เรากำลังดำเนินการเพื่อคืนค่าแอป Unionpedia บน Google Play Store
ขาออกขาเข้า
🌟เราได้ทำให้การออกแบบของเราง่ายขึ้นเพื่อการนำทางที่ดีขึ้น!
Instagram Facebook X LinkedIn

นิจพล

ดัชนี นิจพล

นิจพล (idempotent หรือ idempotence) คือสมบัติอย่างหนึ่งของการดำเนินการทางคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ซึ่งจะให้ผลลัพธ์เป็นค่าเดิมเสมอแม้ว่าจะกระทำการดำเนินการดังกล่าวกี่ครั้งก็ตาม.

สารบัญ

  1. 17 ความสัมพันธ์: ฟังก์ชันพื้นและฟังก์ชันเพดานฟังก์ชันคงตัวฟังก์ชันเอกลักษณ์การดำเนินการ (คณิตศาสตร์)การดำเนินการทวิภาคการดำเนินการเอกภาคการคูณยูเนียนวิทยาการคอมพิวเตอร์สมาชิกเอกลักษณ์อินเตอร์เซกชันจำนวนจริงจำนวนเต็มนิรพลเซต (แก้ความกำกวม)01

  2. วิทยาการคอมพิวเตอร์เชิงทฤษฎี

ฟังก์ชันพื้นและฟังก์ชันเพดาน

กราฟของฟังก์ชันพื้น กราฟของฟังก์ชันเพดาน ในทางคณิตศาสตร์และวิทยาการคอมพิวเตอร์ ฟังก์ชันพื้น (floor function) คือฟังก์ชันที่จับคู่จำนวนจริงไปยังจำนวนเต็มที่อยู่ก่อนหน้า นั่นคือ floor (x) เป็นจำนวนเต็มมากที่สุดที่ไม่มากกว่า x ส่วน ฟังก์ชันเพดาน (ceiling function) คือฟังก์ชันที่จับคู่จำนวนจริงไปยังจำนวนเต็มที่อยู่ถัดจากจำนวนนั้น นั่นคือ ceiling (x) คือจำนวนเต็มน้อยที่สุดที่ไม่น้อยกว่า x กราฟของฟังก์ชันพื้นและเพดานทั้งหมด มีลักษณะคล้ายฟังก์ชันขั้นบันได แต่ไม่ใช่ฟังก์ชันขั้นบันได เนื่องจากมีช่วงบนแกน x เป็นจำนวนอนันต.

ดู นิจพลและฟังก์ชันพื้นและฟังก์ชันเพดาน

ฟังก์ชันคงตัว

ในทางคณิตศาสตร์ ฟังก์ชันคงตัว (constant function) หมายถึงฟังก์ชันที่ให้ผลลัพธ์ไม่เปลี่ยนแปลง ไม่ว่าจะให้ค่าตัวแปรต้นเป็นค่าใดๆ คำตอบจะออกมาเป็นค่าคงตัวค่าเดิม ตัวอย่างเช่น ถ้าเรามีฟังก์ชัน f(x).

ดู นิจพลและฟังก์ชันคงตัว

ฟังก์ชันเอกลักษณ์

ฟังก์ชันเอกลักษณ์ (identity function, identity map) หรือ การแปลงเอกลักษณ์ (identity transformation) คือฟังก์ชันที่คืนค่าออกมาเป็นค่าเดิมจากอาร์กิวเมนต์ที่ใส่เข้าไป มีความหมายเหมือนกับ f (x).

ดู นิจพลและฟังก์ชันเอกลักษณ์

การดำเนินการ (คณิตศาสตร์)

การดำเนินการ (Operation) ในทางคณิตศาสตร์และตรรกศาสตร์ หมายถึง การกระทำหรือลำดับขั้นตอนซึ่งสร้างค่าใหม่ขึ้นเป็นผลลัพธ์ โดยการรับค่าเข้าไปหนึ่งตัวหรือมากกว่า การดำเนินการสามารถแบ่งได้เป็นสองประเภทใหญ่ ๆ ได้แก่ การดำเนินการเอกภาคและการดำเนินการทวิภาค การดำเนินการเอกภาคจะใช้ค่าที่ป้อนเข้าไปเพียงหนึ่งค่าเช่น นิเสธ ฟังก์ชันตรีโกณมิติ ส่วนการดำเนินการทวิภาคจะใช้สองค่าเช่น การบวก การลบ การคูณ การหาร การยกกำลัง การดำเนินการสามารถเกี่ยวข้องกับวัตถุทางคณิตศาสตร์อย่างอื่นที่นอกเหนือจากจำนวนก็ได้ ตัวอย่างเช่น ค่าเชิงตรรกะ จริง และ เท็จ สามารถใช้กับตัวดำเนินการทางตรรกศาสตร์อย่าง and, or, not; เวกเตอร์สามารถบวกและลบกันได้; ฟังก์ชันประกอบสามารถใช้เป็นการหมุนของวัตถุหลาย ๆ ครั้งได้; การดำเนินการของเซตมีทั้งแบบทวิภาคคือยูเนียน อินเตอร์เซกชัน และแบบเอกภาคคือคอมพลีเมนต์ เป็นต้น การดำเนินการบางอย่างอาจไม่สามารถนิยามได้บนทุก ๆ ค่าที่เป็นไปได้ เช่น ในจำนวนจริง เราจะไม่สามารถหารด้วยศูนย์หรือถอดรากที่สองจากจำนวนลบ ค่าเริ่มต้นสำหรับการดำเนินการได้นิยามมาจากเซตเซตหนึ่งที่เรียกว่าโดเมน และเซตที่เป็นผลลัพธ์เรียกว่าโคโดเมน แต่ค่าที่แท้จริงที่เกิดจากการดำเนินการนั้นอาจออกมาเป็นเรนจ์ อาทิการถอดรากที่สองในจำนวนจริงจะให้ผลลัพธ์เพียงจำนวนที่ไม่เป็นลบ ดังนั้นโคโดเมนคือเซตของจำนวนจริง แต่เรนจ์คือเซตของจำนวนที่ไม่เป็นลบเท่านั้น การดำเนินการอาจเกี่ยวข้องกับวัตถุสองชนิดที่ต่างกันก็ได้ ตัวอย่างเช่น เราสามารถคูณเวกเตอร์ด้วยปริมาณสเกลาร์เพื่อเปลี่ยนขนาดของเวกเตอร์ และผลคูณภายใน (inner product) ของสองเวกเตอร์จะให้ผลลัพธ์ออกมาเป็นสเกลาร์ การดำเนินการหนึ่ง ๆ อาจจะมีหรือไม่มีสมบัติบางอย่าง เช่นสมบัติการเปลี่ยนกลุ่ม การสลับที่ และอื่น ๆ ค่าที่ใส่เข้ามาในการดำเนินการอาจเรียกว่า ตัวถูกดำเนินการ, อาร์กิวเมนต์, ค่ารับเข้า ส่วนค่าที่ได้ออกไปจากการดำเนินการเรียกว่า ค่า, ผลลัพธ์, ค่าส่งออก การดำเนินการสามารถมีตัวถูกดำเนินการหนึ่งค่า สองค่า หรือมากกว่าก็ได้ การดำเนินการนั้นคล้ายกับตัวดำเนินการแต่ต่างกันที่มุมมอง ตัวอย่างเช่น หากใครคนหนึ่งกล่าวว่า "การดำเนินการของการบวก" จะเป็นการเน้นจุดสนใจไปที่ตัวถูกดำเนินการและผลลัพธ์ ในขณะที่อีกคนหนึ่งกล่าวว่า "ตัวดำเนินการของการบวก" จะเป็นการมุ่งประเด็นไปที่กระบวนการที่จะทำให้เกิดผลลัพธ์ หรือหมายถึงฟังก์ชัน +: S × S → S ซึ่งเป็นมุมมองนามธรรม.

ดู นิจพลและการดำเนินการ (คณิตศาสตร์)

การดำเนินการทวิภาค

ในทางคณิตศาสตร์ การดำเนินการทวิภาค หมายถึงการคำนวณที่ต้องเกี่ยวข้องกับตัวถูกดำเนินการสองค่า หรือกล่าวอีกนัยหนึ่ง หมายถึงการดำเนินการที่มีอาริตี้ (arity) เท่ากับสอง การดำเนินการทวิภาคสามารถคำนวณให้สำเร็จได้โดยใช้ฟังก์ชันทวิภาคหรือตัวดำเนินการทวิภาคอย่างใดอย่างหนึ่ง การดำเนินการทวิภาคบางครั้งถูกเรียกว่าเป็น dyadic operation ในภาษาอังกฤษเพื่อหลีกเลี่ยงความสับสนกับระบบเลขฐานสอง (binary numeral system) ตัวอย่างการดำเนินการทวิภาคที่คุ้นเคยเช่น การบวก การลบ การคูณ และการหาร เป็นต้น การดำเนินการทวิภาคบนเซต S คือความสัมพันธ์ f ที่จับคู่สมาชิกในผลคูณคาร์ทีเซียน S×S ไปยัง S ถ้าความสัมพันธ์ดังกล่าวไม่เป็นฟังก์ชัน แต่เป็นฟังก์ชันบางส่วน เราจะเรียกการดำเนินการนี้ว่า การดำเนินการ (ทวิภาค) บางส่วน ตัวอย่างเช่น การหารในจำนวนจริงถือว่าเป็นฟังก์ชันบางส่วน เพราะไม่นิยามการหารด้วยศูนย์ แต่บางครั้งในวิทยาการคอมพิวเตอร์ การดำเนินการทวิภาคอาจหมายถึงฟังก์ชันทวิภาคใดๆ ก็ได้ และถ้าความสัมพันธ์ f ให้ผลลัพธ์ออกมาเป็นสมาชิกในเซต S เหมือนกับตัวตั้ง จะเรียกได้ว่าการดำเนินการทวิภาคนั้นมีสมบัติการปิด (closure) การดำเนินการทวิภาคเป็นส่วนสำคัญในโครงสร้างเชิงพีชคณิตในการศึกษาพีชคณิตนามธรรม ซึ่งใช้สำหรับสร้างกรุป โมนอยด์ กึ่งกรุป ริง และอื่นๆ หรือกล่าวโดยทั่วไป เซตที่นิยามการดำเนินการทวิภาคใดๆ บนเซตนั้น เรียกว่า แม็กม่า (magma) การดำเนินการทวิภาคหลายอย่างในพีชคณิตและตรรกศาสตร์มีสมบัติการเปลี่ยนหมู่และสมบัติการสลับที่ และหลายอย่างก็มีสมาชิกเอกลักษณ์และสมาชิกผกผัน ตัวอย่างการดำเนินการที่มีคุณสมบัติทั้งหมดนี้เช่น การบวก (+) และการคูณ (*) บนจำนวนและเมทริกซ์ หรือการประกอบฟังก์ชัน (function composition) บนเซตเซตหนึ่ง ส่วนการดำเนินการที่ไม่มีสมบัติการเปลี่ยนหมู่ ยกตัวอย่างเช่น การลบ (−) และ การดำเนินการบางส่วน ที่ไม่มีสมบัตินี้เช่น การหาร (/) การยกกำลัง (^) และการยกกำลังซ้อน (tetration) (↑↑) การเขียนการดำเนินการทวิภาคส่วนมากใช้สัญกรณ์เติมกลาง (infix notation) เช่น a * b, a + b, หรือ a · b นอกจากนั้นก็เขียนอยู่ในรูปแบบของสัญกรณ์ฟังก์ชัน f (a, b) หรือแม้แต่การเขียนย่อด้วยวิธี juxtaposition เหลือเพียง ab ส่วนการยกกำลัง ปกติแล้วจะเขียนโดยไม่ใช้ตัวดำเนินการ แต่เขียนจำนวนที่สองด้วยตัวยก (superscript) แทน นั่นคือ ab บางครั้งอาจพบเห็นการใช้สัญกรณ์เติมหน้า (prefix notation) หรือสัญกรณ์เติมหลัง (postfix notation) ซึ่งอาจต้องใช้วงเล็บกำกั.

ดู นิจพลและการดำเนินการทวิภาค

การดำเนินการเอกภาค

ในทางคณิตศาสตร์ การดำเนินการเอกภาค หมายถึงการดำเนินการที่ต้องใช้ตัวถูกดำเนินการหนึ่งค่า หรือเป็นฟังก์ชันที่ต้องการตัวแปรตัวเดียว โดยทั่วไปการเขียนการดำเนินการเอกภาคใช้สัญกรณ์เติมหน้า (prefix notation) สัญกรณ์เติมหลัง (postfix notation) หรือสัญกรณ์ฟังก์ชันเป็นหลัก.

ดู นิจพลและการดำเนินการเอกภาค

การคูณ

3 × 4.

ดู นิจพลและการคูณ

ยูเนียน

ูเนียน (union) หรือ ส่วนรวม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการรวมสมาชิกทั้งหมดของเซตต้นแบบเข้าด้วยกัน เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U).

ดู นิจพลและยูเนียน

วิทยาการคอมพิวเตอร์

วิทยาการคอมพิวเตอร์ หรือ วิทยาศาสตร์คอมพิวเตอร์ (Computer science) เป็นศาสตร์เกี่ยวกับการศึกษาค้นคว้าทฤษฎีการคำนวณสำหรับคอมพิวเตอร์ และทฤษฎีการประมวลผลสารสนเทศ ทั้งด้านซอฟต์แวร์ ฮาร์ดแวร์ และ เครือข่าย ซึ่งวิทยาการคอมพิวเตอร์นั้นประกอบด้วยหลายหัวข้อที่เกี่ยวข้องกับคอมพิวเตอร์ ตั้งแต่ระดับนามธรรม หรือความคิดเชิงทฤษฎี เช่น การวิเคราะห์และสังเคราะห์ขั้นตอนวิธี ไปจนถึงระดับรูปธรรม เช่น ทฤษฎีภาษาโปรแกรม ทฤษฎีการพัฒนาซอฟต์แวร์ ทฤษฎีฮาร์ดแวร์คอมพิวเตอร์ และ ทฤษฎีเครือข่าย ในแง่ของศาสตร์เกี่ยวกับคอมพิวเตอร์นั้น วิทยาการคอมพิวเตอร์เป็นหนึ่งในห้าสาขาวิชาคอมพิวเตอร์ ซึ่งประกอบด้วย สาขาวิทยาการคอมพิวเตอร์ หรือวิทยาศาสตรคอมพิวเตอร์ สาขาวิศวกรรมคอมพิวเตอร์ สาขาวิศวกรรมซอฟต์แวร์ สาขาเทคโนโลยีสารสนเทศ หรือเทคโนโลยีสารสนเทศและการสือสาร และ สาขาคอมพิวเตอร์ธุรกิจ หรือ ระบบสารสนเทศทางธุรก.

ดู นิจพลและวิทยาการคอมพิวเตอร์

สมาชิกเอกลักษณ์

ในทางคณิตศาสตร์ สมาชิกเอกลักษณ์ (identity element) หรือ สมาชิกกลาง (neutral element) คือสมาชิกพิเศษของเซตหนึ่งๆ ซึ่งเมื่อสมาชิกอื่นกระทำการดำเนินการทวิภาคกับสมาชิกพิเศษนั้นแล้วได้ผลลัพธ์ไม่เปลี่ยนแปลง สมาชิกเอกลักษณ์มีที่ใช้สำหรับเรื่องของกรุปและแนวความคิดที่เกี่ยวข้อง คำว่า สมาชิกเอกลักษณ์ มักเรียกโดยย่อว่า เอกลักษณ์ กำหนดให้กรุป (S, *) เป็นเซต S ที่มีการดำเนินการทวิภาค * (ซึ่งรู้จักกันในชื่อ แม็กม่า (magma)) สมาชิก e ในเซต S จะเรียกว่า เอกลักษณ์ซ้าย (left identity) ถ้า สำหรับทุกค่าของ a ในเซต S และเรียกว่า เอกลักษณ์ขวา (right identity) ถ้า สำหรับทุกค่าของ a ในเซต S และถ้า e เป็นทั้งเอกลักษณ์ซ้ายและเอกลักษณ์ขวา เราจะเรียก e ว่าเป็น เอกลักษณ์สองด้าน (two-sided identity) หรือเรียกเพียงแค่ เอกลักษณ์ เอกลักษณ์ที่อ้างถึงการบวกเรียกว่า เอกลักษณ์การบวก ซึ่งมักใช้สัญลักษณ์ 0 ส่วนเอกลักษณ์ที่อ้างถึงการคูณเรียกว่า เอกลักษณ์การคูณ ซึ่งมักใช้สัญลักษณ์ 1 ความแตกต่างของสองเอกลักษณ์นี้มักถูกใช้บนเซตที่รองรับทั้งการบวกและการคูณ ตัวอย่างเช่น ริง นอกจากนั้นเอกลักษณ์การคูณมักถูกเรียกว่าเป็น หน่วย (unit) ในบางบริบท แต่ทั้งนี้ หน่วย อาจหมายถึงสมาชิกตัวหนึ่งที่มีตัวผกผันการคูณในเรื่องของทฤษฎีริง.

ดู นิจพลและสมาชิกเอกลักษณ์

อินเตอร์เซกชัน

อินเตอร์เซกชัน (intersection) หรือ ส่วนร่วม คือการดำเนินการของเซต เป็นการสร้างเซตใหม่ซึ่งเป็นผลจากการหาสมาชิกทั้งหมดที่เหมือนกันในเซตต้นแบบ เขียนแทนด้วยสัญลักษณ์ (คล้ายอักษรตัวใหญ่ U กลับหัว).

ดู นิจพลและอินเตอร์เซกชัน

จำนวนจริง

ำนวนจริง คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด (เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis).

ดู นิจพลและจำนวนจริง

จำนวนเต็ม

ำนวนเต็ม คือจำนวนที่สามารถเขียนได้โดยปราศจากองค์ประกอบทางเศษส่วนหรือทศนิยม ตัวอย่างเช่น 21, 4, −2048 เหล่านี้คือจำนวนเต็ม แต่ 9.75, 5, √2 เหล่านี้ไม่ใช่จำนวนเต็ม เศษของจำนวนเต็มเป็นเศษย่อยของจำนวนจริง และประกอบด้วยจำนวนธรรมชาติ (1, 2, 3,...) ศูนย์ (0) และตัวผกผันการบวกของจำนวนธรรมชาติ (−1, −2, −3,...) เซตของจำนวนเต็มทั้งหมดมักแสดงด้วย Z ตัวหนา (หรือ \mathbb ตัวหนาบนกระดานดำ, U+2124) มาจากคำในภาษาเยอรมันว่า Zahlen แปลว่าจำนวน จำนวนเต็ม (พร้อมด้วยการดำเนินการการบวก) ก่อร่างเป็นกรุปเล็กที่สุดอันประกอบด้วยโมนอยด์เชิงการบวกของจำนวนธรรมชาติ จำนวนเต็มก่อให้เกิดเซตอนันต์นับได้เช่นเดียวกับจำนวนธรรมชาติ สิ่งเหล่านี้ในทฤษฎีจำนวนเชิงพีชคณิตทำให้เข้าใจได้โดยสามัญว่า จำนวนเต็มซึ่งฝังตัวอยู่ในฟีลด์ของจำนวนตรรกยะ หมายถึง จำนวนเต็มตรรกยะ เพื่อแยกแยะออกจากจำนวนเต็มเชิงพีชคณิตที่ได้นิยามไว้กว้างกว.

ดู นิจพลและจำนวนเต็ม

นิรพล

ในทางคณิตศาสตร์ สมาชิก x ในริง R จะเรียกว่าเป็น นิรพล (nilpotent) ก็ต่อเมื่อมีจำนวนเต็มบวก n อย่างน้อยหนึ่งจำนวน ที่ทำให้ x^n.

ดู นิจพลและนิรพล

เซต (แก้ความกำกวม)

ซต สามารถหมายถึง.

ดู นิจพลและเซต (แก้ความกำกวม)

0

0 (ศูนย์) เป็นทั้งจำนวนและเลขโดดที่ใช้สำหรับนำเสนอจำนวนต่าง ๆ ในระบบเลข มีบทบาทเป็นตัวกลางในทางคณิตศาสตร์ คือเป็นเอกลักษณ์การบวกของจำนวนเต็ม จำนวนจริง และโครงสร้างเชิงพีชคณิตอื่น ๆ ศูนย์ในฐานะเลขโดดใช้เป็นตัววางหลักในระบบเลขเชิงตำแหน่ง.

ดู นิจพลและ0

1

1 (หนึ่ง) เป็นจำนวน ตัวเลข และเป็นชื่อของสัญลักษณ์ภาพที่แทนจำนวนนั้น หนึ่งแทนสิ่งสิ่งเดียว หน่วยในการนับหรือการวัด ตัวอย่างเช่น ส่วนของเส้นตรงของ "ความยาวหนึ่งหน่วย" คือส่วนของเส้นตรงของความยาวเท่ากับ 1.

ดู นิจพลและ1

ดูเพิ่มเติม

วิทยาการคอมพิวเตอร์เชิงทฤษฎี

หรือที่รู้จักกันในชื่อ IdempotenceIdempotentสมาชิกนิจพล