ความคล้ายคลึงกันระหว่าง ระบบพิกัดเชิงขั้วและระยะทาง
ระบบพิกัดเชิงขั้วและระยะทาง มี 4 สิ่งที่เหมือนกัน (ใน ยูเนี่ยนพีเดีย): ระบบพิกัดคาร์ทีเซียนจำนวนลบและจำนวนไม่เป็นลบทฤษฎีบทพีทาโกรัสคณิตศาสตร์
ระบบพิกัดคาร์ทีเซียน
ตัวอย่างระบบพิกัดคาร์ทีเซียนที่มีจุด (2,3) สีเขียว, จุด (-3,1) สีแดง, จุด (-1.5,-2.5) สีน้ำเงิน, และจุด (0,0) สีม่วงซึ่งเป็นจุดกำเนิด ในทางคณิตศาสตร์ ระบบพิกัดคาร์ทีเซียน (Cartesian coordinate system) เป็นระบบที่ใช้กำหนดตำแหน่งของจุดแต่ละจุดบนระนาบโดยอ้างถึงตัวเลข 2 จำนวน ซึ่งแต่ละจำนวนเรียกว่า พิกัดเอกซ์ และ พิกัดวาย ของจุดนั้น และเพื่อที่จะกำหนดพิกัดของจุด จะต้องมีเส้นแกนสองเส้นตัดกันเป็นมุมฉากที่จุดกำเนิด ได้แก่ แกนเอกซ์ และ แกนวาย ซึ่งเส้นแกนดังกล่าวจะมีหน่วยบ่งบอกความยาวเป็นระยะ ระบบพิกัดคาร์ทีเซียนยังสามารถใช้ได้ในปริภูมิสามมิติ (ซึ่งจะมี แกนแซด และ พิกัดแซด เพิ่มเข้ามา) หรือในมิติที่สูงกว่าอีกด้ว.
ระบบพิกัดคาร์ทีเซียนและระบบพิกัดเชิงขั้ว · ระบบพิกัดคาร์ทีเซียนและระยะทาง ·
จำนวนลบและจำนวนไม่เป็นลบ
ำนวนลบ (negative number) คือ จำนวนที่น้อยกว่าศูนย์ เช่น −3.
จำนวนลบและจำนวนไม่เป็นลบและระบบพิกัดเชิงขั้ว · จำนวนลบและจำนวนไม่เป็นลบและระยะทาง ·
ทฤษฎีบทพีทาโกรัส
ทฤษฎีบทพีทาโกรัส: ผลรวมของพื้นที่ของสี่เหลี่ยมสองรูปบนด้านประชิดมุมฉาก (''a'' และ ''b'') เท่ากับพื้นที่ของสี่เหลี่ยมบนด้านตรงข้ามมุมฉาก (''c'') ในวิชาคณิตศาสตร์ ทฤษฎีบทพีทาโกรัส แสดงความสัมพันธ์ในเรขาคณิตแบบยุคลิด ระหว่างด้านทั้งสามของสามเหลี่ยมมุมฉาก กำลังสองของด้านตรงข้ามมุมฉากเท่ากับผลรวมของกำลังสองของอีกสองด้านที่เหลือ ในแง่ของพื้นที่ กล่าวไว้ดังนี้ ทฤษฎีบทดังกล่าวสามารถเขียนเป็นสมการสัมพันธ์กับความยาวของด้าน a, b และ c ได้ ซึ่งมักเรียกว่า สมการพีทาโกรัส ดังด้านล่าง โดยที่ c เป็นความยาวด้านตรงข้ามมุมฉาก และ a และ b เป็นความยาวของอีกสองด้านที่เหลือ ทฤษฎีบทพีทาโกรัสตั้งตามชื่อนักคณิตศาสตร์ชาวกรีก พีทาโกรัส ซึ่งถือว่าเป็นผู้ค้นพบทฤษฎีบทและการพิสูจน์ แม้จะมีการแย้งบ่อยครั้งว่า ทฤษฎีบทดังกล่าวมีมาก่อนหน้าเขาแล้ว มีหลักฐานว่านักคณิตศาสตร์ชาวบาบิโลนเข้าใจสมการดังกล่าว แม้ว่าจะมีหลักฐานหลงเหลืออยู่น้อยมากว่าพวกเขาปรับให้มันพอดีกับกรอบคณิตศาสตร.
ทฤษฎีบทพีทาโกรัสและระบบพิกัดเชิงขั้ว · ทฤษฎีบทพีทาโกรัสและระยะทาง ·
คณิตศาสตร์
ยูคลิด (กำลังถือคาลิเปอร์) นักคณิตศาสตร์ชาวกรีก ในสมัย 300 ปีก่อนคริสตกาล ภาพวาดของราฟาเอลในชื่อ ''โรงเรียนแห่งเอเธนส์''No likeness or description of Euclid's physical appearance made during his lifetime survived antiquity. Therefore, Euclid's depiction in works of art depends on the artist's imagination (see ''Euclid''). คณิตศาสตร์ เป็นศาสตร์ที่มุ่งค้นคว้าเกี่ยวกับ โครงสร้างนามธรรมที่ถูกกำหนดขึ้นผ่านทางกลุ่มของสัจพจน์ซึ่งมีการให้เหตุผลที่แน่นอนโดยใช้ตรรกศาสตร์สัญลักษณ์ และสัญกรณ์คณิตศาสตร์ เรามักนิยามโดยทั่วไปว่าคณิตศาสตร์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับรูปแบบและโครงสร้าง, การเปลี่ยนแปลง และปริภูมิ กล่าวคร่าว ๆ ได้ว่าคณิตศาสตร์นั้นสนใจ "รูปร่างและจำนวน" เนื่องจากคณิตศาสตร์มิได้สร้างความรู้ผ่านกระบวนการทดลอง บางคนจึงไม่จัดว่าคณิตศาสตร์เป็นสาขาของวิทยาศาสตร์ ในอดีตผู้คนจะใช้สิ่งของแทนจำนวนที่จะนับยิ่งนานเข้าจำนวนประชากรยิ่งมีมากขึ้น ทำให้ผู้คนเริ่มคิดที่จะประดิษฐ์ตัวเลขขึ้นมาแทนการนับที่ใช้สิ่งของนับแทนจากนั้นก็มีการบวก ลบคูณ และหาร จากนั้นก็ก่อให้เกิดคณิตศาสตร์ คำว่า "คณิตศาสตร์" (คำอ่าน: คะ-นิด-ตะ-สาด) มาจากคำว่า คณิต (การนับ หรือ คำนวณ) และ ศาสตร์ (ความรู้ หรือ การศึกษา) ซึ่งรวมกันมีความหมายโดยทั่วไปว่า การศึกษาเกี่ยวกับการคำนวณ หรือ วิชาที่เกี่ยวกับการคำนวณ.
รายการด้านบนตอบคำถามต่อไปนี้
- สิ่งที่ ระบบพิกัดเชิงขั้วและระยะทาง มีเหมือนกัน
- อะไรคือความคล้ายคลึงกันระหว่าง ระบบพิกัดเชิงขั้วและระยะทาง
การเปรียบเทียบระหว่าง ระบบพิกัดเชิงขั้วและระยะทาง
ระบบพิกัดเชิงขั้ว มี 55 ความสัมพันธ์ขณะที่ ระยะทาง มี 19 ขณะที่พวกเขามีเหมือนกัน 4, ดัชนี Jaccard คือ 5.41% = 4 / (55 + 19)
การอ้างอิง
บทความนี้แสดงความสัมพันธ์ระหว่าง ระบบพิกัดเชิงขั้วและระยะทาง หากต้องการเข้าถึงบทความแต่ละบทความที่ได้รับการรวบรวมข้อมูลโปรดไปที่: