร์ฟิวชั่นอย่างต่อเนื่อง ส่วนภายในที่เหลือของดาวฤกษ์จะนำพลังงานออกจากแก่นผ่านทางกระบวนการแผ่รังสีและการพาความร้อนประกอบกัน ความดันภายในของดาวฤกษ์ป้องกันมิให้มันยุบตัวต่อไปจากแรงโน้มถ่วงของมันเอง เมื่อเชื้อเพลิงไฮโดรเจนที่แก่นของดาวหมด ดาวฤกษ์ที่มีมวลอย่างน้อย 0.4 เท่าของดวงอาทิตย์ จะพองตัวออกจนกลายเป็นดาวยักษ์แดง ซึ่งในบางกรณี ดาวเหล่านี้จะหลอมธาตุที่หนักกว่าที่แก่นหรือในเปลือกรอบแก่นของดาว จากนั้น ดาวยักษ์แดงจะวิวัฒนาการไปสู่รูปแบบเสื่อม มีการรีไซเคิลบางส่วนของสสารไปสู่สสารระหว่างดาว สสารเหล่านี้จะก่อให้เกิดดาวฤกษ์รุ่นใหม่ซึ่งมีอัตราส่วนของธาตุหนักที่สูงกว่า ระบบดาวคู่และระบบดาวหลายดวงประกอบด้วยดาวฤกษ์สองดวงหรือมากกว่านั้นซึ่งยึดเหนี่ยวกันด้วยแรงโน้มถ่วง และส่วนใหญ่มักจะโคจรรอบกันในวงโคจรที่เสถียร เมื่อดาวฤกษ์ในระบบดาวดังกล่าวสองดวงมีวงโคจรใกล้กันมากเกินไป ปฏิกิริยาแรงโน้มถ่วงระหว่างดาวฤกษ์อาจส่งผลกระทบใหญ่หลวงต่อวิวัฒนาการของพวกมันได้ ดาวฤกษ์สามารถรวมตัวกันเป็นส่วนหนึ่งอยู่ในโครงสร้างขนาดใหญ่ที่ยึดเหนี่ยวกันด้วยแรงโน้มถ่วง เช่น กระจุกดาว หรือ ดาราจักร ได้.

ใหม่!!: ความถี่และดาวฤกษ์ · ดูเพิ่มเติม »

ดาวแปรแสง

วแปรแสง (Variable Star) คือดาวฤกษ์ ที่มีความสว่างเปลี่ยนแปลงอย่างมาก แตกต่างจากดาวฤกษ์ส่วนใหญ่ในท้องฟ้าที่มีสภาพส่องสว่างเกือบคงที่ ดวงอาทิตย์ของเรา เป็นตัวอย่างที่ดีของดาวฤกษ์ที่มีการเปลี่ยนแปลงของความสว่างน้อยมาก (โดยปกติเปลี่ยนแปลงประมาณ 0.1% ในวัฏจักรสุริยะ 11 ปี) ดาวแปรแสงมีทั้งที่เปลี่ยนแปลงความสว่างจาก ปัจจัยภายใน และ ปัจจัยภายนอก ตัวอย่างดาวฤกษ์ดวงที่เห็นได้ชัดเจนคือ "ดาวบีเทลจุส" ในกลุ่มดาวนายพราน.

ใหม่!!: ความถี่และดาวแปรแสง · ดูเพิ่มเติม »

คลื่น

ผิวน้ำถูกรบกวน เกิดเป็นคลื่นแผ่กระจายออกรอบข้าง คลื่น: 1.&2. คลื่นตามขวาง 3. คลื่นตามยาว คลื่น หมายถึง เตอร์ ลักษณะของการถูกรบกวน ที่มีการแผ่กระจายเป็นลูกเห็บ เคลื่อนที่เข้าใกล้ ในลักษณะของการกวัดแกว่ง หรือกระเพื่อม และมักจะมีการส่งถ่ายพลังงานไปด้วย คลื่นเชิงกลซึ่งเกิดขึ้นในตัวกลาง (ซึ่งเมื่อมีการปรับเปลี่ยนรูป จะมีความแรงยืดหยุ่นในการดีดตัวกลับ) จะเดินทางและส่งผ่านพลังงานจากจุดหนึ่งไปยังอีกจุดหนึ่งในตัวกลาง โดยไม่ทำให้เกิดการเคลื่อนตำแหน่งอย่างถาวรของอนุภาคตัวกลาง คือไม่มีการส่งถ่ายอนุภาคนั่นเอง แต่จะมีการเคลื่อนที่แกว่งกวัด (oscillation) ไปกลับของอนุภาค อย่างไรก็ตามสำหรับ การแผ่รังสีคลื่นแม่เหล็กไฟฟ้า และ การแผ่รังสีแรงดึงดูด นั้นสามารถเดินทางในสุญญากาศได้ โดยไม่ต้องมีตัวกลาง ลักษณะของคลื่นนั้น จะระบุจาก สันคลื่น หรือ ยอดคลื่น (ส่วนที่มีค่าสูงขึ้น) และ ท้องคลื่น (ส่วนที่มีค่าต่ำลง) ในลักษณะ ตั้งฉากกับทิศทางเดินคลื่น เรียก "คลื่นตามขวาง" (transverse wave) หรือ ขนานกับทิศทางเดินคลื่น เรียก "คลื่นตามยาว" (longitudinal wave).

ใหม่!!: ความถี่และคลื่น · ดูเพิ่มเติม »

คลื่นสึนามิ

แสดงคลื่นสึนามิพัดขึ้นฝั่ง คลื่นสึนามิ เป็นกลุ่มคลื่นน้ำที่เกิดขึ้นจากการย้ายที่ของปริมาตรน้ำก้อนใหญ่ คือ มหาสมุทรหรือทะเลสาบขนาดใหญ่ แผ่นดินไหว การปะทุของภูเขาไฟและการระเบิดใต้น้ำอื่นๆ (รวมทั้งการจุดวัตถุระเบิดหรือวัตถุระเบิดนิวเคลียร์ใต้น้ำ) ดินถล่ม ธารน้ำแข็งไถล อุกกาบาตตกและการรบกวนอื่น ไม่ว่าเหนือหรือใต้น้ำ ล้วนอาจก่อให้เกิดเป็นคลื่นสึนามิได้ทั้งสิ้น คลื่นสึนามิไม่เหมือนกับคลื่นทะเล(tidal wave)ตามปกติ เพราะมีความยาวคลื่นยาวกว่ามาก แทนที่จะเป็นคลื่นหัวแตก (breaking wave) ตามปกติ คลื่นสึนามิเริ่มแรกอาจดูเหมือนกับว่าคลื่นน้ำเพิ่มระดับสูงขึ้นอย่างรวดเร็ว และด้วยเหตุนี้ คลื่นสึนามิจึงมักเรียกว่าเป็นคลื่นยักษ์ โดยทั่วไป คลื่นสึนามิประกอบด้วยกลุ่มคลื่นซึ่งมีคาบเป็นนาทีหรืออาจมากถึงชั่วโมง มากันเรียกว่าเป็น "คลื่นขบวน" (wave train) ความสูงของคลื่นหลายสิบเมตรนั้นอาจเกิดขึ้นได้จากเหตุการณ์ขนาดใหญ่ แม้ผลกระทบของคลื่นสึนามินั้นจะจำกัดอยู่แค่พื้นที่ชายฝั่ง แต่อำนาจทำลายล้างของมันสามารถมีได้ใหญ่หลวงและสามารถมีผลกระทบต่อทั้งแอ่งมหาสมุทร คลื่นสึนามิในมหาสมุทรอินเดีย พ.ศ. 2547 เป็นหนึ่งในภัยธรรมชาติครั้งที่มีผู้เสียชีวิตมากที่สุดในประวัติศาสตร์มนุษยชาติ โดยมีผู้เสียชีวิตกว่า 230,000 คน ใน 14 ประเทศที่ติดกับมหาสมุทรอินเดีย ธูซิดดิดีส นักประวัติศาสตร์ชาวกรีก เสนอเมื่อ 426 ปีก่อนคริสตกาล ว่า คลื่นสึนามิเกี่ยวข้องกับแผ่นดินไหวใต้ทะเลThucydides: แต่ความเข้าใจในธรรมชาติของคลื่นสึนามิยังมีเพียงเล็กน้อยกระทั่งคริสต์ศตวรรษที่ 20 และยังมีอีกมากที่ยังไม่ทราบในปัจจุบัน ขณะที่แผ่นดินไหวที่รุนแรงน้อยกว่ามากกลับก่อให้เกิดคลื่น พยายามพยากรณ์เส้นทางของคลื่นสึนามิข้ามมหาสมุทรอย่างแม่นยำ และยังพยากรณ์ว่าคลื่นสึนามิจะมีปฏิสัมพันธ์กับชายฝั่งแห่งหนึ่ง ๆ อย่างไร.

ใหม่!!: ความถี่และคลื่นสึนามิ · ดูเพิ่มเติม »

ความยาวคลื่น

ซน์ ความยาวคลื่นมีค่าเท่ากับระยะห่างระหว่างยอดคลื่น ความยาวคลื่น คือระยะทางระหว่างส่วนที่ซ้ำกันของคลื่น สัญลักษณ์แทนความยาวคลื่นที่ใช้กันทั่วไปคือ อักษรกรีก แลมบ์ดา (λ).

ใหม่!!: ความถี่และความยาวคลื่น · ดูเพิ่มเติม »

ความสนใจต่อสิ่งภายนอก-ความสนใจต่อสิ่งภายใน

ลักษณะ ความสนใจต่อสิ่งภายนอก-ความสนใจต่อสิ่งภายใน หรือ ความสนใจภายนอก-ความสนใจภายใน (extraversion-introversion) เป็นมิติหลักอย่างหนึ่งของทฤษฎีบุคลิกภาพมนุษย์ ส่วนคำภาษาอังกฤษทั้งสองคำ คือ introversion และ extraversion เป็นคำที่จิตแพทย์ คาร์ล ยุง ได้สร้างความนิยม (translation H.G. Baynes, 1923) แม้ว่าการใช้คำทั้งโดยนิยมและทางจิตวิทยาจะต่างไปจากที่ยุงได้มุ่งหมาย ความสนใจต่อสิ่งภายนอกมักปรากฏโดยเป็นการชอบเข้าสังคม/เข้ากับคนอื่นได้ง่าย ช่างพูด กระตือรือร้น/มีชีวิตชีวา เทียบกับความสนใจต่อสิ่งภายในที่ปรากฏโดยเป็นคนสงวนท่าทีและชอบอยู่คนเดียว แบบจำลองบุคลิกภาพใหญ่ ๆ เกือบทั้งหมดมีแนวคิดเช่นนี้ในรูปแบบต่าง ๆ ตัวอย่างเช่นทฤษฎีลักษณะบุคลิกภาพใหญ่ 5 อย่าง, analytical psychology (ของยุง), three-factor model (ของ ศ. ดร. ฮันส์ ไอเซงค์), 16 personality factors (ของ ศ. ดร. Raymond Cattell), Minnesota Multiphasic Personality Inventory, และตัวชี้วัดของไมเออร์ส-บริกส์ ระดับความสนใจต่อสิ่งภายนอก-ความสนใจต่อสิ่งภายใน เป็นค่าที่ต่อเนื่องกันเป็นอันเดียวกัน ดังนั้น ถ้าค่าของอย่างหนึ่งสูง อีกอย่างหนึ่งก็จะต้องต่ำ แต่ว่า น. คาร์ล ยุง และผู้พัฒนาตัวชี้วัดของไมเออร์ส-บริกส์ มีมุมมองต่างจากนี้และเสนอว่า ทุกคนมีทั้งด้านที่สนใจต่อสิ่งภายนอกและด้านที่สนใจต่อสิ่งภายใน โดยมีด้านหนึ่งมีกำลังกว่า แต่แทนที่จะเพ่งความสนใจไปที่เพียงพฤติกรรมกับคนอื่น ยุงนิยามความสนใจในสิ่งภายในว่า "เป็นแบบทัศนคติ กำหนดได้โดยทิศทางของชีวิต ที่กรองผ่านสิ่งที่อยู่ในใจที่เป็นอัตวิสัย" (คือ สนใจในเรื่องภายในจิตใจ) และความสนใจในภายนอกว่า "เป็นแบบทัศนคติ กำหนดได้โดยการพุ่งความสนใจไปที่วัตถุภายนอก" (คือโลกภายนอก).

ใหม่!!: ความถี่และความสนใจต่อสิ่งภายนอก-ความสนใจต่อสิ่งภายใน · ดูเพิ่มเติม »

ความผิดปกติทางบุคลิกภาพ

วามผิดปกติทางบุคลิกภาพ (personality disorders, ตัวย่อ PD) เป็นหมวดหมู่ของความผิดปกติทางจิตต่าง ๆ ที่มีลักษณะเป็นรูปแบบพฤติกรรม รูปแบบทางประชาน และรูปแบบประสบการณ์ทางใจที่ปรับตัวอย่างไม่เหมาะสม (maladaptive) ที่ยั่งยืน โดยปรากฏในสถานการณ์ต่าง ๆ หลายอย่าง และออกนอกลู่นอกทางอย่างสำคัญจากที่ยอมรับได้ในสังคมและวัฒนธรรมของบุคคลนั้น รูปแบบเหล่านี้จะพัฒนาขึ้นตั้งแต่เบื้องต้นของชีวิต ยืดหยุ่นไม่ได้ และสัมพันธ์กับความทุกข์กับความพิการในระดับสำคัญ แต่ว่านิยามที่จำเพาะอาจจะต่างกันได้แล้วแต่ที่มา เกณฑ์วินิจฉัยความผิดปกติทางบุคลิกภาพอยู่ในคู่มือการวินิจฉัยและสถิติสำหรับความผิดปกติทางจิต (DSM) ที่จัดพิมพ์โดยสมาคมจิตเวชอเมริกัน (American Psychiatric Association ตัวย่อ APA) และในหัวข้อ "ความผิดปกติทางจิตและพฤติกรรม (mental and behavioral disorders)" ในบัญชีจำแนกทางสถิติระหว่างประเทศของโรคและปัญหาสุขภาพที่เกี่ยวข้อง (ตัวย่อ ICD) ที่เผยแพร่โดยองค์การอนามัยโลก DSM-5 รุ่นที่พิมพ์ในปี 2556 กำหนดความผิดปกติทางบุคลิกภาพเช่นเดียวกับความผิดปกติทางจิต (mental disorders) อื่น ๆ แทนที่จะอยู่ใน "axis" ที่ต่างกันตามที่เคยทำมาก่อน ๆ บุคลิกภาพตามนิยามของจิตวิทยา เป็นเซตของลักษณะทางพฤติกรรมและทางจิตที่คงทน ที่ทำให้มนุษย์แต่ละคนต่างกัน ดังนั้น ความผิดปกติทางบุคลิกภาพจึงกำหนดโดยประสบการณ์ (ทางใจ) และพฤติกรรม ที่ต่างจากมาตรฐานและความคาดหวังของสังคม คนผิดปกติเช่นนี้ อาจประสบความยากลำบากทางประชาน (cognition) ความไวอารมณ์ (emotiveness) ความสัมพันธ์ระหว่างบุคคล (interpersonal functioning) และการควบคุมความหุนหันพลันแล่น (impulse control) โดยทั่วไปแล้ว คนไข้จิตเวชร้อยละ 40-60 จะได้รับวินิจฉัยว่ามีความผิดปกติเช่นนี้ จึงเป็นกลุ่มโรคที่วินิจฉัยบ่อยครั้งที่สุดในบรรดาโรคจิตเวช ความผิดปกติทางบุคลิกภาพกำหนดโดยรูปแบบพฤติกรรมที่คงทน บ่อยครั้งสัมพันธ์กับความขัดข้องในชีวิตส่วนตัว ชีวิตทางสังคม หรือทางอาชีพ นอกจากนั้นแล้ว ความผิดปกติเช่นนี้ยืดหยุ่นไม่ได้ และแพร่กระจายไปในสถานการณ์มากมาย ซึ่งส่วนใหญ่อาจจะมาจากเหตุที่ว่า พฤติกรรมเช่นนี้เข้ากับทัศนคติเกี่ยวกับตน (ego-syntonic) ของบุคคลนั้นได้ ดังนั้น บุคคลนั้นจึงพิจารณาว่าเป็นพฤติกรรมที่เหมาะสม แต่เป็นพฤติกรรมที่อาจมีผลเป็นทักษะจัดการปัญหาและความเครียด (coping skill) ที่ปรับตัวได้อย่างไม่เหมาะสม และนำไปสู่ปัญหาส่วนตัวที่สร้างความวิตกกังวล ความทุกข์ และความเศร้าซึมอย่างรุนแรง รูปแบบพฤติกรรมเช่นนี้จะกำหนดได้ตั้งแต่ช่วงวัยรุ่นและต้นวัยผู้ใหญ่ และในบางกรณีที่พิเศษ ในช่วงวัยเด็ก มีประเด็นปัญหาหลายอย่างในการจัดหมวดหมู่ความผิดปกติทางบุคลิกภาพ คือมีนิยามต่าง ๆ หลายแบบ และเพราะว่าทฤษฎีและการวินิจฉัยเกี่ยวกับความผิดปกติจะต้องเกิดภายในความคาดหวังปกติของสังคม นักวิชาการบางท่านจึงคัดค้านความสมเหตุสมผลของทฤษฎีและการวินิจฉัย เพราะว่าเลี่ยงไม่ได้ที่จะต้องอาศัยมูลฐานบางอย่างที่เป็นอัตวิสัย (subjective) คือพวกเขาอ้างว่า ทฤษฎีและการวินิจฉัยมีมูลฐานอยู่ที่พิจารณาญาณทางสังคม หรือทางสังคม-การเมืองและทางเศรษฐกิจ (ดังนั้น จึงอาจจะไม่ใช่ปัญหาทางการแพทย์).

ใหม่!!: ความถี่และความผิดปกติทางบุคลิกภาพ · ดูเพิ่มเติม »

ความถี่มูลฐาน

การสั่นและคลื่นนิ่งในสาย (เช่นในสายเครื่องดนตรี) เป็นความถี่มูลฐาน (บนสุด) และเสียง overtone 6 ความถี่แรก ความถี่มูลฐาน (fundamental frequency) ซึ่งในภาษาอังกฤษอาจเรียกอย่างโดด ๆ ว่า "fundamental" นิยามว่าเป็นความถี่ต่ำสุดของรูปคลื่นแบบเป็นคาบ ในดนตรี ความถี่มูลฐานก็คือเสียงสูงต่ำของโน้ตดนตรีที่ได้ยินโดยเป็นคลื่นรูปไซน์ (partial) ที่ความถี่ต่ำสุดซึ่งได้ยิน ถ้าดูการซ้อนทับของคลื่นรูปไซน์ (เช่น อนุกรมฟูรีเย) ความถี่มูลฐานก็คือคลื่นรูปไซน์ความถี่ต่ำสุดในผลรวม ในบางกรณี ความถี่มูลฐานจะเขียนเป็นเครื่องหมาย f0 (หรือ FF) ซึ่งระบุความถี่ต่ำสุดจาก 0 ในบางกรณี ก็จะเขียนเป็นเครื่องหมาย f1 ซึ่งหมายถึงฮาร์มอนิกแรก (ฮาร์มอนิกที่สองก็จะเป็น f2.

ใหม่!!: ความถี่และความถี่มูลฐาน · ดูเพิ่มเติม »

ความถี่เชิงพื้นที่

ในคณิตศาสตร์ ฟิสิกส์ และวิศวกรรมศาสตร์ ความถี่เชิงพื้นที่ หรือ ความถี่ตามพื้นที่ (spatial frequency) เป็นลักษณะของโครงสร้างอะไรก็ได้ที่เกิดเป็นคาบ ๆ (คือเกิดซ้ำ ๆ) ไปตามพื้นที่หรือตามปริภูมิ เป็นค่าที่วัดโดยส่วนประกอบเชิงรูปไซน์ของโครงสร้าง (กำหนดโดยการแปลงฟูรีเย) ที่เกิดซ้ำ ๆ ต่อระยะทางหน่วยหนึ่ง หน่วยสากลของความถี่ตามพื้นที่ก็คือ รอบ/เมตร ในโปรแกรมประมวลผลภาพ ความถี่ตามพื้นที่มักจะมีหน่วยเป็นรอบ/มิลลิเมตร หรือคู่เส้น/มิลลิเมตร (line pairs per millimeter) ในกลศาสตร์คลื่น ความถี่ตามพื้นที่จะเขียนเป็น \xi หรือบางครั้ง \nu แม้สัญลักษณ์หลังนี้บางครั้งจะใช้หมายถึงความถี่ตามเวลา (temporal frequency) เช่น ในสูตรของพลังค์ ค่าความถี่ตามพื้นที่จะสัมพันธ์กับความยาวคลื่น \lambda โดยสูตร เช่นเดียวกัน เลขคลื่นเชิงมุม (angular wave number) k ซึ่งมีหน่วยเป็น เรเดียน/เมตร จะสัมพันธ์กับความถี่ตามพื้นที่และความยาวคลื่นโดยสูตร.

ใหม่!!: ความถี่และความถี่เชิงพื้นที่ · ดูเพิ่มเติม »

ความถี่เสียงเปียโน

วามถี่เสียงของเปียโน โดยทั่วไปมีเสียงจริง 88 ลิ่มนิ้ว โดยเทียบเสียงตามคีย์ A440 หรือ A4 โดยแสดงความถี่ เป็นหน่วยรอบต่อวินาที หรือเฮิรตซ์ (Hz) ของโน้ตดนตรีแต่ละตัว (นั่นคือ ความถี่ของโน้ตแต่ละเสียงที่ได้จากเปียโนมาตรฐาน) การกระจายความถี่นี้ เรียกกันว่า equal temperament นั่นคือ ระดับเสียงถัดไปแต่ละเสียง ได้จากการคูณเสียงก่อนหน้านี้ ด้วย รากที่ 12 ของ 2 (\sqrt) หรือประมาณ 1.05946309436.

ใหม่!!: ความถี่และความถี่เสียงเปียโน · ดูเพิ่มเติม »

ความเร็วแนวเล็ง

วามเร็วแนวเล็ง บางครั้งก็เรียกว่า ความเร็วเชิงรัศมี หรือ ความเร็วแนวรัศมี (radial velocity) เป็นความเร็วของวัตถุในทิศทางที่อยู่ตรงแนวสายตาของเรา ไม่ว่าจะเป็นการเคลื่อนเข้าหาตัวเราหรือเคลื่อนออกจากตัวเราก็ตาม แสงจากวัตถุที่มีความเร็วแนวเล็งที่แน่นอนสามารถทำให้เกิดปรากฏการณ์ดอปเปลอร์ได้ โดยความถี่ของแสงจะลดลงขณะที่วัตถุเคลื่อนที่ห่างออกไป (เรียกว่า การเคลื่อนไปทางแดง) หรือความถี่จะเพิ่มขึ้นเมื่อวัตถุเคลื่อนใกล้เข้ามา (เรียกว่า การเคลื่อนไปทางน้ำเงิน) การวัดความเร็วแนวเล็งของดาวฤกษ์หรือวัตถุส่องสว่างอื่นที่อยู่ห่างไกลสามารถทำได้โดยการตรวจสอบสเปกตรัมความละเอียดสูงและเปรียบเทียบคลื่นความถี่ที่ได้กับแถบสเปกตรัมที่เราทราบค่าแล้วจากห้องทดลอง ตามปกติ ความเร็วแนวเล็งที่เป็นบวกหมายถึงวัตถุกำลังเคลื่อนห่างออกไป ถ้าความเร็วแนวเล็งเป็นลบ หมายถึงวัตถุกำลังเคลื่อนใกล้เข้ามา ในระบบดาวคู่หลายแห่ง การเคลื่อนที่ของวงโคจรจะทำให้ความเร็วแนวเล็งแปรค่าไปมาได้หลายกิโลเมตรต่อวินาที เมื่อค่าสเปกตรัมของดาวเหล่านี้เปลี่ยนแปลงไปมาจากผลของปรากฏการณ์ดอปเปลอร์ จึงเรียกเหตุการณ์นี้ว่า spectroscopic binaries การศึกษาความเร็วแนวเล็งใช้เพื่อประมาณค่ามวลของดาวฤกษ์และองค์ประกอบของวงโคจรบางตัว เช่นความเยื้องศูนย์กลางของวงโคจรและค่ากึ่งแกนเอก กระบวนการเดียวกันนี้สามารถนำไปใช้ในการตรวจจับดาวเคราะห์รอบดาวฤกษ์ได้ ด้วยหลักการการตรวจจับความเคลื่อนไหวจะบ่งชี้ถึงคาบดาราคติของดาวเคราะห์ และขนาดของการเคลื่อนที่ทำให้สามารถคำนวณค่าต่ำสุดที่เป็นไปได้ของมวลดาวเคราะห์ได้.

ใหม่!!: ความถี่และความเร็วแนวเล็ง · ดูเพิ่มเติม »

ความเหมาะสม

วามเหมาะสม หรือ ค่าความเหมาะสม (Fitness, มักเขียนเป็น w ในสูตรพันธุศาสตร์ประชากร) เป็นแนวคิดหลักอย่างหนึ่งในทฤษฎีวิวัฒนาการ ในสิ่งแวดล้อมหนึ่ง ๆ จะกำหนดโดยลักษณะทางพันธุกรรม (genotype) หรือลักษณะปรากฏ (phenotype) ก็ได้ ในกรณีแม้ทั้งสอง สามารถอธิบายได้โดยสามัญว่า เป็นความสามารถที่จะรอดชีวิตและสืบพันธุ์ได้ และมีค่าเป็น การให้ยีนของตนโดยเฉลี่ย เป็นส่วนของยีนทั้งหมดในประชากร (gene pool) รุ่นต่อไป โดยเป็นสิ่งมีชีวิตที่มีลักษณะทางพันธุกรรมหรือลักษณะปรากฏ เช่นนั้น ๆ กล่าวอีกอย่างคือ ถ้าความแตกต่างของอัลลีลที่พบในยีนหนึ่ง ๆ มีผลต่อความเหมาะสม ความถี่ของอัลลีลนั้นก็จะเปลี่ยนไปตามรุ่น คือ อัลลีลที่เหมาะสมมากกว่าจะมีความถี่สูงกว่า เป็นอัลลีลที่สามัญกว่าในกลุ่มประชากร กระบวนการนี้เรียกว่า การคัดเลือกโดยธรรมชาติ ศัพท์ภาษาอังกฤษว่า "Darwinian fitness" มักจะใช้หมายถึงความเหมาะสมที่ว่านี้ โดยแตกต่างจากคำว่า "physical fitness" ซึ่งหมายถึงความแข็งแรงของร่างกาย ความเหมาะสมของสิ่งมีชีวิตหนึ่ง ๆ จะปรากฏทางลักษณะปรากฏ โดยมีอิทธิพลทั้งจากสิ่งแวดล้อมและจากยีน และความเหมาะสมของลักษณะปรากฏนั้น ๆ จะแตกต่างกันไปขึ้นอยู่กับสิ่งแวดล้อม ดังนั้น สิ่งมีชีวิตแต่ละชีวิตที่มีลักษณะทางพันธุกรรมเหมือนกัน อาจจะมีความเหมาะสมไม่เท่ากัน (เพราะอาจมีสิ่งแวดล้อมที่ไม่เหมือนกัน) และเพราะว่า ค่าความเหมาะสมของลักษณะทางพันธุกรรมนั้น ๆ เป็นค่าเฉลี่ย ดังนั้น ก็จะเป็นค่าสะท้อนความสำเร็จทางการสืบพันธุ์ ของสิ่งมีชีวิตทั้งหมดที่มีลักษณะทางพันธุกรรมนั้น ๆ ในสิ่งแวดล้อมนั้น ๆ ส่วนคำว่า "Inclusive fitness" (ความเหมาะสมโดยรวม) ต่างจากความเหมาะสมโดยบุคคล เพราะรวมเอาความสามารถของอัลลีลในแต่ละบุคคล ที่ส่งเสริมการอยู่รอดและการสืบพันธุ์ของบุคคลอื่น ๆ นอกจากตน ที่มีอัลลีลนั้นเหมือนกัน ให้เหนือกว่าสิ่งมีชีวิตอื่น ๆ ที่มีอัลลีลคนละอย่าง กลไกของความเหมาะสมโดยรวมอย่างหนึ่งก็คือ kin selection (การคัดเลือกโดยญาติ).

ใหม่!!: ความถี่และความเหมาะสม · ดูเพิ่มเติม »

ค่าคงตัวของพลังค์

งตัวของพลังค์ h นั้นได้ชื่อมาจาก มักซ์ พลังค์ ซึ่งเป็นหนึ่งในผู้บุกเบิกทฤษฎีกลศาสตร์ควอนตัม ค่าคงตัวของพลังค์เป็นปริมาณที่เกี่ยวข้องกับขนาดของควอนตา (quanta) และมีค่าเท่ากับ หรือเขียนในหน่วยอิเล็กตรอนโวลต์ได้เท่ากับ ค่าคงตัวของพลังค์มีหน่วยเป็นพลังงานคูณกับเวลา ซึ่งเป็นหน่วยวัดaction นั่นเอง หรืออาจเขียนได้ในหน่วยของโมเมนตัมคูณระยะทางเช่นกัน ปริมาณอีกอย่างซึ่งมีความเกี่ยวข้องกันคือค่าคงตัวของพลังค์แบบลดค่า (reduced Planck constant) หรือบางครั้งเรียกว่าค่าคงตัวของดิแรค เมื่อ π คือค่าคงที่พาย ชื่อเรียกปริมาณนี้อ่านออกเสียงว่า เอช-บาร์ ตัวเลขที่ใช้ในที่นี้เป็นตัวเลขที่คณะกรรมการข้อมูลวิทยาศาสตร์และเทคโนโลยี (CODATA) แนะนำให้ใช้ตั้งแต่ปี..

ใหม่!!: ความถี่และค่าคงตัวของพลังค์ · ดูเพิ่มเติม »

คโลนะเซแพม

ลนะเซแพม (Clonazepam) เป็นยากันชักและรักษาโรคตื่นตระหนก และความผิดปกติของการเคลื่อนไหวที่เรียกว่า อาการนั่งไม่ติดที่ (akathisia) เป็นยากลุ่มเบ็นโซไดอาเซพีน --> ใช้โดยการรับประทาน มีผลภายในหนึ่ง ชม.

ใหม่!!: ความถี่และคโลนะเซแพม · ดูเพิ่มเติม »

ตัวรับความรู้สึกที่หนัง

ตัวรับความรู้สึกที่หนัง (cutaneous receptor) เป็นปลายประสาทรับความรู้สึกที่พบในหนังแท้หรือหนังกำพร้า โดยเป็นส่วนของระบบรับความรู้สึกทางกาย มีประเภทต่าง ๆ รวมทั้งตัวรับแรงกลที่หนัง โนซิเซ็ปเตอร์ (ความเจ็บปวด) และตัวรับอุณหภูม.

ใหม่!!: ความถี่และตัวรับความรู้สึกที่หนัง · ดูเพิ่มเติม »

ตัวรับแรงกล

ตัวรับแรงกล (mechanoreceptor) เป็นปลายประสาทรับความรู้สึกที่ตอบสนองต่อสิ่งเร้าที่เป็นแรงกล เช่น สัมผัสหรือเสียง มีตัวรับแรงกลประเภทต่าง ๆ ในระบบประสาทมากมายโดยต่อไปนี้เป็นเพียงตัวอย่างเท่านั้น ในระบบรับความรู้สึกทางกาย ตัวรับแรงกลทำให้รู้สัมผัสและอากัปกิริยาได้ (โดยมี Pacinian corpuscle เป็นตัวไวแรงกลมากที่สุดในระบบ) ในการรับรู้สัมผัส ผิวหนังที่ไม่มีขน/ผม (glabrous skin) ที่มือและเท้า ปกติจะมีตัวรับแรงกล 4 อย่างหลัก ๆ คือ Pacinian corpuscle, Meissner's corpuscle, Merkel nerve ending, และ Ruffini ending และผิวที่มีขนก็มีตัวรับแรงกล 3 อย่างเหมือนกันยกเว้น Meissner's corpuscle บวกเพิ่มกับตัวรับแรงกลอื่น ๆ รวมทั้งตัวรับความรู้สึกที่ปุ่มรากผม ในการรับรู้อากัปกิริยา ตัวรับแรงกลช่วยให้รู้ถึงแรงหดเกร็งของกล้ามเนื้อและตำแหน่งของข้อต่อ มีประเภทรวมทั้ง muscle spindle 2 ชนิด, Golgi tendon organ, และ Joint capsule ในบรรดาตัวรับแรงกลทั้งหมด เซลล์ขนในคอเคลียของระบบการได้ยินไวที่สุด โดยมีหน้าที่ถ่ายโอนคลื่นเสียงในอากาศเป็นสัญญาณประสาทเพื่อส่งไปยังสมอง แม้แต่เอ็นปริทันต์ (periodontal ligament) ก็มีตัวรับแรงกลด้วย ซึ่งช่วยให้กรามผ่อนแรงเมื่อกัดถูกวัตถุที่แข็ง ๆ งานวิจัยเรื่องตัวรับแรงกลในมนุษย์ได้เริ่มขึ้นในปลายคริสต์ทศวรรษ 1970 ที่นักวิชาการคู่หนึ่ง (Vallbo และ Johansson) วัดปฏิกิริยาของตัวรับแรงกลที่ผิวหนังกับอาสาสมัคร ตัวรับแรงกลที่ผิวหนังรวมทั้ง Pacinian corpuscle (ป้ายที่ตรงกลางล่าง) และ Meissner’s corpuscle (ป้ายที่บนขวา) ซึ่งช่วยให้รับรู้สัมผัสที่ผิวหนัง.

ใหม่!!: ความถี่และตัวรับแรงกล · ดูเพิ่มเติม »

ซันเอาท์เทจ

sun outage เป็นปรากฏการที่เกิดขึ้นโดยธรรมชาติ เมื่อโลก ดาวเทียม และดวงอาทิตย์ โคจรมาอยู่ในแนวเส้นตรงเดียวกัน ทำให้จานสายอากาศของสถานีภาคพื้นดิน รับสัญญาณจากดวงอาทิตย์(ที่เป็นแหล่งกำเหนิดคลื่นแม่เหล็กไฟฟ้าที่มีกำลังงานขนาดมหาศาล) ซึ่งจะผลิตสัญญาณทุกย่านความถี่ เกิดขึ้นเป็นสัญญาณรบกวน ปะปนเข้ามากับสัญญาณสื่อสารข้อมูล ที่สถานีภาคพื้นดินนั้นๆรับจากดาวเทียม ทำให้สถานีสื่อสารภาคพื้นดิน ไม่สามารถติดต่อสื่อสารได้อย่างถูกต้อง ซึ่งเหตุการณ์ sun outage จะเกิดขึ้นปีละ 2 ครั้ง แต่ละครั้งจะใช้เวลานาน 5-10 วัน วันละประมาณ 15 นาที และการเกิดปรากฏการ sun outage นี้จะเกิดกับสถานีดาวเทียมที่ติดตั้งในพื้นที่ต่างๆ ไม่พร้อมกันขึ้นอยู่กับตำแหน่งของสถานีภาคพื้นดินบนพื้นโลก sun outage จะเกิดประมาณเดือนกันยายน และตุลาคมของทุกปี บางทีอาจเกิดเดือนอื่นๆก็ได้ ซึ่งสามารถทำการคำนวณเพื่อคาดการณ์วัน และเวลาที่จะเกิดล่วงหน้าได้อย่างแม่นยำ การคำนวณนี้เป็นหน้าที่ของผู้ให้บริการ เช่นดาวเทียม เมื่อเกิดเหตุการณ์นี้ จะทำให้เครื่องรับดาวเทียม ชิปไปชิปมา ไฟสัญญาณ ซิ้งค์ จะกะพริบๆ เสียงจะดังขาดๆหายๆ แล้วเสียงก็จะหายไป ปล่อยไว้ประมาณ 15 นาที เมื่อมุมของโลก เคลื่อนที่ผ่านแนวเส้นตรงกับดวงอาทิตย์ ก็จะรับสัญญาณได้ตามปกติ หมวดหมู่:ปรากฏการณ์ธรรมชาติ หมวดหมู่:การแพร่สัญญาณ.

ใหม่!!: ความถี่และซันเอาท์เทจ · ดูเพิ่มเติม »

ปฏิสสาร

ปฏิสสาร: ภาพถ่ายจากห้องถ่ายภาพเมฆของโพสิตรอนที่สังเกตได้เป็นครั้งแรก ในวิชาฟิสิกส์อนุภาค ปฏิสสาร (Antimatter) คือ ส่วนประกอบของแนวคิดเกี่ยวกับปฏิยานุภาคของสสาร โดยที่ปฏิสสารประกอบด้วยปฏิยานุภาคในทำนองเดียวกับที่อนุภาคประกอบขึ้นเป็นสสารปรกติ ตัวอย่างเช่น แอนติอิเล็กตรอน (ปฏิยานุภาคของอิเล็กตรอน หรือ e+) 1 ตัว และแอนติโปรตอน (โปรตอนที่มีขั้วเป็นลบ) 1 ตัว สามารถรวมตัวกันเกิดเป็นอะตอมแอนติไฮโดรเจนได้ ในทำนองเดียวกันกับที่อิเล็กตรอน 1 ตัวกับโปรตอน 1 ตัวสามารถรวมกันเป็นอะตอมไฮโดรเจนที่เป็น "สสารปกติ" หากนำสสารและปฏิสสารมารวมกัน จะเกิดการทำลายล้างกันในทำนองเดียวกับการรวมอนุภาคและปฏิยานุภาค ซึ่งจะได้โฟตอนพลังงานสูง (หรือรังสีแกมมา) หรือคู่อนุภาค-ปฏิยานุภาคอื่น เมื่อปฏิยานุภาคเจอกับอนุภาคจะเกิดการประลัย ผลลัพธ์ที่ได้จากการพบกันของสสารและปฏิสสารคือการถูกปลดปล่อยของพลังงานซึ่งเป็นสัดส่วนกับมวลตามที่ปรากฏในสมการความสมมูลระหว่างมวล-พลังงาน, E.

ใหม่!!: ความถี่และปฏิสสาร · ดูเพิ่มเติม »

ประสบการณ์ผิดธรรมดา

ประสบการณ์ผิดธรรมดา (anomalous experiences) หรือที่เรียก ประสาทหลอนไม่ร้าย เกิดขึ้นได้ในบุคคลที่มีสุขภาพกายและใจดี แม้ไม่มีปัจจัยภายนอกชั่วคราวอย่างอื่น ๆ เช่นความล้า การใช้สารออกฤทธิ์ต่อจิตประสาท หรือภาวะขาดความรู้สึกจากประสาทสัมผัส ปัจจุบันเป็นที่ยอมรับกว้างขวางแล้วว่า ประสบการณ์ประสาทหลอนไม่ได้เกิดเฉพาะในคนไข้โรคจิตหรือบุคคลปกติที่มีภาวะผิดปกติเท่านั้น แต่ยังเกิดขึ้นเองในคนปกติในอัตราส่วนที่สำคัญ ทั้ง ๆ ที่มีสุขภาพที่ดีและไม่ได้มีภาวะเครียดหรือความผิดปกติอย่างอื่น ๆ มีการเพิ่มพูนหลักฐานของประสบการณ์แบบนี้ มามากว่าหนึ่งศตวรรษแล้ว การศึกษาเรื่องประสาทหลอนที่ไม่มีผลร้ายเริ่มขึ้นตั้งแต่ปี..

ใหม่!!: ความถี่และประสบการณ์ผิดธรรมดา · ดูเพิ่มเติม »

ประสาทสัมผัส

ประสาทสัมผัส (Sense)"ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑" ให้ความหมายของ sense ว่า ความรู้สึก, การรับรู้, การกำหนดรู้, ประสาทสัมผัส เป็นสมรรถภาพในสรีระของสิ่งมีชีวิตที่ให้ข้อมูลเพื่อให้เกิดการรับรู้ (perception) มีการศึกษาประเด็นเกี่ยวกับการทำงาน การจำแนกประเภท และทฤษฎีของประสาทสัมผัส ในวิชาหลายสาขา โดยเฉพาะในวิทยาศาสตร์ประสาท จิตวิทยาปริชาน (หรือประชานศาสตร์) และปรัชญาแห่งการรับรู้ (philosophy of perception) ระบบประสาทของสัตว์นั้นมีระบบรับความรู้สึกหรืออวัยวะรับความรู้สึก สำหรับความรู้สึกแต่ละอย่าง มนุษย์เองก็มีประสาทสัมผัสหลายอย่าง การเห็น การได้ยิน การลิ้มรส การได้กลิ่น การถูกต้องสัมผัส เป็นประสาทสัมผัสห้าทางที่รู้จักกันมาตั้งแต่โบราณ แต่ว่า ความสามารถในการตรวจจับตัวกระตุ้นอื่น ๆ นอกเหนือจากนั้นก็ยังมีอยู่ รวมทั้ง อุณหภูมิ ความรู้สึกเกี่ยวกับเคลื่อนไหว (proprioception) ความเจ็บปวด (nociception) ความรู้สึกเกี่ยวกับการทรงตัว และความรู้สึกเกี่ยวกับตัวกระตุ้นภายในต่าง ๆ (เช่นมีเซลล์รับความรู้สึกเชิงเคมี คือ chemoreceptor ที่ตรวจจับระดับความเข้มข้นของเกลือและคาร์บอนไดออกไซด์ ที่อยู่ในเลือด) และความสามารถต่าง ๆ เหล่านี้สามารถเรียกว่าเป็นประสาทสัมผัสโดยต่างหากได้เพียงไม่กี่อย่าง เพราะว่า ประเด็นว่า อะไรเรียกว่า ประสาทสัมผัส (sense) ยังเป็นที่ถกเถียงกันอยู่ ทำให้ยากที่จะนิยามความหมายของคำว่า ประสาทสัมผัส อย่างแม่นยำ สัตว์ต่าง ๆ มีตัวรับความรู้สึกเพื่อที่จะสัมผัสโลกรอบ ๆ ตัว มีระดับความสามารถที่ต่าง ๆ กันไปแล้วแต่สปีชีส์ เมื่อเทียบกันแล้ว มนุษย์มีประสาทสัมผัสทางจมูกที่ไม่ดี และสัตว์เหล่าอื่นก็อาจจะไม่มีประสาทสัมผัส 5 ทางที่กล่าวถึงไปแล้วอย่างใดอย่างหนึ่ง สัตว์บางอย่างอาจจะรับข้อมูลเกี่ยวกับตัวกระตุ้นและแปลผลข้อมูลเหล่านั้นต่างไปจากมนุษย์ และสัตว์บางชนิดก็สามารถสัมผัสโลกโดยวิธีที่มนุษย์ไม่สามารถ เช่นมีสัตว์บางชนิดสามารถสัมผัสสนามไฟฟ้าและสนามแม่เหล็ก สามารถสัมผัสแรงดันน้ำและกระแสน้ำ.

ใหม่!!: ความถี่และประสาทสัมผัส · ดูเพิ่มเติม »

ปรากฏการณ์ดอปเพลอร์

แหล่งกำเนิดคลื่นกำลังเคลื่อนที่ไปทางซ้าย ความถี่ของคลื่นทางด้านซ้ายจึงสูงกว่าทางด้านขวา ปรากฏการณ์ดอปเพลอร์ (Doppler Effect) หรือบางครั้งเรียกว่า การเคลื่อนดอปเพลอร์ (Doppler shift) เป็นปรากฏการณ์ทางวิทยาศาสตร์อย่างหนึ่งที่ตั้งชื่อตาม คริสเตียน ดอปเพลอร์ เกี่ยวกับการเปลี่ยนแปลงความถี่ของคลื่นและความยาวคลื่นในมุมมองของผู้สังเกตเมื่อมีการเคลื่อนที่ที่สัมพันธ์กับแหล่งกำเนิดคลื่นนั้น พบเห็นได้ทั่วไปในชีวิตประจำวันเช่น เมื่อมีรถพยาบาลส่งสัญญาณไซเรนเคลื่อนเข้าใกล้ ผ่านตัวเรา และวิ่งห่างออกไป คลื่นเสียงที่เราได้ยินจะมีความถี่สูงขึ้น (กว่าคลื่นที่ส่งออกมาตามปกติ) ขณะที่รถเคลื่อนเข้ามาหา คลื่นเสียงมีลักษณะปกติขณะที่รถผ่านตัว และจะมีความถี่ลดลงเมื่อรถวิ่งห่างออกไป คลื่นที่มีการแพร่โดยต้องอาศัยตัวกลาง เช่นคลื่นเสียง ความเร็วของผู้สังเกตกับความเร็วของแหล่งกำเนิดคลื่นจะมีความสัมพันธ์กับตัวกลางที่คลื่นนั้นแพร่ผ่าน ปรากฏการณ์ดอปเพลอร์โดยรวมจะเป็นผลจากทั้งการเคลื่อนที่ของแหล่งกำเนิด การเคลื่อนที่ของผู้สังเกต และการเคลื่อนที่ของตัวกลางด้วย ปรากฏการณ์ในแต่ละส่วนสามารถวิเคราะห์ได้โดยแยกจากกัน ส่วนคลื่นที่ไม่จำเป็นต้องอาศัยตัวกลางเช่นคลื่นแสงหรือแรงโน้มถ่วงในทฤษฎีสัมพัทธภาพพิเศษ จะสนใจเฉพาะความเร็วสัมพันธ์ที่แตกต่างกันระหว่างผู้สังเกตกับแหล่งกำเนิดเท่านั้น การเปลี่ยนความถี่ของเสียงที่ผู้ฟังได้ยินจะขึ้นอยู่กับความเร็วของแหล่งกำเนิด การเปลี่ยนความถี่ของเสียงที่ผู้ฟังได้ยินจะขึ้นอยู่กับความเร็วของแหล่งกำเนิด Vs (s ย่อมาจากSource) และความเร็วของผู้ฟังVL (L ย่อมาจาก Listener) โดยทั่วไปทั้งผู้ฟังและแหล่งกำเนิดอาจจะเคลื่อนที่ได้ ดังนั้นในการวิเคราะห์จึงไม่เหมาะสมที่จะใช้ผู้ฟังหรือแหล่งกำเนิดเป็นกรอบอ้างอิง ในที่นี่จึงใช้ตัวกลางที่เสียงเคลื่อนที่เป็นการอ้างอิง ซึ่งจะทำให้อัตราเร็วเสียงคงตัวเสมอ ไม่ขึ้นอยู่กับความเร็วของแหล่งกำเนิดหรือผู้ฟัง ในส่วนของของความเร็ซของแหล่งกำเนิด VS และความเร็วของผู้ฟัง VL จะวัดเทียบตัวกลางของคลื่นเสียงด้วย และเนื่องจากการศึกษาปรากฎการณ์คอปเพลอร์ในที่นี้เป็นเป็นเพียงการศึกษาในเบื้องต้น ดังนั้นจะพิจารณาเฉพาะกรณีที่ความเร็วของแหล่งกำเนิดและผู้ฟังอยู่บนเส้นตรงที่เชื่อมระหว่างแหล่งกำเนิดกับผู้ฟังเท่านั้น (การเคลื่อนที่ 1 มิติ).

ใหม่!!: ความถี่และปรากฏการณ์ดอปเพลอร์ · ดูเพิ่มเติม »

นิว

นิว (nu) หรือ นี (νι, ตัวใหญ่ Ν, ตัวเล็ก ν) เป็นอักษรกรีกตัวที่ 13 และมีค่าของเลขกรีกเท่ากับ 50 ν ในสมการ -ฟิสิกส์ แทนความถี่คลื่น หมวดหมู่:อักษรกรีก.

ใหม่!!: ความถี่และนิว · ดูเพิ่มเติม »

แบบสิ่งเร้า

แบบสิ่งเร้า หรือ แบบความรู้สึก (Stimulus modality, sensory modality) เป็นลักษณะอย่างหนึ่งของสิ่งเร้า หรือเป็นสิ่งที่เรารับรู้เนื่องจากสิ่งเร้า ยกตัวอย่างเช่น เราจะรู้สึกร้อนหรือเย็นหลังจากมีการเร้าตัวรับอุณหภูมิของระบบรับความรู้สึกทางกาย เช่น ด้วยวัตถุที่ร้อน แบบสิ่งเร้าบางอย่างรวมทั้งแสง เสียง อุณหภูมิ รสชาติ แรงดัน กลิ่น และสัมผัส ประเภทและตำแหน่งของเซลล์ประสาทรับความรู้สึกที่ทำงานเนื่องจากสิ่งเร้า จะเป็นตัวกำหนดการเข้ารหัสความรู้สึก แบบความรู้สึกต่าง ๆ อาจทำงานร่วมกันเพื่อเพิ่มความชัดเจนของสิ่งเร้าเมื่อจำเป็น.

ใหม่!!: ความถี่และแบบสิ่งเร้า · ดูเพิ่มเติม »

แสง

ปริซึมสามเหลี่ยมกระจายลำแสงขาว ลำที่ความยาวคลื่นมากกว่า (สีแดง) กับลำที่ความยาวคลื่นน้อยกว่า (สีม่วง) แยกจากกัน แสง (light) เป็นการแผ่รังสีแม่เหล็กไฟฟ้าในบางส่วนของสเปกตรัมแม่เหล็กไฟฟ้า คำนี้ปกติหมายถึง แสงที่มองเห็นได้ ซึ่งตามนุษย์มองเห็นได้และทำให้เกิดสัมผัสการรับรู้ภาพ แสงที่มองเห็นได้ปกตินิยามว่ามีความยาวคลื่นอยู่ในช่วง 400–700 นาโนเมตร ระหวางอินฟราเรด (ที่มีความยาวคลื่นยาวกว่าและมีคลื่นแคบกว่านี้) และอัลตราไวโอเล็ต (ที่มีความยาวคลื่นน้อยกว่าและมีคลื่นกว้างกว่านี้) ความยาวคลื่นนี้หมายถึงความถี่ช่วงประมาณ 430–750 เทระเฮิรตซ์ ดวงอาทิตย์เป็นแหล่งกำเนิดแสงหลักบนโลก แสงอาทิตย์ให้พลังงานซึ่งพืชสีเขียวใช้ผลิตน้ำตาลเป็นส่วนใหญ่ในรูปของแป้ง ซึ่งปลดปล่อยพลังงานแก่สิ่งมชีวิตที่ย่อยมัน กระบวนการสังเคราะห์ด้วยแสงนี้ให้พลังงานแทบทั้งหมดที่สิ่งมีชีวิตใช้ ในอดีต แหล่งสำคัญของแสงอีกแหล่งหนึ่งสำหรับมนุษย์คือไฟ ตั้งแต่แคมป์ไฟโบราณจนถึงตะเกียงเคโรซีนสมัยใหม่ ด้วยการพัฒนาหลอดไฟฟ้าและระบบพลังงาน การให้แสงสว่างด้วยไฟฟ้าได้แทนแสงไฟ สัตว์บางชนิดผลิตแสงไฟของมันเอง เป็นกระบวนการที่เรียก การเรืองแสงทางชีวภาพ คุณสมบัติปฐมภูมิของแสงที่มองเห็นได้ คือ ความเข้ม ทิศทางการแผ่ สเปกตรัมความถี่หรือความยาวคลื่น และโพลาไรเซชัน (polarization) ส่วนความเร็วในสุญญากาศของแสง 299,792,458 เมตรต่อวินาที เป็นค่าคงตัวมูลฐานหนึ่งของธรรมชาติ ในวิชาฟิสิกส์ บางครั้งคำว่า แสง หมายถึงการแผ่รังสีแม่เหล็กไฟฟ้าในทุกความยาวคลื่น ไม่ว่ามองเห็นได้หรือไม่ ในความหมายนี้ รังสีแกมมา รังสีเอ็กซ์ ไมโครเวฟและคลื่นวิทยุก็เป็นแสงด้วย เช่นเดียวกับแสงทุกชนิด แสงที่มองเห็นได้มีการเแผ่และดูดซํบในโฟตอนและแสดงคุณสมบัติของทั้งคลื่นและอนุภาค คุณสมบัตินี้เรียก ทวิภาคของคลื่น–อนุภาค การศึกษาแสง ที่เรียก ทัศนศาสตร์ เป็นขอบเขตการวิจัยที่สำคัญในวิชาฟิสิกส์สมัยใหม่) ^~^.

ใหม่!!: ความถี่และแสง · ดูเพิ่มเติม »

แอมพลิจูด

RMS amplitude (\scriptstyle\hat U/\sqrt2),4.

ใหม่!!: ความถี่และแอมพลิจูด · ดูเพิ่มเติม »

แผนที่ภูมิลักษณ์

"แผนที่ภูมิลักษณ์""ศัพท์บัญญัติอังกฤษ-ไทย, ไทย-อังกฤษ ฉบับราชบัณฑิตยสถาน (คอมพิวเตอร์) รุ่น ๑.๑", ให้ความหมายของ topography ว่า "ภูมิลักษณ์" หรือ "ลักษณะภูมิประเทศ" (topographic map) หรือ "แผนที่ topographic" ของระบบประสาท เป็นการส่งข้อมูลอย่างเป็นระเบียบของพื้นผิวในร่างกายที่เกิดความรู้สึก เช่นที่เรตินาหรือผิวหนัง หรือในระบบปฏิบัติงานเช่นระบบกล้ามเนื้อ ไปยังโครงสร้างต่าง ๆ ของสมองในระบบประสาทกลาง แผนที่ภูมิลักษณ์มีอยู่ในระบบรับความรู้สึกทั้งหมด และในระบบสั่งการ (motor system) ต่าง ๆ เป็นจำนวนมาก.

ใหม่!!: ความถี่และแผนที่ภูมิลักษณ์ · ดูเพิ่มเติม »

โพรโทบอร์ด

ภาพเด็กกำลังเสียบไอซีลงบนโพรโทบอร์ด โพรโทบอร์ด (protoboard) หรือ เบรดบอร์ด (breadboard) เป็นบอร์ดที่ใช้ทดลองวงจรอิเล็กทรอนิกส์ ลักษณะเป็นแผ่นพลาสติกหนาสีขาว บนแผ่นมีรูเรียงกันจำนวนมาก ภายในรูมีตัวนำไฟฟ้าซึ่งเชื่อมต่อกันในรูปแบบที่มีการกำหนดไว้ เวลาทดลองก็เสียบขาของอุปกรณ์อิเล็กทรอนิกส์ลงไปให้ตัวนำภายในเชื่อมวงจรถึงกัน และอาจใช้สายไฟเสียบลงรูเพื่อเชื่อมวงจรไฟฟ้าได้เช่นกัน ข้อดีของโพรโทบอร์ดคือ ไม่ต้องออกแบบแผงวงจรและไม่ต้องบัดกรี แต่มีข้อเสียคือใช้ทดลองวงจรที่ทำงานที่ความถี่สูง ๆ ไม่ได้เนื่องมีปัญหาเรื่องสัญญาณรบกวนในวงจร หมวดหมู่:การออกแบบอิเล็กทรอนิกส์ หมวดหมู่:เครื่องมือทดสอบอิเล็กทรอนิกส์ หมวดหมู่:เครื่องมือทำงานอิเล็กทรอนิกส์.

ใหม่!!: ความถี่และโพรโทบอร์ด · ดูเพิ่มเติม »

โรคซึมเศร้า

รคซึมเศร้า (major depressive disorder ตัวย่อ MDD) เป็นความผิดปกติทางจิตซึ่งทำให้ผู้ป่วยเกิดอารมณ์ซึมเศร้าอย่างน้อย 2 สัปดาห์ในแทบทุกสถานการณ์ มักเกิดร่วมกับการขาดความภูมิใจแห่งตน การเสียความสนใจในกิจกรรมที่ปกติทำให้เพลิดเพลินใจ อาการไร้เรี่ยวแรง และอาการปวดซึ่งไม่มีสาเหตุชัดเจน ผู้ป่วยอาจมีอาการหลงผิดหรือมีอาการประสาทหลอน ผู้ป่วยบางรายมีช่วงเวลาที่มีอารมณ์ซึมเศร้าห่างกันเป็นปี ๆ ส่วนบางรายอาจมีอาการตลอดเวลา โรคซึมเศร้าสามารถส่งผลกระทบในแง่ลบให้แก่ผู้ป่วยในหลาย ๆ เรื่อง เช่น ชีวิตส่วนตัว ชีวิตในที่ทำงานหรือโรงเรียน ตลอดจนการหลับ อุปนิสัยการกิน และสุขภาพโดยทั่วไป ผู้ป่วยโรคซึมเศร้าผู้ใหญ่ประมาณ 2–7% เสียชีวิตจากการฆ่าตัวตาย และประมาณ 60% ของผู้ฆ่าตัวตายกลุ่มนี้มีโรคซึมเศร้าร่วมกับความผิดปกติทางอารมณ์ชนิดอื่น คำว่า ความซึมเศร้า สามารถใช้ได้หลายทาง คือ มักใช้เพื่อหมายถึงกลุ่มอาการนี้ แต่อาจหมายถึงความผิดปกติทางจิตอื่นหรือหมายถึงเพียงภาวะซึมเศร้าก็ได้ โรคซึมเศร้าเป็นภาวะทำให้พิการ (disabling) ซึ่งมีผลเสียต่อครอบครัว งานหรือชีวิตโรงเรียน นิสัยการหลับและกิน และสุขภาพโดยรวมของบุคคล ในสหรัฐอเมริกา ราว 3.4% ของผู้ป่วยโรคซึมเศร้าฆ่าตัวตาย และมากถึง 60% ของผู้ที่ฆ่าตัวตายนั้นมีภาวะซึมเศร้าหรือความผิดปกติทางอารมณ์อย่างอื่น ในประเทศไทย โรคซึมเศร้าเป็นความผิดปกติทางจิตที่พบมากที่สุด (3.7% ที่เข้าถึงบริการ) เป็นโรคที่สร้างภาระโรค (DALY) สูงสุด 10 อันดับแรกโดยเป็นอันดับ 1 ในหญิง และอันดับ 4 ในชาย การวินิจฉัยโรคซึมเศร้าอาศัยประสบการณ์ที่รายงานของบุคคลและการทดสอบสภาพจิต ไม่มีการทดสอบทางห้องปฏิบัติการสำหรับโรคซึมเศร้า ทว่า แพทย์อาจส่งตรวจเพื่อแยกภาวะทางกายซึ่งสามารถก่อให้เกิดอาการคล้ายกันออก ควรแยกโรคซึมเศร้าจากความเศร้าซึ่งเป็นธรรมดาของชีวิตและไม่รุนแรงเท่า มีการตั้งชื่อ อธิบาย และจัดกลุ่มอาการซึมเศร้าว่าเป็นความผิดปกติทางอารมณ์ (mood disorder) ในคู่มือการวินิจฉัยและสถิติสำหรับความผิดปกติทางจิตปี 2523 ของสมาคมจิตแพทย์อเมริกัน คณะทำงานบริการป้องกันสหรัฐ (USPSTF) แนะนำให้คัดกรองโรคซึมเศร้าในบุคคลอายุมากกว่า 12 ปี แต่บทปฏิทัศน์คอเครนก่อนหน้านี้ไม่พบหลักฐานเพียงพอสำหรับการคัดกรองโรค โดยทั่วไป โรคซึมเศร้ารักษาได้ด้วยจิตบำบัดและยาแก้ซึมเศร้า ดูเหมือนยาจะมีประสิทธิภาพ แต่ฤทธิ์อาจสำคัญเฉพาะในผู้ที่ซึมเศร้ารุนแรงมาก ๆ เท่านั้น ไม่ชัดเจนว่ายาส่งผลต่อความเสี่ยงการฆ่าตัวตายหรือไม่ ชนิดของจิตบำบัดที่ใช้มีการบำบัดทางความคิดและพฤติกรรม (cognitive behavioral therapy) และการบำบัดระหว่างบุคคล หากมาตรการอื่นไม่เป็นผล อาจทดลองให้การรักษาทางจิตเวชด้วยไฟฟ้า (ECT) อาจจำเป็นต้องให้ผู้ป่วยที่มีควมเสี่ยงทำร้ายตนเองเข้าโรงพยาบาลแม้บางทีอาจขัดต่อความประสงค์ของบุคคล ความเข้าใจถึงธรรมชาติและสาเหตุของความซึมเศร้าได้พัฒนาขึ้นเรื่อย ๆ แม้ว่าจะยังไม่สมบูรณ์และยังมีประเด็นมากมายที่ยังต้องวิจัย เหตุที่เสนอรวมทั้งเป็นปัญหาทางจิต ทางจิต-สังคม ทางกรรมพันธุ์ ทางวิวัฒนาการ และปัจจัยอื่น ๆ ทางชีวภาพ การใช้สารเสพติดเป็นเวลานานอาจเป็นเหตุหรือทำอาการเศร้าซึมให้แย่ลง การบำบัดทางจิตอาศัยทฤษฎีต่าง ๆ เกี่ยวกับบุคลิกภาพ การสื่อสารระหว่างบุคคล และการเรียนรู้ ทฤษฎีทางชีววิทยามักจะพุ่งความสนใจไปที่สารสื่อประสาทแบบโมโนอะมีน คือ เซโรโทนิน นอร์เอพิเนฟริน และโดพามีน ซึ่งมีอยู่ตามธรรมชาติในสมองและช่วยการสื่อสารระหว่างเซลล์ประสาท.

ใหม่!!: ความถี่และโรคซึมเศร้า · ดูเพิ่มเติม »

โลก (ดาวเคราะห์)

ลก (Earth) เป็นดาวเคราะห์ลำดับที่สามจากดวงอาทิตย์ และเป็นวัตถุทางดาราศาสตร์เพียงหนึ่งเดียวที่ทราบว่ามีสิ่งมีชีวิต จากการวัดอายุด้วยกัมมันตรังสีและแหล่งหลักฐานอื่นได้ความว่าโลกกำเนิดเมื่อประมาณ 4,500 ล้านปีก่อน โลกมีอันตรกิริยะเชิงโน้มถ่วงกับวัตถุอื่นในอวกาศโดยเฉพาะดวงอาทิตย์และดวงจันทร์ ซึ่งเป็นดาวบริวารถาวรหนึ่งเดียวของโลก โลกโคจรรอบดวงอาทิตย์ใช้เวลา 365.26 วัน เรียกว่า ปี ซึ่งระหว่างนั้นโลกโคจรรอบแกนตัวเองประมาณ 366.26 รอบ แกนหมุนของโลกเอียงทำให้เกิดฤดูกาลต่าง ๆ บนผิวโลก อันตรกิริยาความโน้มถ่วงระหว่างโลกกับดวงจันทร์ก่อให้เกิดน้ำขึ้นลงมหาสมุทร ทำให้การหมุนบนแกนของโลกมีเสถียรภาพ และค่อย ๆ ชะลอการหมุนของโลก โลกเป็นดาวเคราะห์ที่มีความหนาแน่นสูงสุดในระบบสุริยะและใหญ่สุดในดาวเคราะห์คล้ายโลก 4 ดวง ธรณีภาคของโลกแบ่งออกได้เป็นหลาย ๆ ส่วน เรียกว่าแผ่นธรณีภาค ซึ่งย้ายที่ตัดผ่านพื้นผิวตลอดเวลาหลายล้านปี ร้อยละ 71 ของพื้นผิวโลกปกคลุมด้วยน้ำ ซึ่งส่วนใหญ่เป็นมหาสมุทร อีกร้อยละ 29 ที่เหลือเป็นแผ่นดินประกอบด้วยทวีปและเกาะซึ่งมีะเลสาบ แม่น้ำและแลห่งน้ำอื่นจำนวนมากกอปรเป็นอุทกภาค บริเวณขั้วโลกทั้งสองปกคลุมด้วยน้ำแข็งเป็นส่วนใหญ่ ได้แก่แผ่นน้ำแข็งแอนตาร์กติก และน้ำแข็งทะเลของแพน้ำแข็งขั้วโลก บริเวณภายในของโลกยังคงมีความเคลื่อนไหวโดยมีแก่นชั้นในซึ่งเป็นเหล็กในสถานะของแข็ง มีแก่นเหลวชั้นนอกซึ่งกำเนิดสนามแม่เหล็ก และชั้นแมนเทิลพาความร้อนที่ขับเคลื่อนการแปรสัณฐานแผ่นธรณีภาค ภายในพันล้านปีแรก สิ่งมีชีวิตปรากฏขึ้นในมหาสมุทรและเริ่มส่งผลกระทบต่อชั้นบรรยากาศและผิวดาว เกื้อหนุนให้เกิดการแพร่ขยายของสิ่งมีชีวิตที่ใช้ออกซิเจนเช่นเดียวกับสิ่งมีชีวิตที่ไม่ใช้ออกซิเจน หลักฐานธรณีวิทยาบางส่วนชี้ว่าชีวิตอาจกำเนิดขึ้นเร็วสุด 4.1 พันล้านปีก่อน นับแต่นั้นตำแหน่งของโลกในระบบสุริยะ คุณสมบัติทางกายภาพของโลก และประวัติศาสตร์ธรณีวิทยาของโลกประกอบกันทำให้สิ่งมีชีวิตวิวัฒนาการและแพร่พันธุ์ได้ Early edition, published online before print.

ใหม่!!: ความถี่และโลก (ดาวเคราะห์) · ดูเพิ่มเติม »

โลมามหาสมุทร

รีบหลังของโลมามหาสมุทร โลมามหาสมุทร หรือ โลมาทะเล (Oceanic dolphins, Marine dolphins) เป็นวงศ์ของสัตว์เลี้ยงลูกด้วยนมในอันดับวาฬและโลมา (Cetacea) ใช้ชื่อวงศ์ว่า Delphinidae โลมามหาสมุทร จัดเป็นวาฬมีฟัน (Odontoceti) เป็นโลมาวงศ์ที่เป็นที่รู้จักกันเป็นอย่างดีที่สุดวาฬและโลมา หน้า 37-42, "สัตว์สวยป่างาม" (ชมรมนิเวศวิทยา มหาวิทยาลัยมหิดล, สิงหาคม 2518) มีรูปร่างลักษณะคล้ายกับโลมาทั่วไป คือ มีขนาดลำตัวใหญ่แต่เพรียวยาวคล้ายตอร์ปิโดหรือทรงกระสวย มีครีบและหางใช้สำหรับว่ายน้ำ ครีบหางเป็นแผ่นแบนในแนวนอน ใช้สำหรับว่ายในแนวขึ้นลง ลักษณะเด่นของโลมามหาสมุทร คือ ครีบหลังมีลักษณะยาวและโค้งไปทางด้านหลังเหมือนคลื่น ส่วนจมูกโดยมากจะแหลมยาวเหมือนปากขวด แต่ก็มีบางสกุล บางชนิดที่กลมมนเหมือนบาตรพระหรือแตงโม ทุกชนิดเป็นสัตว์กินเนื้อที่ไล่ล่าสัตว์น้ำชนิดต่าง ๆ เป็นอาหาร โดยเฉพาะปลาขนาดเล็ก ๆ เช่น ปลาซาร์ดีน, ปลากะตัก หรือปลาแฮร์ริ่ง แต่ก็มีบางชนิดที่มีขนาดใหญ่ สามารถล่าสัตว์อย่างอื่น เช่น นกเพนกวิน, นกทะเล, แมวน้ำ, สิงโตทะเล เป็นอาหารได้ มีฟันแหลมคมเรียงตามยาวในปาก ระหว่าง 100-200 ซี่ มีพฤติกรรมอยู่รวมเป็นฝูง บางฝูงอาจอยู่รวมกันได้หลายร้อยตัวและอาจถึงพันตัว กระจายพันธุ์ทั่วไปในทะเลเปิด, มหาสมุทรต่าง ๆ โดยเฉพาะในเขตร้อนและเขตอบอุ่น แต่ก็มีบางชนิดเช่นกันที่ปรับตัวให้อาศัยในน้ำกร่อยและน้ำจืดสนิทได้ เช่น ปากแม่น้ำ, ป่าชายเลน หรือแม้แต่ในทะเลสาบน้ำจืด หรือแม่น้ำสายใหญ่ เป็นสัตว์ที่ชาญฉลาด มีอุปนิสัยขี้เล่น ร่าเริง ชอบเล่นสนุก ด้วยการว่ายน้ำแข่งกัน กระโดดขึ้นเหนือน้ำ หรือว่ายแข่งกับไปเรือของมนุษย์ มีการติดต่อสื่อสารกันด้วยส่งคลื่นเสียงใต้น้ำด้วยระบบเอคโคโลเคชั่นหรือโซนาร์ ในความถี่ระหว่าง 80-200 เฮิรตซ์ โลมามหาสมุทร ขนาดเล็กที่สุด คือ โลมาฮาวี่ไซด์ มีความยาวเพียง 1.2 เมตร น้ำหนักเพียง 40 กิโลกรัม และขนาดที่ใหญ่ที่สุด คือ วาฬเพชฌฆาต ที่มีความยาวเกือบ 10 เมตร น้ำหนักกว่า 10 ตัน.

ใหม่!!: ความถี่และโลมามหาสมุทร · ดูเพิ่มเติม »

โซโนลูมิเนสเซนส์

โซโนลูมิเนสเซนต์ โซโนลูมิเนสเซนต์ (sonoluminescence) เป็นปรากฏการณ์ที่ของเหลว เช่น น้ำ แอลกอฮอล์ ได้รับการกระตุ้นจากทรานส์ดิวเซอร์ในลักษณะของการสั่นที่ความถี่สูง เพื่อให้เกิดคลื่นนิ่งในภาชนะที่บรรจุของเหลวนั้นๆ โดยที่ฟองอากาศสามารถใส่เข้าไปในภาชนะได้หลายวิธี เช่นการใช้ลวดความร้อนเพื่อเปลี่ยนน้ำบางส่วนให้กลายเป็นไอ (ทำให้เกิดฟองอากาศขึ้น) หรือจะใช้หลอดเข็มฉีดยาฉีดอากาศเข้าไป เมื่อเกิดฟองอากาศขึ้นแล้ว ฟองอากาศนี้ปกติจะลอยขึ้นสู่ผิวน้ำ แต่เนื่องจากมีการกระตุ้นด้วยทรานส์ดิวเซอร์ หรือคลื่นเสียง ซึ่งเป็นคลื่นความดัน ทำให้ฟองอากาศที่เกิดขึ้น สามารถอยู่ในน้ำได้โดยอาศัยหลักการสมดุลของแรงลอยตัวและแรงกดจากคลื่นความดัน เมื่อฟองอากาศถูกจับนิ่งอยู่ตรงกลางของภาชนะ การเพิ่มแอมพลิจูดของคลื่นเสียงจะไม่ทำให้ความสมดุลของแรงเสียไป แต่จะไปบีบอัดฟองอากาศที่จับส่งผลให้ขนาดของฟองอากาศเล็กลงจนกระทั่งแหลกสลายไป ขณะที่ฟองอากาศกำลังแหลกสลาย ก็จะปล่อยพลังงานออกมาในรูปของโฟตอนหรือแสง การเกิดโซโนลูมิเนสเซนส์นี้ไม่ได้เกิดขึ้นเพียงครั้งเดียว แต่จะเกิดขึ้นได้อีก เนื่องจากอากาศจะกลับมารวมตัวกันใหม่เป็นฟองอากาศ โดยแสงที่ปล่อยออกมาจะอยู่ในระดับพิโควินาทีซึ่งสั้นมาก ทำให้มองเห็นแสงเป็นลักษณะต่อเนื่อง ทฤษฎีการเกิดโซโนลูมิเนสเซนส์นั้นยังเป็นที่ถกเถียงกันอยู่ บ้างก็ว่าเป็นผลจากคลื่นกระแทก (shock wave) ที่เกิดขึ้นขณะที่ฟองอากาศแหลกสลาย บ้างก็ว่าเป็นพลาสม่า (plasma) และบางส่วนที่คิดว่าเป็นปรากฏการณ์ฟิวชั่น ก็นำปรากฏการณ์นี้ไปพัฒนาต่อเพื่อให้ได้แหล่งพลังงานแบบนิวเคลียร์ฟิวชั่นในด้านของฟิวชั่นได้มีการทดลองพิสูจน์โดยการตรวจวัด นิวตริโน ซึ่งเป็นผลพลอยได้จากการรวมตัวกันของไฮโดรเจนอะตอม โดยนักวิจัยของศูนย์วิจัยแห่งชาติ Oak Ridge ของสหรัฐอเมริกา หมวดหมู่:ปัญหาทางฟิสิกส์ที่ยังแก้ไม่ได้ หมวดหมู่:ฟิสิกส์.

ใหม่!!: ความถี่และโซโนลูมิเนสเซนส์ · ดูเพิ่มเติม »

โน้ตดนตรี

น้ต ''เอ'' หรือ ''ลา'' โน้ต ในทางดนตรี มีความหมายได้สองทาง หมายถึง สัญลักษณ์ต่าง ๆ ที่ใช้ในการนำเสนอระดับเสียง และความยาวของเสียง หรือหมายถึงตัวเสียงเองที่เขียนแทนด้วยสัญลักษณ์เหล่านั้น โน้ตดนตรีแต่ละเสียงจะมีชื่อเรียกประจำของมันเองในแต่ละภาษา เช่น โด-เร-มี-ฟา-ซอล-ลา-ที บางครั้งอาจเขียนอักษรละติน A ถึง G แทนโน้ตดนตรี.

ใหม่!!: ความถี่และโน้ตดนตรี · ดูเพิ่มเติม »

ไฟบ้าน

โคมไฟตั้งโต๊ะ ใช้ไฟฟ้าจากไฟบ้าน ไฟบ้าน (mains electricity) คือแหล่งไฟฟ้าที่ใช้งานทั่วไปกับเครื่องใช้ไฟฟ้าในครัวเรือน, ซึ่งกระแสจะจ่ายจากโรงไฟฟ้า ผ่านโครงข่ายสายส่งและสถานีไฟฟ้าย่อย ก่อนจะเข้าสู่บ้านพักอาศัย, โดยผู้ใช้สามารถต่อเข้าสู่เครื่องใช้ ด้วยการเสียบปลั๊กของเครื่องใช้เข้ากับเต้ารับในบ้าน ไฟบ้านในประเทศไทยจะจ่ายเป็นกระแสสลับที่ความถี่ 50 เฮิรตซ์ โดยมีแรงดันประมาณ 220 โวลต์, ส่วนในต่างประเทศจะใช้ความถี่และแรงดันที่แตกต่างกันออกไป เช่น สหรัฐอเมริกาใช้กระแสสลับ 60 เฮิรตซ์ แรงดัน 110 โวลต์ เป็นต้น หมวดหมู่:พลังงานไฟฟ้า.

ใหม่!!: ความถี่และไฟบ้าน · ดูเพิ่มเติม »

เพอร์คัชชัน

ในทางดนตรี เครื่องเพอร์คัชชัน (percussion) หมายถึงวัตถุที่ให้เสียงจากการตี กระทบ ถู เขย่า หรือการกระทำลักษณะที่ใกล้เคียงกันที่ทำให้วัตถุสั่นและเกิดเสียง เพอร์คัชชันนั้นหมายความรวมทั้งเครื่องดนตรีที่รู้จักกันทั่วไป เช่น กลอง ฉาบ ฆ้อง แทมบูรีน ไซโลโฟน หรือสิ่งของซึ่งถูกนำมาใช้ในดนตรีสมัยใหม่หลายชนิด เช่น ไม้กวาด ท่อโลหะ เป็นต้น เครื่องเพอร์คัชชันมีทั้งเครื่องดนตรีที่มีระดับเสียงและไม่มีระดับเสียง เครื่องดนตรีที่มีระดับเสียง ซึ่งหมายถึงว่าเสียงที่ออกมานั้นมีความถี่ที่ซับซ้อนจนมาสามารถตั้งเป็นตัวโน้ตได้เช่น กลองทิมปานี มาริมบา ไซโลโฟน ระนาด และเครื่องที่ไม่มีระดับเสียง เช่น กลองสแนร์ ฉาบ ไทรแองเกิล เป็นต้น คำว่าเพอร์คัชชัน มีที่มาจากภาษาละตินว่า "percussio" ซึ่งมีความหมายว่า"ตี" ในภาษาอังกฤษ คำว่าเพอร์คัชชันไม่ได้จำกัดการใช้เฉพาะในทางดนตรี ในภาษาไทย บางครั้งจะเรียกเครื่องเพอร์คัชชันว่า เครื่องกระทบ เครื่องตี หรือเครื่องเคาะ รวมถึงเครื่องให้จังหวะ และเครื่องประกอบจังหว.

ใหม่!!: ความถี่และเพอร์คัชชัน · ดูเพิ่มเติม »

เม็ดพาชีเนียน

ม็ดพาชีเนียน (Pacinian corpuscles) หรือ Lamellar corpuscles (เม็ดเป็นชั้น ๆ) เป็นตัวรับแรงกล (mechanoreceptor) หุ้มปลายพิเศษหลักอย่างหนึ่งในสี่อย่างที่ผิวหนังซึ่งไม่มีขน เป็นปลายประสาทที่หุ้มด้วยเซลล์ซึ่งไม่ใช่เซลล์ประสาท (schwann cell) มีลักษณะเป็นชั้น ๆ คล้ายหัวหอมที่เต็มไปด้วยน้ำในระหว่างชั้น โดยชั้นนอกสุดจะหนาเป็นพิเศษและชั้นในสุดจะต่างจากชั้นอื่น ๆ ทั้งทางกายวิภาคและทางเคมีภูมิคุ้มกัน เม็ดอยู่ในผิวหนังที่ไวต่อแรงสั่นและการเปลี่ยนแรงดัน โดยอยู่ในหนังแท้ใต้ผิวหนังประมาณ 2-3 มม.

ใหม่!!: ความถี่และเม็ดพาชีเนียน · ดูเพิ่มเติม »

เม็ดรู้สัมผัส

ม็ดรู้สัมผัส หรือ เม็ดไวสัมผัส (Meissner's corpuscle, Tactile corpuscle) เป็นปลายประสาทรับแรงกลชนิดหนึ่งที่ผิวหนังซึ่งไวสัมผัสแบบเบา ๆ โดยเฉพาะก็คือ ไวสูงสุดเมื่อรับรู้แรงสั่นระหว่าง 2-50 เฮิรตซ์ เป็นตัวรับความรู้สึกที่ปรับตัวอย่างรวดเร็ว โดยหนาแน่นมากสุดที่ปลายนิ้วมือ (เป็นใยประสาทที่มีมากที่สุดในมือมนุษย์ คือ 40%).

ใหม่!!: ความถี่และเม็ดรู้สัมผัส · ดูเพิ่มเติม »

เรดาร์

รดาร์ที่ศูนย์อวกาศเคนเนดีขององค์การนาซา เสาอากาศเรดาร์ระยะไกลที่เรียกว่า Altair ที่ใช้ในการตรวจจับและติดตามวัตถุในพื้นที่ร่วมกับการทดสอบ ABM ที่ไซต์ทดสอบโรนัลด์ เรแกนบนเกาะควาจาลีน (Kwajalein) เรดาร์ (radar) เป็นระบบที่ใช้คลื่นแม่เหล็กไฟฟ้าเป็นเครื่องมือในการระบุระยะ (range), ความสูง (altitude) รวมถึงทิศทางหรือความเร็วในการเคลื่อนที่ของวัตถุ เดิมทีตั้งแต่ปี..

ใหม่!!: ความถี่และเรดาร์ · ดูเพิ่มเติม »

เรเดียน

มุมปกติทั่วไปบางมุม วัดในหน่วยเรเดียน เรเดียน (radian) คือหน่วยวัดมุมชนิดหนึ่งบนระนาบสองมิติ ใช้สัญลักษณ์ "rad" หรืออักษร c ตัวเล็กที่ยกสูงขึ้น (มาจาก circular measure) ซึ่งไม่เป็นที่นิยมนัก ตัวอย่างเช่น มุมขนาด 1.2 เรเดียน สามารถเขียนได้เป็น "1.2 rad" หรือ "1.2c " เรเดียนเคยเป็น หน่วยเสริม ของหน่วยเอสไอ แต่ถูกยกเลิกใน พ.ศ. 2538 และปัจจุบันนี้เรเดียนได้ถูกพิจารณาให้เป็น หน่วยอนุพันธ์ ในหน่วยเอสไอ สำหรับการวัดมุมในวัตถุทรงตัน ดูที่สเตอเรเดียน ทุกวันนี้เรเดียนเป็นหน่วยพื้นฐานของการวัดมุมในวิชาคณิตศาสตร์ และสัญลักษณ์ "rad" มักจะถูกละไว้ในการเขียนนิพจน์ทางคณิตศาสตร์ต่างๆ เมื่อใช้หน่วยองศาจะใช้สัญลักษณ์วงกลมเล็ก ° เพื่อให้เห็นความแตกต่างระหว่างองศากับเรเดียน.

ใหม่!!: ความถี่และเรเดียน · ดูเพิ่มเติม »

เวกเตอร์ลักษณะเฉพาะ

รูปที่1. 1. ในการส่งแบบไข้ว(shear mapping)ของภาพโมนาลิซา, รูปถูกทำให้ผิดปกติในในทางแกนแนวยืนกึ่งกลางของมัน(เวกเตอร์สีแดง)ไม่เปลี่ยนทิศทาง, แต่เวกเตอร์ทแยงมุม(สีน้ำเงิน)มีการเปลี่ยนทิศทาง ด้วยเหตุนี้เวกเตอร์สีแดงเป็น '''เวกเตอร์ลักษณะเฉพาะ''' ของการแปลง ขณะที่เวกเตอร์สีน้ำเงินนั้นไม่ใช่ เวกเตอร์สีแดงไม่มีการขยายหรือหดตัว '''ค่าลักษณะเฉพาะ ''' ของมันจึงคือ 1 ทุกเวกเตอร์ที่มีทิศทางในแนวยืนที่เหมือนกัน เช่น ขนานกับเวกเตอร์นี้เป็นเวกเตอร์ลักษณะเฉพาะเหมือนกันที่มีค่าลักษณะเฉพาะค่าเดียวกัน พร้อมทั้งเวกเตอร์ศูนย์ จาก '''ปริภูมิลักษณะเฉพาะ''' สำหรับค่าลักษณะเฉพาะนี้ ในทางคณิตศาสตร์การแปลงเชิงเส้น เวกเตอร์ลักษณะเฉพาะ (eigenvector) ของการแปลงเชิงเส้นนั้นต้องเป็นเวกเตอร์ที่ไม่ใช่เวกเตอร์ศูนย์ที่เมื่อนำไปใช้ในการแปลงนั้นจะเปลี่ยนระยะแต่ไม่เปลี่ยนทิศทาง สำหรับทุกเวกเตอร์ลักษณะเฉพาะของการแปลงเชิงเส้น จะมีค่าสเกลาร์ที่เรียกว่า ค่าลักษณะเฉพาะ (eigenvalue) สำหรับเวกเตอร์นั้นซึ่งกำหนดผลรวมเวกเตอร์ลักษณะเฉพาะเป็นมาตราส่วนภายใต้การแปลงเชิงเส้น ตัวอย่างเช่น: ค่าลักษณะเฉพาะเท่ากับ +2 หมายความว่าเวกเตอร์ลักษณะเฉพาะมีความยาวและจุดเป็นเท่าตัวในทิศทางเดิม, ค่าลักษณะเฉพาะเท่ากับ +1 หมายความว่าเวกเตอร์ลักษณะเฉพาะไม่มีการเปลี่ยนแปลง, ในขณะที่ค่าลักษณะเฉพาะเท่ากับ −1 หมายความว่าเวกเตอร์ลักษณะเฉพาะจะมีทิศทางผันกลับ ปริภูมิลักษณะเฉพาะ (eigenspace) ของการแปลงที่ให้มาสำหรับค่าลักษณะเฉพาะเฉพาะส่วนเป็นเซต(ผลการแผ่เชิงเส้น(linear span))ของเวกเตอร์ลักษณะเฉพาะที่ความความสัมพันธ์กับค่าลักษณะเฉพาะนี้ พร้อมทั้งเวกเตอร์ศูนย์(ไม่มีทิศทาง) ในพีชคณิตเชิงเส้น ทุกๆการแปลงเชิงเส้นระหว่างปริภูมิเวกเตอร์มิติอันตะ(finite-dimensional vector spaces)สามารถแสดงอยู่ในรูปของเมทริกซ์ซึ่งเป็นแถวลำดับสี่เหลี่ยมของตัวเลขที่อยู่ในแถวและหลัก วิธีพื้นฐานสำหรับการหา ค่าลักษณะเฉพาะ, เวกเตอร์ลักษณะเฉพาะ, และ ปริภูมิลักษณะเฉพาะ ของเมทริกซ์จะกล่าวถึงอยู่ด้านล่าง มันมีบทบาทหลักในหลายๆสาขาของคณิตศาสตร์บริสุทธิ์และคณิตศาสตร์ประยุกต์ — เป็นส่วนสำคัญในพีชคณิตเชิงเส้น, การวิเคราห์เชิงฟังก์ชัน, และเล็กน้อยในคณิตศาสตร์ไม่เป็นเชิงเส้น วัตถุทางคณิตศาสตร์หลายชนิดสามารถเขียนอยู่ในรูปแบบเวกเตอร์ได้เช่น ฟังก์ชัน, ฮาร์มอนิก, กลศาสตร์ควอนตัม, และความถี่, ในกรณีนี้แนวคิดของทิศทางโดยทั่วไปจะสูญเสียความหมายของมันไป และถูกให้นิยามที่เลื่อนลอย ดังนั้นทิศทางที่ไม่มีตัวตนนี้จะไม่เปลี่ยนแปลงตามการแปลงเชิงเส้นที่ให้มา ถ้าใช้"ไอเกน(eigen)"นำหน้า อย่างใน ฟังก์ชันลักษณะเฉพาะ(eigenfunction), วิธีลักษณะเฉพาะ(eigenmode), สภาวะลักษณะเฉพาะ(eigenstate), และ ความถี่ลักษณะเฉพาะ(eigenfrequency).

ใหม่!!: ความถี่และเวกเตอร์ลักษณะเฉพาะ · ดูเพิ่มเติม »

เวกเตอร์สี่มิติ

ในทฤษฎีสัมพัทธภาพ เวกเตอร์สี่มิติ (four-vector) เป็นเวกเตอร์ในปริภูมิเวกเตอร์เหนือฟิลด์ของจำนวนจริงใน 4 มิติ ซึ่งปริภูมิเวกเตอร์ดังกล่าวรู้จักกันในนาม ปริภูมิมิงคอฟสกี (Minkowski space) ภายใต้การแปลงพิกัด (coordinate transformation) เช่น การหมุนใน 3 มิติ (spatial rotations) และ การบูสต์ (boosts) (การเปลี่ยนจากกรอบอ้างอิงเฉื่อยเดิมไปสู่กรอบอ้างอิงเฉื่อยใหม่ที่มีความเร็วคงที่สัมพัทธ์กัน) องค์ประกอบ (components) ของเวกเตอร์สี่มิติจะมีการแปลงเช่นเดียวกับพิกัดอวกาศและเวลา \left(t,x,y,z\right) เซ็ตของการหมุนและการบูสต์ดังกล่าว เรียกรวมๆ ว่า การแปลงโลเร็นตซ์ (Lorentz transformations) ประกอบกันเป็น กรุ๊ปโลเร็นตซ์ (Lorentz group) และบรรยายโดยเมทริกซ์ 4\times 4.

ใหม่!!: ความถี่และเวกเตอร์สี่มิติ · ดูเพิ่มเติม »

เสียง

ซลล์รับรู้การได้ยิน; ม่วง: สเปกตรัมความถี่ ของการตอบสนองการได้ยิน; ส้ม: อิมพัลส์ประสาท) เสียง (Sound) เป็นคลื่นเชิงกลที่เกิดจากการสั่นสะเทือนของวัตถุ เมื่อวัตถุสั่นสะเทือน ก็จะทำให้เกิดการอัดตัวและขยายตัวของคลื่นเสียง และถูกส่งผ่านตัวกลาง เช่น อากาศ ไปยังหู แต่เสียงสามารถเดินทางผ่านสสารในสถานะก๊าซ ของเหลว และของแข็งก็ได้ แต่ไม่สามารถเดินทางผ่านสุญญากาศได้ เมื่อการสั่นสะเทือนนั้นมาถึงหู มันจะถูกแปลงเป็นพัลส์ประสาท ซึ่งจะถูกส่งไปยังสมอง ทำให้เรารับรู้และจำแนกเสียงต่างๆ ได้.

ใหม่!!: ความถี่และเสียง · ดูเพิ่มเติม »

เสียงจากหู

ียงจากหู (otoacoustic emission, ตัวย่อ OAE) เป็นเสียงที่หูชั้นในสร้างขึ้น โดยนักวิทยาศาสตร์ได้พยากรณ์ว่ามี ตั้งแต่ปี..

ใหม่!!: ความถี่และเสียงจากหู · ดูเพิ่มเติม »

เสียงทุ้มแหลมผสม

Play เล่นทั้ง 3 แถว เสียงทุ้มแหลมผสม หรือ เสียงทุ้มแหลมรวม (combination tone, resultant tone, subjective tone) เป็นปรากฏการณ์ทางเสียง-จิต ที่ได้ยินเสียงทุ้มแหลมเพิ่มขึ้นที่ไม่มีจริง พร้อมกับได้ยินเสียงทุ้มแหลมสองเสียงที่มีจริง ๆ นักไวโอลิน จูเซปเป ตาร์ตีนี (Giuseppe Tartini) ได้เครดิตว่าค้นพบปรากฏการณ์นี้ถึงจะไม่ใช่คนแรก ดังนั้น เสียงที่ไม่มีจริงนี้จึงเรียกเป็นภาษาอังกฤษ/ภาษาตะวันตกอีกอย่างหนึ่งว่า Tartini tones (เสียงทุ้มแหลมตาร์ตีนี) มีเสียงทุ้มแหลมรวมสองแบบ คือ เสียงทุ้มแหลมเป็นผลบวก (sum tone) ที่สามารถหาความถี่โดยรวมความถี่ของเสียงที่มีจริง ๆ และเสียงทุ้มแหลมเป็นผลลบ (difference tone) โดยเป็นความต่างระหว่างเสียงที่มีจริง ๆ "เสียงทุ้มแหลมรวมจะได้ยินก็เมื่อเล่นเสียงทุ้มแหลมบริสุทธิ์ (คือเสียงทุ้มแหลมที่เกิดจากคลื่นเสียงฮาร์มอนิกธรรมดาที่ไม่มีเสียงแบบ overtones) สองระดับที่ต่างกันโดยความถี่ประมาณ 50 คาบ/นาที (เฮิรตซ์) หรือยิ่งกว่านั้น และเล่นด้วยกันให้ดังพอ" เสียงทุ้มแหลมรวมยังสามารถสร้างทางอิเล็กทรอนิกส์โดยรวมสัญญาณเสียงในวงจรที่มีความเพี้ยนแบบไม่ใช่เชิงเส้น (นอนลินเนียร์) เช่น เครื่องขยายเสียงที่ขริบยอดสัญญาณหรือกล้ำสัญญาณแบบ Ring modulation.

ใหม่!!: ความถี่และเสียงทุ้มแหลมผสม · ดูเพิ่มเติม »

เฮิรตซ์

ลื่นไซน์ในความถี่ที่แตกต่างกัน เฮิรตซ์ (อ่านว่า เฮิด) (Hertz ย่อว่า Hz) เป็นหน่วย SI ของค่าความถี่ โดย 1 Hz คือความถี่ที่เท่ากับ 1 ครั้ง ต่อวินาที (1/s) หรือ:1 Hz.

ใหม่!!: ความถี่และเฮิรตซ์ · ดูเพิ่มเติม »

เคยูแบนด์

ูแบนด์ (Ku band) คือย่านหนึ่งของสเปกตรัมคลื่นแม่เหล็กไฟฟ้าในย่านความถี่ไมโครเวฟ สัญลักษณ์ Ku หมายถึง "เค-ข้างใต้" (มาจากคำดั้งเดิมในภาษาเยอรมันว่า "Kurz-unten" ซึ่งมีความหมายเดียวกัน) ซึ่งมีความหมายถึงแถบที่อยู่ข้างใต้แถบ K ในการประยุกต์ใช้งานเรดาร์ จะมีช่วงความถี่ครอบคลุมระหว่าง 12-18 GHz ตามคำนิยามทางการของแถบความถี่วิทยุตามมาตรฐาน IEEE 521-2002 เคยูแบนด์ มีการใช้งานโดยทั่วไปในการสื่อสารดาวเทียม ที่สำคัญๆ คือ ดาวเทียมส่งผ่านการติดตามข้อมูล (Tracking Data Relay Satellite) ขององค์การนาซา สำหรับทั้งการติดต่อกับกระสวยอวกาศและการสื่อสารกับสถานีอวกาศนานาชาติ ดาวเทียมแบบเคยูแบนด์ยังมีการใช้งานสำหรับการส่งข้อมูลไปยังที่ห่างไกล เช่นสำหรับเครือข่ายระบบโทรทัศน์ที่ใช้ในการแก้ไขและการออกอากาศ แถบความถี่นี้ยังแบ่งออกเป็นช่วงย่อยอีกหลายช่วงแล้วแต่บริเวณทางภูมิศาสตร์ ซึ่งจัดแบ่งโดยสมาพันธ์การสื่อสารสากล (International Telecommunication Union; ITU) สถานีโทรทัศน์ NBC เป็นเครือข่ายโทรทัศน์แห่งแรกที่ทำการอัพลิงก์รายการส่วนใหญ่ผ่านเคยูแบนด์ในปี..

ใหม่!!: ความถี่และเคยูแบนด์ · ดูเพิ่มเติม »

เครื่องรับวิทยุ

รื่องรับวิทยุรุ่นเก่า เครื่องรับวิทยุ เป็นเครื่องมือสื่อสารทางเดียวชนิดหนึ่ง ทำหน้าที่รับและเลือกคลื่นวิทยุจากสายอากาศ แล้วนำไปสู่ภาคขยายต่อไป โดยมีช่วงความถี่ของคลื่นที่กว้าง แล้วแต่ประเภทของการใช้งาน โดยทั่วไป คำว่า "เครื่องวิทยุ" มักจะใช้เรียกเครื่องรับสัญญาณความถี่กระจายเสียง เพื่อส่งข่าวสาร และความบันเทิง โดยมีย่านความถี่หลักๆ คือ คลื่นสั้น คลื่นกลาง และคลื่นยาว.

ใหม่!!: ความถี่และเครื่องรับวิทยุ · ดูเพิ่มเติม »

เครื่องสังเคราะห์เสียง

Synthesizer เครื่องสังเคราะห์เสียง หรือ ซินธิไซเซอร์ (synthesizer) คือ เครื่องดนตรีอิเล็กทรอนิกส์ ออกแบบมาเพื่อสร้างเสียงจำลองโดยใช้เทคนิคต่างๆ เช่น การเพิ่มเสียง, การ ลดเสียง, การใช้คลื่นเสียงกล้ำคลื่นวิทยุโดยเปลี่ยนความถี่คลื่น (Frequency Modulate; FM), การสังเคราะห์ เสียงกายภาพ, การทำให้คลื่นเสียงผิดเพี้ยนรูปร่างไป ซินธิไซเซอร์สร้างเสียงผ่านการปรับเปลี่ยนโดยตรงของกระแสไฟฟ้าซึ่งถูกใช้ในซินธิไซเซอร์แบบอนาล็อก, การปรับเปลี่ยนทางคณิตศาสตร์ของค่าตัวแปรที่พอใจ โดยใช้คอมพิวเตอร์ซึ่งใช้ใน ซินธิไซเซอร์แบบที่เป็นโปรแกรมสำเร็จรูป หรือจากการรวมทั้งสองวิธีเข้าด้วยกัน ในขั้นตอนสุดท้ายของซินธิไซเซอร์กระแสไฟฟ้าจะถูกใช้เพื่อสร้างการสั่นให้กับแผ่นที่ใช้สั่นของ ลำโพง หรือ หูโทรศัพท์ เป็นต้น เสียงซินธิไซเซอร์นี้ถูกจำลองไว้จากการอัดเสียงธรรมชาติ เมื่อพลังงานทางกลของคลื่นเสียงถูกแปลงไปเป็นสัญญาณ และที่สุดจะถูกเปลี่ยนกลับไปเป็นพลังงานทางกลจากการเล่นเทปที่อัดไว้ผ่านการสุ่ม ส่วนสำคัญที่ขาดหายไปของเสียงซึ่งเป็นลักษณะพิเศษของซินธิไซเซอร์ ซินธิไซเซอร์เสียงพูด ยังถูกใช้ใน กรรมวิธีสร้างเสียงพูด อิเล็กทรอนิกส์ มักจะใช้ใน โวโคดเดอร์ (Vocoders) หรือการสร้างเสียงพูดนั่นเอง.

ใหม่!!: ความถี่และเครื่องสังเคราะห์เสียง · ดูเพิ่มเติม »

เตตราโครมาซี

ีที่เซลล์รูปกรวยของนกรับได้ (ในตัวอย่างนี้ เป็นของวงศ์นกกระติ๊ด) ซึ่งขยายการเห็นสีของนกไปในช่วงความถี่แสงอัลตราไวโอเลตFigure data, uncorrected absorbance curve fits, from Hart NS, Partridge JC, Bennett ATD and Cuthill IC (2000) Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. Journal of Comparative Physiology A186 (7-8): 681-694. ภาวะ Tetrachromacy เป็นภาวะที่มีทางประสาทต่างหาก 4 ทางในการส่งข้อมูลเกี่ยวกับสี หรือมีเซลล์รูปกรวย 4 ประเภทในตา สัตว์ที่มีภาวะ Tetrachromacy เรียกว่า tetrachromat ในสัตว์ประเภท tetrachromat การเห็นสีต่าง ๆ จะมี 4-มิติ ซึ่งหมายความว่า เพื่อที่จะเทียบสีที่สัตว์เห็น จะต้องใช้การผสมรวมกันของแม่สีอย่างน้อย 4 สี นกหลายประเภทเป็น tetrachromat และแม้แต่สปีชีส์ต่าง ๆ ของปลา สัตว์สะเทินน้ำสะเทินบก สัตว์เลื้อยคลาน และแมลง ก็เป็น tetrachromat ด้ว.

ใหม่!!: ความถี่และเตตราโครมาซี · ดูเพิ่มเติม »

เซลล์รับแสง

ซลล์รับแสง (photoreceptor cell) เป็นเซลล์ประสาท (นิวรอน) พิเศษในจอประสาทตาที่มีสมรรถภาพในการถ่ายโอนแสงไปเป็นพลังประสาท ความสำคัญทางชีวภาพของเซลล์รับแสงก็คือความสามารถในการแปลงแสงที่เห็นได้ไปเป็นสัญญาณที่สามารถเร้ากระบวนการต่าง ๆ ทางชีวภาพ จะกล่าวให้ชัดเจนกว่านี้ก็คือ มีโปรตีนหน่วยรับแสงในเซลล์ที่ดูดซึมโฟตอน ซึ่งนำไปสู่ความเปลี่ยนแปลงในความต่างศักย์ของเยื่อหุ้มเซลล์ เซลล์รับแสงแบบคลาสิกก็คือเซลล์รูปแท่งและเซลล์รูปกรวย แต่ละอย่างล้วนแต่ให้ข้อมูลที่ใช้ในระบบการมองเห็นเพื่อสร้างแบบจำลองของโลกภายนอกที่เห็นทางตา เซลล์รูปแท่งนั้นบางกว่าเซลล์รูปกรวย และมีความกระจัดจายไปในจอประสาทตาที่แตกต่างกัน แม้ว่า กระบวนการเคมีที่ถ่ายโอนแสงไปเป็นพลังประสาทนั้นคล้ายคลึงกัน มีการค้นพบเซลล์รับแสงประเภทที่สามในช่วงคริสต์ทศวรรษ 1990 ซึ่งก็คือ photosensitive retinal ganglion cell เป็นเซลล์ที่ไม่ได้มีส่วนให้เกิดการเห็นโดยตรง แต่เชื่อกันว่า มีส่วนช่วยในระบบควบคุมจังหวะรอบวัน (circadian rhythms) และปฏิกิริยาปรับรูม่านตาแบบรีเฟล็กซ์ เซลล์รูปแท่งและเซลล์รูปกรวยมีหน้าที่แตกต่างกัน คือ เซลล์รูปแท่งไวแสงเป็นพิเศษ มีปฏิกิริยาต่อโฟตอนเพียงแค่ 6 อนุภาค ดังนั้น ในที่มีระดับแสงต่ำ การเห็นเกิดจากสัญญาณที่มาจากเซลล์รูปแท่งเท่านั้น ซึ่งอธิบายว่า ทำไมเราจึงไม่สามารถเห็นภาพสีได้ในที่สลัว ซึ่งก็คือเพราะมีแต่เซลล์รูปแท่งเท่านั้นที่ทำงานได้ในระดับแสงนั้น และเซลล์รูปกรวยเป็นส่วนที่ทำให้เกิดการเห็นภาพสี ส่วนเซลล์รูปกรวยต้องใช้แสงระดับที่สูงกว่ามาก (คือต้องมีโฟตอนมากระทบมากกว่า) ก่อนที่จะเกิดการทำงาน ในมนุษย์ มีเซลล์รูปกรวยสามประเภท จำแนกโดยการตอบสนองต่อความยาวคลื่นแสงที่ต่าง ๆ กัน การเห็นสี (ในภาพ) เป็นการประมวลผลจากสัญญาณที่มาจากเซลล์รูปกรวยสามประเภทเหล่านี้ โดยน่าจะผ่านกระบวนการ opponent process เซลล์รูปกรวยสามอย่างนี้ตอบสนอง (โดยคร่าว ๆ) ต่อแสงที่มีความยาวคลื่นขนาดสั้น (S) ขนาดกลาง (M) และขนาดยาว (L) ให้สังเกตว่า การยิงสัญญาณของเซลล์รับแสงนั้นขึ้นอยู่เพียงกับจำนวนโฟตอนที่ได้รับเท่านั้น (กำหนดโดยทฤษฎี principle of univariance) ส่วนการตอบสนองที่ต่าง ๆ กันของเซลล์รูปกรวยขึ้นอยู่กับความเป็นไปได้ของโปรตีนรับแสงของเซลล์ที่จะดูดซึมแสงที่ความยาวคลื่นนั้น ๆ ยกตัวอย่างเช่น เซลล์รูปกรวยแบบ L มีโปรตีนรับแสงที่ดูดซึมแสงที่มีความยาวคลื่นขนาดยาว (หรือออกสีแดง ๆ) แม้ว่า แสงที่มีความยาวคลื่นสั้นกว่าอาจจะทำให้เกิดการตอบสนองในระดับเดียวกัน แต่จะต้องเป็นแสงที่สว่างกว่ามาก จอประสาทตามมนุษย์มีเซลล์รูปแท่งประมาณ 120 ล้านเซลล์ และมีเซลล์รูปกรวยประมาณ 6 ล้านเซลล์ สัตว์ต่าง ๆ สปีชีส์มีอัตราส่วนของเซลล์รูปแท่งและเซลล์รูปกรวยที่แตกต่างกัน ขึ้นอยู่กับว่า เป็นสัตว์กลางวันหรือสัตว์กลางคืน นอกจากเซลล์รูปแท่งและเซลล์รูปกรวยแล้ว ยังมี retinal ganglion cell (ตัวย่อ RGC) ประมาณ 1.5 เซลล์ในมนุษย์ และมี 1-2% ที่ไวแสง บทความนี้กล่าวถึงเซลล์รับแสงของสัตว์มีกระดูกสันหลัง เซลล์รับแสงของสัตว์ไม่มีกระดูกสันหลัง เช่นแมลงและมอลลัสกามีความแตกต่างจากสัตว์มีกระดูกสันหลังทั้งในโครงสร้างและในกระบวนการเคมีชีว.

ใหม่!!: ความถี่และเซลล์รับแสง · ดูเพิ่มเติม »

เซลล์ประสาท

ซลล์ประสาท หรือ นิวรอน (neuron,, หรือ) เป็นเซลล์เร้าได้ด้วยพลัง ของเซลล์อสุจิที่ทำหน้าที่ประมวลและส่งข้อมูลผ่านสัญญาณไฟฟ้าและเคมี โดยส่งผ่านจุดประสานประสาท (synapse) ซึ่งเป็นการเชื่อมต่อโดยเฉพาะกับเซลล์อื่น ๆ นิวรอนอาจเชื่อมกันเป็นโครงข่ายประสาท (neural network) และเป็นองค์ประกอบหลักของสมองกับไขสันหลังในระบบประสาทกลาง (CNS) และของปมประสาท (ganglia) ในระบบประสาทนอกส่วนกลาง (PNS) นิวรอนที่ทำหน้าที่โดยเฉพาะ ๆ รวมทั้ง.

ใหม่!!: ความถี่และเซลล์ประสาท · ดูเพิ่มเติม »

เปลือกสมองส่วนการเห็น

ทางสัญญาณด้านหลัง (เขียว) และทางสัญญาณด้านล่าง (ม่วง) เป็นทางสัญญาณเริ่มมาจากเปลือกสมองส่วนการเห็นปฐมภูมิ เปลือกสมองส่วนการเห็น (visual cortex, cortex visualis) ในสมองเป็นส่วนหนึ่งของเปลือกสมอง ทำหน้าที่ประมวลข้อมูลสายตา อยู่ในสมองกลีบท้ายทอยด้านหลังของสมอง คำว่า เปลือกสมองส่วนการเห็น หมายถึงคอร์เทกซ์ต่าง ๆ ในสมองรวมทั้ง.

ใหม่!!: ความถี่และเปลือกสมองส่วนการเห็น · ดูเพิ่มเติม »

F

F (ตัวใหญ่:F ตัวเล็ก:f) เป็นอักษรละติน ลำดับที่ 6.

ใหม่!!: ความถี่และF · ดูเพิ่มเติม »

Lateral Intraparietal Cortex

Lateral Intraparietal Cortex (ตัวย่อ LIP) อยู่ใน intraparietal sulcus ของสมอง เป็นไปได้มากว่า คอร์เทกซ์นี้มีบทบาทในการเคลื่อนไหวตา เพราะว่า การกระตุ้นเขตนี้ด้วยไฟฟ้ามีผลเป็น saccades คือการเคลื่อนไหวที่รวดเร็วของตา และเชื่อกันว่า คอร์เทกซ์นี้มีบทบาทกับหน่วยความจำใช้งาน (working memoryหน่วยความจำใช้งาน (working memory) คือระบบความจำที่รองรับข้อมูลชั่วคราวซึ่งสมองใช้ในการประมวลผล เช่น จะจำเบอร์โทรศัพท์อย่างชั่วคราวได้ก็จะต้องใช้ระบบนี้ ที่เกี่ยวข้องกับการเคลื่อนไหวตา โดยทดสอบด้วยวิธีดังต่อไปนี้ (ซึ่งเรียกว่า การทดสอบ saccade แบบทิ้งช่วง หรือ delayed saccade task).

ใหม่!!: ความถี่และLateral Intraparietal Cortex · ดูเพิ่มเติม »

Retinal ganglion cell

แผนผังแสดงชั้นต่าง ๆ ของเรตินาโดยตัดขวาง ชั้นที่มีป้ายว่า "Ganglionic layer" ประกอบด้วย retinal ganglion cell Retinal ganglion cell (ตัวย่อ RGC) เป็นเซลล์ประสาทประเภทหนึ่ง อยู่ที่ผิวด้านใน (ในชั้น ganglion cell layer) ของเรตินาในตามนุษย์ ซึ่งรับข้อมูลทางตามาจากเซลล์รับแสงผ่านเซลล์ประสาทที่อยู่ในระหว่างอีกสองประเภท คือ horizontal cellhorizontal cell เป็นนิวรอนที่มีการเชื่อมต่อกันและกันในชั้น Inner nuclear layer ของเรตินาในสัตว์เลี้ยงลูกด้วยนม มีหน้าที่ประสานและควบคุมข้อมูลที่มาจากเซลล์รับแสงหลายตัว ช่วยให้ตาสามารถเห็นได้ทั้งในที่มีแสงสว่างและที่มีแสงสลัว และ amacrine cellamacrine cell เป็น interneuron ในเรตินา retinal ganglion cell (ตัวย่อ RGC) รับข้อมูลถึง 70% จาก amacrine cell และ Bipolar cell ซึ่งส่งข้อมูล 30% ที่เหลือ มีการควบคุมโดย amacrine cell RGC รวม ๆ กันส่งทั้งข้อมูลทางตาที่ทำให้เกิดการเห็นภาพและไม่เกิดการเห็นภาพจากเรตินา ไปยังเขตต่าง ๆ ในสมองรวมทั้งทาลามัส ไฮโปทาลามัส และสมองส่วนกลาง RGC มีความแตกต่างกันอย่างสำคัญโดยขนาด การเชื่อมต่อ และการตอบสนองต่อสิ่งเร้าทางตา แต่ว่ามีลักษณะที่เหมือนกันอย่างหนึ่งคือมีแอกซอนขนาดยาวที่ส่งไปยังสมอง ซึ่งกลายเป็นส่วนของเส้นประสาทตา ส่วนไขว้ประสาทตา (optic chiasm) และลำเส้นใยประสาทตา มี RGC เป็นเปอร์เซนต์น้อย ที่มีส่วนเกี่ยวข้องเพียงเล็กน้อยหรือไม่มีเลยกับการเห็น แต่เป็นเซลล์ที่ไวแสงโดยตนเอง ซึ่งมีแอกซอนที่รวมตัวกันเป็น retinohypothalamic tract (ลำเส้นใยประสาทจากเรตินาไปยังไฮโปทาลามัส) ซึ่งมีบทบาทเกี่ยวกับจังหวะรอบวัน (circadian rhythm) และรีเฟล็กซ์ม่านตา (pupillary light reflex) ซึ่งปรับขนาดรูม่านตาให้เหมาะสมกับแสง.

ใหม่!!: ความถี่และRetinal ganglion cell · ดูเพิ่มเติม »

Saccade

รอยทางจุดการทอดสายตาที่เกิดจากการขยับตาแบบ saccades ของมนุษย์ ในขณะที่กราดดูใบหน้า saccade (อ่านว่า เซะคาด) เป็นการเคลื่อนไหวอย่างเร็ว ๆ ของตา ของศีรษะ หรือของส่วนอื่นในร่างกาย หรือของอุปกรณ์อย่างใดอย่างหนึ่ง และยังหมายถึงการเปลี่ยนความถี่อย่างรวดเร็วของสัญญาณส่ง หรือความเปลี่ยนแปลงอย่างรวดเร็วอย่างอื่น ๆ ได้อีกด้วย Saccades เป็นการเคลื่อนไหวตาทั้งสองข้างไปยังทิศทางเดียวกัน พร้อม ๆ กัน อย่างรวดเร็วCassin, B. and Solomon, S. Dictionary of Eye Terminology.

ใหม่!!: ความถี่และSaccade · ดูเพิ่มเติม »

เปลี่ยนเส้นทางที่นี่:

Frequencyช่วงคาบคาบคาบเวลา

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »