โลโก้
ยูเนี่ยนพีเดีย
การสื่อสาร
ดาวน์โหลดได้จาก Google Play
ใหม่! ดาวน์โหลด ยูเนี่ยนพีเดีย บน Android ™ของคุณ!
ฟรี
เร็วกว่าเบราว์เซอร์!
 

ชิ้นส่วนอิเล็กทรอนิกส์

ดัชนี ชิ้นส่วนอิเล็กทรอนิกส์

้นส่วนอิเล็กทรอนิกส์ (Electronic Component) เป็นอุปกรณ์พื้นฐานที่แยกออกเป็นชิ้นย่อยๆเป็นเอกเทศหรือเป็นอุปกรณ์ที่มีเอกลักษณ์ทางกายภาพในระบบอิเล็กทรอนิกส์ที่ใช้ในการส่งผลกระทบต่ออิเล็กตรอนหรือสาขาที่เกี่ยวข้องกับอิเล็กตรอน ตัวอย่างชิ้นส่วนอิเล็กทรอนิกส์ ชิ้นส่วนอิเล็กทรอนิกส์ที่มีมากกว่าสองขั้วไฟฟ้า(ขาหรือลีดส์) เมื่อนำขาของชิ้นส่วนหลายชนิดมาบัดกรีเข้าด้วยกันบนแผงวงจรพิมพ์จะสร้างเป็นวงจรอิเล็กทรอนิกส์ (วงจรย่อย) ที่มีฟังก์ชันที่เฉพาะเจาะจง (เช่นเครื่องขยายสัญญาณ, เครื่องรับสัญญาณวิทยุหรือ oscillator) ชิ้นส่วนอิเล็กทรอนิกส์พื้นฐานอาจจะถูกเก็บในบรรจุภัณฑ์แยกชนิดกัน หรือจัดเรียงเป็นแถวหรือเครือข่ายของส่วนประกอบที่เหมือนกันหรือผสมกันภายในแพคเกจเช่นวงจรรวมเซมิคอนดักเตอร์, แผงวงจรไฟฟ้าไฮบริดหรืออุปกรณ์ฟิล์มหน.

30 ความสัมพันธ์: มอเตอร์ลำโพงวาริสเตอร์วาแรกเตอร์วงจรรวมสภาพพาสซีฟหม้อแปลงไฟฟ้าหลอดสุญญากาศอิเล็กทรอนิกส์ ออสซิลเลเตอร์ทรานซิสเตอร์ทรานซิสเตอร์ดาร์ลิงตันขดลวดแม่เหล็กไฟฟ้าดิจิทัลตัวต้านทานตัวแปรสัญญาณตัวเก็บประจุตัวเก็บประจุยิ่งยวดตัวเรียงกระแสชนิดควบคุมด้วยซิลิคอนตัวเหนี่ยวนำซีเนอร์ไดโอดแบตเตอรี่แหล่งจ่ายไฟแอนะล็อกแผ่นวงจรพิมพ์ไดโอดเลเซอร์ไดโอดเทอร์มิสเตอร์เครื่องกำเนิดไฟฟ้าเซลล์แสงอาทิตย์เซลล์เชื้อเพลิง

มอเตอร์

การทำงานของมอเตอร์ กระแสไฟฟ้าที่ป้อนเข้าในขดลวดที่พันรอบเหล็กอ่อนบนแกนหมุน(โรเตอร์) ทำให้เกิดอำนาจแม่เหล็กไปดูดหรือผลักกับอำนาจแม่เหล็กถาวรบนตัวนิ่ง(สเตเตอร์) หรือป้อนกลับกัน หรือป้อนทั้งสองที่ มอเตอร์ไฟฟ้าแบบต่างๆเมื่อเทียบกับแบตเตอรี 9V.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และมอเตอร์ · ดูเพิ่มเติม »

ลำโพง

ลำโพงทั้งตู้ ลำโพง (loudspeaker, speaker) เป็นอุปกรณ์ไฟฟ้าเชิงกลอย่างหนึ่ง ทำหน้าที่แปลงสัญญาณไฟฟ้าให้เป็นเสียง มีด้วยกันหลายแบบ คำว่า ลำโพงมักจะเรียกรวมกัน ทั้งดอกลำโพง หรือตัวขับ (driver) และลำโพงทั้งตู้ (speaker system) ที่ประกอบด้วยลำโพงและวงจรอิเล็กทรอนิกส์สำหรับแบ่งย่านความถี่ (ครอสโอเวอร์เน็ตเวิร์ก) ลำโพงนับเป็นองค์ประกอบที่สำคัญในระบบเครื่องเสียง โดยมีขนาดตั้งแต่เล็กเท่าปลายนิ้ว จนถึงใหญ่ขนาดเส้นผ่าศูนย์กลางนับสิบนิ้ว โดยมีโครงสร้างที่แตกต่างกัน และให้เสียงที่แตกต่างกันด้ว.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และลำโพง · ดูเพิ่มเติม »

วาริสเตอร์

วาริสเตอร์ วาริสเตอร์ (varistor) เป็นอุปกรณ์สารกึ่งตัวนำอีกชนิดหนึ่งที่สามารถเปลี่ยนแปลงค่าความต้านทานได้ตามระดับแรงดันไฟฟ้า การทำงานของวาริสเตอร์คล้ายกับซีเนอร์ไดโอด คือ เมื่อแรงดันไฟฟ้าสูงกว่าค่าที่กำหนดมันจะยอมให้กระแสไหลผ่านตัวมันเองได้ ยังส่งผลให้สามารถรักษาระดับของแรงดันไฟฟ้าให้อยู่ในสภาพปกติ วาริสเตอร์ชนิดนี้เรามักจะเรียกว่า วีดีอาร์ (VDR: Voltage Dependent Resistor) และมีบางชนิดที่มีลักษณะการทำงานคล้ายกับไดโอดแต่จุดทำงานจะสูงตามที่กำหนด การใช้วาริสเตอร์จะใช้เป็นวงจรป้องกันอุปกรณ์ต่างๆ ไม่ให้ได้รับความเสียหาย เมื่อกระแสไฟฟ้าหรือแรงดันไฟฟ้าในวงจรเกิดการเปลี่ยนแปลงสูงขึ้น โดยวาริสเตอร์จะทำหน้าที่แบ่งกระแสไฟฟ้าหรือลดแรงดันไฟฟ้า เมื่อกระแสไฟฟ้าหรือแรงดันไฟฟ้ามากเกินปกติ มิฉะนั้นวงจรอาจเกิดการเสียหายได้ หมวดหมู่:อุปกรณ์ไฟฟ้า หมวดหมู่:อุปกรณ์สารกึ่งตัวนำ หมวดหมู่:อุปกรณ์อิเล็กทรอนิกส์.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และวาริสเตอร์ · ดูเพิ่มเติม »

วาแรกเตอร์

ัญลักษณ์ของวาแรกเตอร์ ในทางอิเล็กทรอนิกส์ วาแรกเตอร์ หรือ วาริแคป หรือ จูนนิ่ง ไดโอด (varicap, varactor, tuning diode) เป็นอุปกรณ์อิเล็กทรอนิกส์ ประเภทไดโอด มีความสามารถแปรค่าความจุได้.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และวาแรกเตอร์ · ดูเพิ่มเติม »

วงจรรวม

วงจรรวม วงจรรวม หรือ วงจรเบ็ดเสร็จ (integrated circuit; IC) หมายถึง วงจรที่นำเอาไดโอด, ทรานซิสเตอร์, ตัวต้านทาน, ตัวเก็บประจุ และองค์ประกอบวงจรต่าง ๆ มาประกอบรวมกันบนแผ่นวงจรขนาดเล็ก ในปัจจุบันแผ่นวงจรนี้จะทำด้วยแผ่นซิลิคอน บางทีอาจเรียก ชิป (Chip) และสร้างองค์ประกอบวงจรต่าง ๆ ฝังอยู่บนแผ่นผลึกนี้ ส่วนใหญ่เป็นชนิดที่เรียกว่า Monolithic การสร้างองค์ประกอบวงจรบนผิวผลึกนี้ จะใช้กรรมวิธีทางด้านการถ่ายภาพอย่างละเอียด ผสมกับขบวนการทางเคมีทำให้ลายวงจรมีความละเอียดสูงมาก สามารถบรรจุองค์ประกอบวงจรได้จำนวนมาก ภายในไอซี จะมีส่วนของลอจิกมากมาย ในบรรดาวงจรเบ็ดเสร็จที่ซับซ้อนสูง เช่น ไมโครโปรเซสเซอร์ ซึ่งใช้ทำงานควบคุม คอมพิวเตอร์ จนถึงโทรศัพท์มือถือ แม้กระทั่งเตาอบไมโครเวฟแบบดิจิทัล สำหรับชิปหน่วยความจำ (RAM) เป็นอีกประเภทหนึ่งของวงจรเบ็ดเสร็จ ที่มีความสำคัญมากในยุคปัจจุบัน.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และวงจรรวม · ดูเพิ่มเติม »

สภาพพาสซีฟ

ซีฟ (passivity) เป็นคุณสมบัติของระบบวิศวกรรมที่ถูกนำมาใช้ในสาขาวิชาวิศวกรรมอย่างหลากหลาย แต่มักพบมากที่สุดในระบบอิเล็กทรอนิกส์และการควบคุมแบบแอนะล็อก ชิ้นส่วนที่เป็นพาสซีฟจะขึ้นอยู่กับสนามไฟฟ้า และอาจจะเป็นอย่างใดอย่างหนึ่งคือ 1.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และสภาพพาสซีฟ · ดูเพิ่มเติม »

หม้อแปลงไฟฟ้า

รงสร้างหลักของแม่เหล็กไฟฟ้า หม้อแปลง หรือหม้อแปลงไฟฟ้า (transformer) เป็นอุปกรณ์ไฟฟ้า ที่ใช้ในการส่งผ่านพลังงานจากวงจรไฟฟ้าหนึ่งไปยังอีกวงจรโดยอาศัยหลักการของแม่เหล็กไฟฟ้า โดยปกติจะใช้เชื่อมโยงระหว่างระบบไฟฟ้าแรงสูง และไฟฟ้าแรงต่ำ หม้อแปลงเป็นอุปกรณ์หลักในระบบส่งกำลังไฟฟ้.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และหม้อแปลงไฟฟ้า · ดูเพิ่มเติม »

หลอดสุญญากาศ

อดหลอดสุญญากาศ ไตรโอดหลอดสุญญากาศ ไตรโอดชนิด808หลอดสุญญากาศ เครื่องเสียงหลอดสุญญากาศ mixtubeหลอดสุญญากาศ หลอดสุญญากาศ (vacuum tube) หรือ หลอดอิเล็กตรอน (electron tube: ในอเมริกา) หรือ วาล์วเทอร์มิออนิค (thermionic valve: ในอังกฤษ) ในทางอิเล็กทรอนิกส หมายถึงอุปกรณ์ที่ควบคุมกระแสไฟฟ้าผ่านขั้วอิเล็กโทรดภายในบริเวณที่มีอากาศหรือก๊าซเบาบาง ปรากฏการณ์ ทางฟิสิกส์ที่ใช้อธิบายการนำไฟฟ้าก็คือ ปรากฏการณ์เทอร์มิออนิค อิมิตชัน (thermionic emission) ซึ่งอธิบายว่าเมื่อโลหะถูกทำให้ร้อนจนถึงระดับหนึ่งด้วยการป้อนกระแสไฟฟ้าจะทำให้อิเล็กตรอนหลุดออกมาที่ผิวของโลหะ เมื่อทำการป้อนศักย์ไฟฟ้าเพื่อดึงดูดอิเล็กตรอนที่หลุดออกมาอยู่ที่ผิวด้วยขั้วโลหะอีกขั้วหนึ่งที่อยู่ข้างๆ จะทำให้เกิดการไหลของกระแสได้ เราเรียกหลอดสุญญากาศที่มีขั้วโลหะเพียงสองขั้วนี้ว่า หลอดไดโอด (Diode) โดยขั้วที่ให้อิเล็กตรอนเรียกว่า คาโธด (Cathode) และขั้วที่รับอิเล็กตรอนเรียกว่า อาโนด (Anode) โดยปกติจะมีรูปร่างเป็นแผ่นโลหะธรรมดา บางทีจะเรียกว่า เพลท (Plate) การไหลของกระแสไฟฟ้าของหลอดไดโอดเป็นแบบไม่เป็นเชิงเส้น (Non-linear current) กล่าวคือ เมื่อป้อนศักย์ไฟฟ้าบวกให้กับขั้วอาโนดและศักย์ไฟฟ้าลบให้กับขั้วคาโธดจะทำให้เกิดกระแสไฟฟ้าไหลดังที่ได้อธิบายผ่านมา แต่เมื่อป้อนศักย์ไฟฟ้ากลับทางคือ ป้อนศักย์ไฟฟ้าบวกให้กับคาโธดและป้อนศักย์ไฟฟ้าลบให้กับอาโนดจะทำให้กระแสไฟฟ้าไม่สามารถไหลได้ ซึ่งเป็นผลมาจากอิเล็กตรอนถูกผลักด้วยผลของสนามไฟฟ้านั้นเอง ซึ่งคุณสมบัติข้อนีจึงทำให้สามารถนำหลอดไดโอดไปใช้เป็นอุปกรณ์เรียงกระแส (rectifier) ได้ ต่อมาได้มีการพัฒนาหลอดไดโอดโดยใส่ขั้วโลหะตาข่ายระหว่างขั้วอาโนดและขั้วคาโธด เรียกว่า กริด (Grid) ซึ่งจะมีรูปร่างเป็นตาข่าย เป็นลวดเส้นเล็กๆ พันอยู่รอบๆหลอดสุญญากาศ บางชนิดอาจจะไม่มีขั้วชนิดนี้ หรือจะมีเพียงขั้วเดียว หรืออาจจะมี 2-3 ขั้วขึ้นไป จะทำหน้าที่เป็นส่วนควบคุมปริมาณกระแสให้ไหลมากน้อยได้ตามศักย์ไฟฟ้าที่ป้อนให้กับขั้วกริด อุปกรณ์ที่มีขั้วโลหะ 3 ขั้วนี้เรียกว่า หลอดไตรโอด (Triode) ทำสามารถใช้ทำเป็นเครื่องส่งวิทยุได้.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และหลอดสุญญากาศ · ดูเพิ่มเติม »

อิเล็กทรอนิกส์ ออสซิลเลเตอร์

รูปแสดง op-amp relaxation oscillator ที่เป็นที่นิยม อิเล็กทรอนิกส์ ออสซิลเลเตอร์ (Electronic Oscillator) เป็นวงจรอิเล็กทรอนิกส์ที่ผลิตสัญญาณออกมาซ้ำ ๆ กัน คลื่นไฟฟ้าที่ออกมาส่วนใหญ่จะเป็น sine wave และคลื่นรูปสี่เหลี่ยม Oscillators มีแหล่งจ่ายไฟเป็นกระแสตรง (DC) มีเอาต์พุตเป็นสัญญาณดังกล่าวเพื่อใช้ในการส่งสัญญาณวิทยุและโทรทัศน์, สัญญาณนาฬิกาที่ควบคุมการทำงานของคอมพิวเตอร์ทุกชนิด, นาฬิกาควอทซ์และเสียงที่ผลิตโดย beepers อิเล็กทรอนิกส์และวิดีโอเกม Oscillators แบ่งตามลักษณะของความถี่ของสัญญาณเอาต์พุต ได้แก่.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และอิเล็กทรอนิกส์ ออสซิลเลเตอร์ · ดูเพิ่มเติม »

ทรานซิสเตอร์

ทรานซิสเตอร์ (transistor) เป็นอุปกรณ์สารกึงตัวนำที่สามารถควบคุมการไหลของอิเล็กตรอนได้ ใช้ทำหน้าที่ ขยายสัญญาณไฟฟ้า, เปิด/ปิดสัญญาณไฟฟ้า, ควบคุมแรงดันไฟฟ้าให้คงที่, หรือกล้ำสัญญาณไฟฟ้า (modulate) เป็นต้น การทำงานของทรานซิสเตอร์เปรียบได้กับวาล์วควบคุมที่ทำงานด้วยสัญญาณไฟฟ้าที่ขาเข้า เพื่อปรับขนาดกระแสไฟฟ้าขาออกที่จ่ายมาจากแหล่งจ่ายไฟ ทรานซิสเตอร์ประกอบด้วยวัสดุเซมิคอนดักเตอร์ที่มีอย่างน้อยสามขั้วไฟฟ้าเพื่อเชื่อมต่อกับวงจร ภายนอก แรงดันหรือกระแสไฟฟ้าที่ป้อนให้กับขั้วทรานซิสเตอร์หนึ่งคู่ จะมีผลให้เกิดการเปลี่ยนแปลงในกระแสที่ไหลผ่านในขั้วทรานซิสเตอร์อีกคู่หนึ่ง เนื่องจากพลังงานที่ถูกควบคุม (เอาต์พุต)จะสูงกว่าพลังงานที่ใช้ในการควบคุม (อินพุท) ทรานซิสเตอร์จึงสามารถขยายสัญญาณได้ ปัจจุบัน บางทรานซิสเตอร์ถูกประกอบขึ้นมาต่างหากแต่ยังมีอีกมากที่พบฝังอยู่ใน แผงวงจรรวม ทรานซิสเตอร์เป็นการสร้างบล็อกพื้นฐานของอุปกรณ์อิเล็กทรอนิกส์ที่ทันสมัย ​​และเป็นที่แพร่หลายในระบบอิเล็กทรอนิกส์สมัยใหม.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และทรานซิสเตอร์ · ดูเพิ่มเติม »

ทรานซิสเตอร์ดาร์ลิงตัน

ผังวงจรของการจับคู่ดาร์ลิงตัน ทรานซิสเตอร์ดาร์ลิงตัน (Darlington transistor) เป็นอุปกรณ์สารกึ่งตัวนำที่รวมเอาทรานซิสเตอร์แบบไบโพล 2 ตัวแบบเดียวกัน มาเชื่อมต่อแบบ tandem (มักจะเรียกว่า คู่ดาร์ลิงตัน; darlington pair) ให้เป็นอุปกรณ์ตัวเดียว โดยมีการขยายกระแสผ่านทรานซิสเตอร์ตัวแรก จากนั้นก็ขยายโดยทรานซิสเตอร์ตัวที่สองอีกทอดหนึ่ง ด้วยเหตุนี้จึงทำให้มีอัตราขยาย (gain) ที่สูงมาก (เขียน &beta หรือ hFE) และกินเนื้อที่น้อยกว่าการใช้ทรานซิสเตอร์ 2 ตัวแยกกัน แม้จะเชื่อมต่อแบบเดียวกันก็ตาม แต่การใช้ทรานซิสเตอร์แยกกันสองตัวในวงจรจริงยังพบได้ทั่วไป แม้ว่าจะมีอุปกรณ์รวมในชิ้นเดียวกันแบบนี้แล้วก็ตาม การจัดทรานซิสเตอร์แบบนี้ เป็นผลงานการคิดค้นของซิดนีย์ ดาร์ลิงตัน (Sidney Darlington) แนวคิดในการเชื่อมต่อทรานซิสเตอร์ 2 หรือ 3 ตัวมาเป็นชิปตัวเดียวกันนั้น เขาได้จดสิทธิบัตรเอาไว้แล้ว แต่ทั้งนี้ไม่รวมถึงแนวคิดการจับรวมทรานซิสเตอร์จำนวนใดๆ มาไว้บนชิปเดียวกัน ซึ่งในกรณีนั้น ถือว่าครอบคลุมหลักการไอซีสมัยใหม่ทั้งหมด สำหรับการจัดวงจรทรานซิสเตอร์ที่คล้ายกันนี้ โดยมีการใช้ทรานซิสเตอร์ 2 ตัว ที่มีชนิดต่างกัน (คือ NPN กับ PNP) จะเรียกว่าคู่ Sziklai pair หรือบางครั้งก็เรียกว่าคู่ดาร์ลิงตันพิเศษ (Darlington pair).

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และทรานซิสเตอร์ดาร์ลิงตัน · ดูเพิ่มเติม »

ขดลวดแม่เหล็กไฟฟ้า

ลวดแม่เหล็กไฟฟ้า หรือ (electromagnetic coil) เป็นตัวนำไฟฟ้าอย่างหนึ่งเช่น ลวดในรูปของขดลวด(coil), รูปเกลียวก้นหอยหรือเกลียวสปริง ขดลวดแม่เหล็กไฟฟ้าถูกใช้ในวิศวกรรมไฟฟ้า, ในการใช้งานที่กระแสไฟฟ้าจะมีปฏิสัมพันธ์กับสนามแม่เหล็ก, ในอุปกรณ์เช่นตัวเหนี่ยวนำ, แม่เหล็กไฟฟ้า, หม้อแปลง, และขดลวดเซ็นเซอร์ เป็นได้ทั้งกระแสไฟฟ้าจะถูกส่งผ่านลวดของคอยล์เพื่อสร้างสนามแม่เหล็ก หรือตรงกันข้าม สนามแม่เหล็กภายนอกที่แปรตามเวลาพาดผ่านด้านในของขดลวดสร้าง EMF(แรงดัน)ในตัวนำ กระแสไหลในตัวนำใดๆจะสร้างสนามแม่เหล็กวงกลมรอบตัวนำตามกฎของแอมแปร์ ประโยชน์ของการใช้รูปทรงแบบขดม้วนก็คือมันจะเพิ่ม ความแรงของสนามแม่เหล็กที่เกิดจากกระแส สนามแม่เหล็กที่เกิดจากแต่ละรอบที่แยกจากกันของลวดตัวนำทั้งหมดผ่านศูนย์กลางของขดลวดและซ้อนกัน(superpose) เพื่อสร้างสนามที่แข็งแกร่งที่นั่น จำนวนรอบของขดลวดยิ่งมาก สนามที่ถูกสร้างขึ้นก็ยิ่งแรง ในทางกลับกัน การเปลี่ยนแปลงของฟลักซ์แม่เหล็กภายนอกทำให้เกิดแรงดันไฟฟ้าในตัวนำตามกฎการเหนี่ยวนำของฟาราเดย์ แรงดันไฟฟ้า ที่ถูกเหนี่ยวนำสามารถทำให้เพิ่มขึ้นได้โดยพันลวดให้เป็นขดเพราะเส้นสนามจะตัดเส้นลวดหลายครั้ง มีขดลวดหลายประเภทที่ใช้ในอุปกรณ์ไฟฟ้าและอิเล็กทรอนิก.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และขดลวดแม่เหล็กไฟฟ้า · ดูเพิ่มเติม »

ดิจิทัล

ทัล (digital), เฉพาะชื่อเฉพาะอาจสะกดเป็น ดิจิทอล หรือ ดิจิตอล) หรือในศัพท์บัญญัติว่า เชิงเลข ในทฤษฎีข้อมูลหรือระบบข้อมูล เป็นวิธีแทนความหมายของข้อมูลหรือชิ้นงานต่างๆในรูปแบบของตัวเลข โดยเฉพาะเลขฐานสอง ที่ไม่ต่อเนื่องกัน ซึ่งต่างจากระบบแอนะล็อกที่ใช้ค่าต่อเนื่องหรือสัญญาณแอนะล็อกซึ่งเป็นค่าต่อเนื่อง หรือแทนความหมายของข้อมูลโดยการใช้ฟังชั่นที่ต่อเนื่อง ถึงแม้ว่า การแทนความหมายเป็นดิจิทัลจะไม่ต่อเนื่อง ข้อมูลที่ถูกแปลความหมายนั้นสามารถเป็นได้ทั้งไม่ต่อเนื่อง (เช่นตัวเลขหรือตัวหนังสือ) หรือต่อเนื่อง (เช่นเสียง,ภาพและการวัดอื่นๆ) คำว่าดิจิทัลที่มาจากแหล่งเดียวกันกับคำว่า digit และ digitus (ภาษาละตินแปลว่านิ้ว) เพราะนิ้วมือมักจะใช้สำหรับการนับที่ไม่ต่อเนื่อง นักคณิตศาสตร์ จอร์จ CStibitz ของห้องปฏิบัติการโทรศัพท์เบลล์ ใช้คำว่าดิจิทัลในการอ้างอิงถึงพัลส์ไฟฟ้าเร็วที่ปล่อยออกมาจากอุปกรณ์ที่ออกแบบเพื่อเล็งและยิงปืนต่อต้านอากาศยานในปี 1942 มันเป็นที่นิยมใช้มากที่สุดในการระบบคำนวณและระบบอิเล็กทรอนิกส์โดยเฉพาะอย่างยิ่งเมื่อข้อมูลในโลกแห่งความเป็นจริงจะถูกแปลงเป็นรูปแบบตัวเลขฐานสองเช่นในเสียงออดิโอดิจิทัลและการถ่ายภาพดิจิทัล.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และดิจิทัล · ดูเพิ่มเติม »

ตัวต้านทาน

ตัวต้านทานแบบมีขาออกทางปลายแบบหนึ่ง ตัวต้านทาน หรือ รีซิสเตอร์ (resistor) เป็นอุปกรณ์ไฟฟ้าชนิดหนึ่งที่มีคุณสมบัติในการต้านการไหลผ่านของกระแสไฟฟ้า ทำด้วยลวดต้านทานหรือถ่านคาร์บอน เป็นต้น นั่นคือ ถ้าอุปกรณ์นั้นมีความต้านทานมาก กระแสไฟฟ้าที่ไหลผ่านจะน้อยลง เป็นอุปกรณ์ไฟฟ้าชนิดพาสซีฟสองขั้ว ที่สร้างความต่างศักย์ไฟฟ้าคร่อมขั้วทั้งสอง (V) โดยมีสัดส่วนมากน้อยตามปริมาณกระแสไฟฟ้าที่ไหลผ่าน (I) อัตราส่วนระหว่างความต่างศักย์ และปริมาณกระแสไฟฟ้า ก็คือ ค่าความต้านทานทางไฟฟ้า หรือค่าความต้านทานของตัวนำมีหน่วยเป็นโอห์ม (สัญลักษณ์: Ω) เขียนเป็นสมการตามกฏของโอห์ม ดังนี้ ค่าความต้านทานนี้ถูกกำหนดว่าเป็นค่าคงที่สำหรับตัวต้านทานธรรมดาทั่วไปที่ทำงานภายในค่ากำลังงานที่กำหนดของตัวมันเอง ตัวต้านทานทำหน้าที่ลดการไหลของกระแสและในเวลาเดียวกันก็ทำหน้าที่ลดระดับแรงดันไฟฟ้าภายในวงจรทั่วไป Resistors อาจเป็นแบบค่าความต้านทานคงที่ หรือค่าความต้านทานแปรได้ เช่นที่พบใน ตัวต้านทานแปรตามอุณหภูมิ(thermistor), ตัวต้านทานแปรตามแรงดัน(varistor), ตัวหรี่ไฟ(trimmer), ตัวต้านทานแปรตามแสง(photoresistor) และตัวต้านทานปรับด้วยมือ(potentiometer) ตัวต้านทานเป็นชิ้นส่วนธรรมดาของเครือข่ายไฟฟ้าและวงจรอิเล็กทรอนิกส์ และเป็นที่แพร่หลาย ในอุปกรณ์อิเล็กทรอนิกส์ ตัวต้านทานในทางปฏิบัติจะประกอบด้วยสารประกอบและฟิล์มต่างๆ เช่นเดียวกับ สายไฟต้านทาน (สายไฟที่ทำจากโลหะผสมความต้านทานสูง เช่น นิกเกิล-โครเมี่ยม) Resistors ยังถูกนำไปใช้ในวงจรรวม โดยเฉพาะอย่างยิ่งในอุปกรณ์แอนะล็อก และยังสามารถรวมเข้ากับวงจรไฮบริดและวงจรพิมพ์ ฟังก์ชันทางไฟฟ้าของตัวต้านทานจะถูกกำหนดโดยค่าความต้านทานของมัน ตัวต้านทานเชิงพาณิชย์ทั่วไปถูกผลิตในลำดับที่มากกว่าเก้าขั้นของขนาด เมื่อทำการระบุว่าตัวต้านทานจะถูกใช้ในการออกแบบทางอิเล็กทรอนิกส์ ความแม่นยำที่จำเป็นของความต้านทานอาจต้องให้ความสนใจในการสร้างความอดทนของตัวต้านทานตามการใช้งานเฉพาะของมัน นอกจากนี้ค่าสัมประสิทธิ์อุณหภูมิของความต้านทานยังอาจจะมีความกังวลในการใช้งานบางอย่างที่ต้องการความแม่นยำ ตัวต้านทานในทางปฏิบัติยังถูกระบุถึงว่ามีระดับพลังงานสูงสุดซึ่งจะต้องเกินกว่าการกระจายความร้อนของตัวต้านทานที่คาดว่าจะเกิดขึ้นในวงจรเฉพาะ สิ่งนี้เป็นความกังวลหลักในการใช้งานกับอิเล็กทรอนิกส์กำลัง ตัวต้านทานที่มีอัตรากำลังที่สูงกว่าก็จะมีขนาดที่ใหญ่กว่าและอาจต้องใช้ heat sink ในวงจรไฟฟ้าแรงดันสูง บางครั้งก็ต้องให้ความสนใจกับอัตราแรงดันการทำงานสูงสุดของตัวต้านทาน ถ้าไม่ได้พิจารณาถึงแรงดันไฟฟ้าในการทำงานขั้นต่ำสุดสำหรับตัวต้านทาน ความล้มเหลวอาจก่อให้เกิดการเผาใหม้ของตัวต้านทาน เมื่อกระแสไหลผ่านตัวมัน ตัวต้านทานในทางปฏิบัติมีค่าการเหนี่ยวนำต่ออนุกรมและค่าการเก็บประจุขนาดเล็กขนานอยู่กับมัน ข้อกำหนดเหล่านี้จะมีความสำคัญในการใช้งานความถี่สูง ในตัวขยายสัญญาณเสียงรบกวนต่ำหรือพรีแอมป์ ลักษณะการรบกวนของตัวต้านทานอาจเป็นประเด็น การเหนี่ยวนำที่ไม่ต้องการ, เสียงรบกวนมากเกินไปและค่าสัมประสิทธิ์อุณหภูมิ เหล่านี้จะขึ้นอยู่กับเทคโนโลยีที่ใช้ ในการผลิตตัวต้านทาน ปกติพวกมันจะไม่ได้ถูกระบุไว้เป็นรายต้วของตัวต้านทานที่ถูกผลิตโดยใช้เทคโนโลยีอย่างใดอย่างหนึ่ง.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวต้านทาน · ดูเพิ่มเติม »

ตัวแปรสัญญาณ

ตัวแปรสัญญาณ (Transducer) เป็นอุปกรณ์ไฟฟ้าที่แปลงสัญญาณของพลังงานในรูปแบบหนึ่งเป็นพลังงานในอีกรูปแบบหนึ่ง พลังงานดังกล่าวรวมถึง (แต่ไม่จำกัด เพียงเท่านี้) พลังงานไฟฟ้า, เครื่องกล, แม่เหล็กไฟฟ้า (รวมทั้งแสง), พลังงานเคมี, พลังงานเสียง, หรือพลังงานความร้อน ตัวแปรสัญญาณปกติจะหมายถึงเซ็นเซอร์/เครื่องตรวจจับ และใช้กันอย่างแพร่หลายในเครื่องมือวัดต่างๆ เซ็นเซอร์จะใช้ในการตรวจสอบพารามิเตอร์ในรูปแบบหนึ่ง และรายงานในอีกรูปแบบหนึ่งของพลังงาน ซึ่งมักจะเป็นสัญญาณไฟฟ้า ตัวอย่างเช่น เซ็นเซอร์ความดันอาจตรวจจับความดัน (รูปแบบเชิงกลของพลังงาน) และแปลงเป็นกระแสไฟฟ้าสำหรับจอแสดงผลที่เครื่องวัดระยะไกล Actuator จะทำงานตรงกันข้ามกับ transducer นั่นคือ actuator รับพลังงานไฟฟ้าและเปลี่ยนเป็นการเคลื่อนไหว เช่นมอเตอร์ไฟฟ้าและ ลำโพงเป็น actuator ทั้งสองอย่างนี้แปลงพลังงานไฟฟ้าให้เป็นการเคลื่อนไหว เพื่อวัตถุประสงค์ที่แตกต่างกัน.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวแปรสัญญาณ · ดูเพิ่มเติม »

ตัวเก็บประจุ

ตัวเก็บประจุ หรือ คาปาซิเตอร์ (capacitor หรือ condenser) เป็นอุปกรณ์อิเล็กทรอนิกส์อย่างหนึ่ง ทำหน้าที่เก็บพลังงานในรูปสนามไฟฟ้า ที่สร้างขึ้นระหว่างคู่ฉนวน โดยมีค่าประจุไฟฟ้าเท่ากัน แต่มีชนิดของประจุตรงข้ามกัน บ้างเรียกตัวเก็บประจุนี้ว่า คอนเดนเซอร์ (condenser) แต่ส่วนใหญ่เรียกสั้น ๆ ว่า แคป (Cap) เป็นอุปกรณ์พื้นฐานสำคัญในงานอิเล็กทรอนิกส์ และพบได้แทบทุกวงจร มีคุณสมบัติตรงข้ามกับตัวเหนี่ยวนำ จึงมักใช้หักร้างกันหรือทำงานร่วมกันในวงจรต่าง ๆ เป็นหนึ่งในสามชิ้นส่วนวงจรเชิงเส้นแบบพาสซีฟที่ประกอบขึ้นเป็นวงจรไฟฟ้า ในระบบจ่ายไฟฟ้าใช้ตัวเก็บประจุเป็นชุดหลายตัวเพิ่มค่าตัวประกอบกำลัง (Power factor) ให้กับระบบไฟฟ้าที่เรียกว่า แคปแบงค์ (Cap Bank) ตัวเก็บประจุบางชนิดในอนาคตมีความเป็นไปได้สูงที่จะถูกนำมาใช้แทนแบตเตอรี่ เช่น ตัวเก็บประจุยิ่งยวด (Supercapacitor).

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวเก็บประจุ · ดูเพิ่มเติม »

ตัวเก็บประจุยิ่งยวด

thumb ตัวเก็บประจุยิ่งยวด เป็นตัวเก็บประจุไฟฟ้าจำนวนมากๆ บางตัวทำงานโดยไม่ใช้ปฏิกิริยาทางเคมี คาดว่าจะถูกนำมาใช้แทน แบตเตอรีในอนาคต.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวเก็บประจุยิ่งยวด · ดูเพิ่มเติม »

ตัวเรียงกระแสชนิดควบคุมด้วยซิลิคอน

ัญญลักษณ์ของ SCR ตัวเรียงกระแสชนิดควบคุมด้วยซิลิคอน (Silicon-controlled Rectifier (SCR)) เป็นอุปกรณ์เรียงกระแสแบบ solid-state สี่ชั้นที่ควบคุมการทำงานด้วยกระแส ชื่อ "Silicon-controlled Rectifier" หรือ SCR เป็นชื่อทางการค้าของ บริษัท General Electric พัฒนาโดยทีมวิศวกรนำโดยโรเบิร์ต เอ็น ฮอลล์และจำหน่ายโดย บริษัท แฟรงค์ ดับบลิว กัทส์วิลเลอร์ หรือ บิล ในปี ค.ศ.1957 SCR แรงสูงเทียบขนาดกับเหรียญ บางแหล่งกำหนด SCR และ thyristors เป็นความหมายเหมือนกัน บางแหล่งกำหนด SCR เป็นส่วนหนึ่งของตระกูลของอุปกรณ์ที่มีสาร n และ p อย่างน้อย 4 ชั้นสลับกัน หรือตระกูล ทายริสเตอร์ (thyristors) SCR เป็นอุปกรณ์แบบทิศทางเดียว (นั่นคือ กระแสไหลในทิศทางเดียวเท่านั้น) เมื่อเทียบกับ ไทรแอค (TRIAC) ซึ่งเป็นแบบสองทิศทาง (นั่นคือ กระแสไหลในสองทิศทาง) SCR ปกติถูก trigger ให้ทำงานได้ด้วยกระแสไหลเข้าใน gate ซึ่งตรงข้ามกับ TRIAC ซึ่งสามารถถูก trigger ได้ด้วยกระแสทั้งบวกหรือล.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวเรียงกระแสชนิดควบคุมด้วยซิลิคอน · ดูเพิ่มเติม »

ตัวเหนี่ยวนำ

ตัวเหนี่ยวนำทั่วไป สัญลักษณ์แทนตัวเหนี่ยวนำ ตัวเหนี่ยวนำ (Inductor) บางครั้งถูกเรียกว่าคอยล์หรือรีแอคเตอร์(coil หรือ reactor)เป็นชิ้นส่วนในวงจรไฟฟ้าแบบพาสซีฟสองขั้วไฟฟ้า(ขา) มีคุณสมบัติในการป้องกันการเปลี่ยนแปลงของกระแสไฟฟ้าที่ไหลผ่านตัวมัน มันประกอบด้วยตัวนำ เช่นลวดทองแดงม้วนกันเป็นวงกลม เมื่อกระแสไหลผ่านตัวมัน พลังงานจะถูกเก็บไว้ชั่วคราวในรูปสนามแม่เหล็กในคอยล์นั้น เมื่อกระแสนั้นเปลี่ยนแปลง, สนามแม่เหล็กที่แปรตามเวลาจะทำให้เกิดแรงดันไฟฟ้าในตัวนำนั้น ตามกฎการเหนี่ยวนำแม่เหล็กไฟฟ้าของฟาราเดย์ ซึ่งจะต้านกับการเปลี่ยนแปลงของกระแสที่สร้างมัน ทิศทางของสนามไฟฟ้าเกิดขึ้นตามกฏมือขวา ทิศทางของสนามเกิดในทิศทางของหัวแม่มือ, เมื่อกระแสไหลไปในทิศทางของนิ้วมือทั้งสี่ ตัวเหนี่ยวนำถูกกำหนดโดยการเหนี่ยวนำของมัน หรืออัตราส่วนของแรงดันไฟฟ้ากับอัตราการเปลี่ยนแปลงของกระแสไฟฟ้า ซึ่งมีหน่วยเป็น Henries (H) ตัวเหนี่ยวนำมีค่าปกติตั้งแต่ 1 μH (10- 6H)จนถึง 1 H ตัวเหนี่ยวนำจำนวนมากมีแกนเป็นแม่เหล็กที่ทำจากเหล็ก หรือเฟอร์ไรต์ภายในคอยล์ เหมือนกับตัวเก็บประจุและตัวต้านทาน ตัวเหนี่ยวนำเป็นหนึ่งในสามชิ้นส่วนวงจรเชิงเส้นแบบพาสซีฟที่ประกอบขึ้นเป็นวงจรไฟฟ้า ตัวเหนี่ยวนำถูกใช้กันอย่างแพร่หลายในอุปกรณ์อิเล็กทรอนิกส์กระแสสลับ (AC) โดยเฉพาะอย่างยิ่งในอุปกรณ์วิทยุ มันถูกใช้ป้องกันการไหลของกระแส AC ขณะที่ยอมให้กระแส DC ผ่านไปได้ ตัวเหนี่ยวนำที่ถูกออกแบบมาเพื่อการนี้จะเรียกว่าโช๊ค(choke) มันยังถูกใช้ในตัวกรองอิเล็กทรอนิกส์เพื่อแยกสัญญาณที่มีความถี่ที่แตกต่างกันและใช้ร่วมกับตัวเก็บประจุเพื่อทำเป็นวงจรปรับหาความถี่(tuner) ที่ใช้ในการปรับหาคลื่นสถานีของเครื่องรับวิทยุและโทรทัศน.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และตัวเหนี่ยวนำ · ดูเพิ่มเติม »

ซีเนอร์ไดโอด

ซีเนอร์ไดโอด (Zener diode) เป็นอุปกรณ์สารกึ่งตัวนำจัดอยู่ในจำพวกไดโอด แต่ใช้งานเพื่อนำกระแสเมื่อได้รับไบอัสกลับ และระดับแรงดันไบอัสกลับที่นำซีเนอร์ไดโอดไปใช้งานได้เรียกว่า ระดับแรงดันพังทลายซีเนอร์ (Zener Breakdown Voltage; Vz) ซีเนอร์ไดโอดจะมีแรงดันไบอัสกลับ (Vr) น้อยกว่า Vz เล็กน้อย ไดโอดประเภทนี้เหมาะที่จะนำไปใช้ควบคุมแรงดันที่โหลดหรือวงจรที่ต้องการแรงดันคงที่ เช่น ประกอบอยู่ในแหล่งจ่ายไฟเลี้ยง หรือโวลเทจเรกูเลเตอร์ หมวดหมู่:ไดโอด.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และซีเนอร์ไดโอด · ดูเพิ่มเติม »

แบตเตอรี่

แบตเตอรี่ (Battery) เป็นอุปกรณ์ที่ประกอบด้วย เซลล์ไฟฟ้าเคมี หนึ่งเซลล์หรือมากกว่า ที่มีการเชื่อมต่อภายนอกเพื่อให้กำลังงานกับอุปกรณ์ไฟฟ้า แบตเตอรี่มี ขั้วบวก (cathode) และ ขั้วลบ (anode) ขั้วที่มีเครื่องหมายบวกจะมีพลังงานศักย์ไฟฟ้าสูงกว่าขั้วที่มีเครื่องหมายลบ ขั้วที่มีเครื่องหมายลบคือแหล่งที่มาของอิเล็กตรอนที่เมื่อเชื่อมต่อกับวงจรภายนอกแล้วอิเล็กตรอนเหล่านี้จะไหลและส่งมอบพลังงานให้กับอุปกรณ์ภายนอก เมื่อแบตเตอรี่เชื่อมต่อกับวงจรภายนอก สาร อิเล็กโทรไลต์ มีความสามารถที่จะเคลื่อนที่โดยทำตัวเป็นไอออน ยอมให้ปฏิกิริยาทางเคมีทำงานแล้วเสร็จในขั้วไฟฟ้าที่อยู่ห่างกัน เป็นการส่งมอบพลังงานให้กับวงจรภายนอก การเคลื่อนไหวของไอออนเหล่านั้นที่อยู่ในแบตเตอรี่ที่ทำให้เกิดกระแสไหลออกจากแบตเตอรี่เพื่อปฏิบัติงาน ในอดีตคำว่า "แบตเตอรี่" หมายถึงเฉพาะอุปกรณ์ที่ประกอบด้วยเซลล์หลายเซลล์ แต่การใช้งานได้มีการพัฒนาให้รวมถึงอุปกรณ์ที่ประกอบด้วยเซลล์เพียงเซลล์เดียว แบตเตอรี่ปฐมภูมิจะถูกใช้เพียงครั้งเดียวหรือ "ใช้แล้วทิ้ง"; วัสดุที่ใช้ทำขั้วไฟฟ้าจะมีการเปลี่ยนแปลงอย่างถาวรในช่วงปล่อยประจุออก (discharge) ตัวอย่างที่พบบ่อยก็คือ แบตเตอรี่อัลคาไลน์ ที่ใช้สำหรับ ไฟฉาย และอีกหลายอุปกรณ์พกพา แบตเตอรี่ทุติยภูมิ (แบตเตอรี่ประจุใหม่ได้) สามารถดิสชาร์จและชาร์จใหม่ได้หลายครั้ง ในการนี้องค์ประกอบเดิมของขั้วไฟฟ้าสามารถเรียกคืนสภาพเดิมได้โดยกระแสย้อนกลับ ตัวอย่างเช่น แบตเตอรี่ตะกั่วกรด ที่ใช้ในยานพาหนะและแบตเตอรี่ ลิเธียมไอออน ที่ใช้สำหรับอุปกรณ์อิเล็กทรอนิกส์แบบเคลื่อนย้ายได้ แบตเตอรี่มาในหลายรูปทรงและหลายขนาด จากเซลล์ขนาดเล็กที่ให้พลังงานกับ เครื่องช่วยฟัง และนาฬิกาข้อมือ จนถึงแบตเตอรี่แบงค์ที่มีขนาดเท่าห้องที่ให้พลังงานเตรียมพร้อมสำหรับ ชุมสายโทรศัพท์ และ ศูนย์ข้อมูล คอมพิวเตอร์ ตามการคาดการณ์ในปี 2005 อุตสาหกรรมแบตเตอรี่ทั่วโลกสร้างมูลค่า 48 พันล้านดอลาร์สหรัฐในการขายในแต่ละปี ด้วยการเจริญเติบโตประจำปี 6% แบตเตอรี่มีค่า พลังงานเฉพาะ (พลังงานต่อหน่วยมวล) ต่ำกว่ามากเมื่อเทียบกับ เชื้อเพลิง ทั้งหลาย เช่นน้ำมัน แต่ก็สามารถชดเชยได้บ้างโดยประสิทธิภาพที่สูงของมอเตอร์ไฟฟ้าในการผลิตงานด้านกลไกเมื่อเทียบกับเครื่องยนต์สันดาป.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และแบตเตอรี่ · ดูเพิ่มเติม »

แหล่งจ่ายไฟ

รูปแสดงแหล่งจ่ายไฟแบบหลอดสูญญากาศ แขวนบนแร็ค ปรับได้ ทำงานที่ +/- 1500 volts DC, 0 to 100mA output, สามารถจำกัดกระแสได้ แหล่งจ่ายไฟ (Power supply)เป็นอุปกรณ์ที่จ่ายพลังงานไฟฟ้าให้กับโหลดไฟฟ้.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และแหล่งจ่ายไฟ · ดูเพิ่มเติม »

แอนะล็อก

แอนะล็อก (analog หรือ analogue) อาจหมายถึง.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และแอนะล็อก · ดูเพิ่มเติม »

แผ่นวงจรพิมพ์

แผ่นวงจรพิมพ์ แผ่นวงจรพิมพ์ หรือ พีซีบี ที่นักอิเล็กทรอนิกส์ทั่วไปนิยมเรียกกันสั้นๆ ว่า แผ่นปริ๊นท์ (printed circuit board: PCB) เป็นแผ่นที่สร้างด้วยพลาสติกชนิดหนึ่งที่มีการฉาบผิวด้วยทองแดงเต็มแผ่น และเมื่อต้องการใช้แผ่นวงจรพิมพ์ทางอิเล็กทรอนิกส์ นักประดิษฐ์หรือนักอิเล็กทรอนิกส์ก็จะนำลายวงจรที่ต้องการมาทาบ หรือสกรีนลายลงบนแผ่นทองแดงซึ่งอาจจะสร้างลายด้วยกรรมวิธีต่างๆ ที่แตกต่างกันออกไป จนเกิดลายบนทองแดง จากนั้นก็นำแผ่นวงจรพิมพ์ที่สร้างลายเสร็จเรียบร้อยแล้ว ไปจุ่มในน้ำยากัดแผ่นปริ้นท์ในช่วงระยะเวลาหนึ่ง จากนั้นทำการเขย่าให้น้ำยาเคลื่อนที่ไปมา จนเริ่มเห็นลายวงจรที่ชัดเจนขึ้น แล้วนำไปล้างด้วยน้ำธรรมดา จะเห็นว่ามีเส้นลายทองแดงที่เด่นชัดขึ้น จากนั้นทำการเคลือบแผ่นวงจรพิมพ์ด้วยน้ำยาเคลือบแผ่นวงจรพิมพ์ที่มีขายอยู่ตามร้านขายอุปกรณ์อิเล็กทรอนิกส์ เมื่อแห้งก็นำมาเจาะรู้เพื่อใช้สำหรับเชื่อมต่ออุปกรณ์อิเล็กทรอนิกส์หรือประกอบกันเป็นวงจรแทนการต่อวงจรด้วยสายไฟ ซึ่งมีความซับซ้อนและยุ่งยาก โดยแผงวงจรนี้อาจมีเพียงด้านเดียวหรือสองด้านหรือสามารถวางซ้อนกันได้หลาย ๆ ชั้น (Multi layer) ได้เช่นกัน ตามความต้องการของผู้ออกแ.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และแผ่นวงจรพิมพ์ · ดูเพิ่มเติม »

ไดโอด

อดชนิดต่าง ๆ ไดโอด (diode) เป็นชิ้นส่วนอิเล็กทรอนิกส์ชนิดสองขั้วคือขั้ว p และขั้ว n ที่ออกแบบและควบคุมทิศทางการไหลของประจุไฟฟ้า มันจะยอมให้กระแสไฟฟ้าไหลในทิศทางเดียว และกั้นการไหลในทิศทางตรงกันข้าม เมื่อกล่าวถึงไดโอด มักจะหมายถึงไดโอดที่ทำมาจากสารกึ่งตัวนำ (Semiconductor diode) ซึ่งก็คือผลึกของสารกึ่งตัวนำที่ต่อกันได้ขั้วทางไฟฟ้าสองขั้ว ส่วนไดโอดแบบหลอดสูญญากาศ (Vacuum tube diode) ถูกใช้เฉพาะทางในเทคโนโลยีไฟฟ้าแรงสูงบางประเภท เป็นหลอดสูญญากาศที่ประกอบด้วยขั้วอิเล็ดโทรดสองขั้ว ซึ่งจะคือแผ่นตัวนำ (plate) และแคโทด (cathode) ส่วนใหญ่เราจะใช้ไดโอดในการยอมให้กระแสไปในทิศทางเดียว โดยยอมให้กระแสไฟในทางใดทางหนึ่ง ส่วนกระแสที่ไหลทิศทางตรงข้ามกันจะถูกกั้น ดังนั้นจึงอาจถือว่าไดโอดเป็นวาล์วตรวจสอบแบบอิเล็กทรอนิกส์อย่างหนึ่ง ซึ่งนับเป็นประโยชน์อย่างมากในวงจรอิเล็กทรอนิกส์ เช่น ใช้เป็นตัวเรียงกระแสไฟฟ้าในวงจรแหล่งจ่ายไฟ เป็นต้น อย่างไรก็ตามไดโอดมีความสามารถมากกว่าการเป็นอุปกรณ์ที่ใช้เปิด-ปิดกระแสง่าย ๆ ไดโอดมีคุณลักษณะทางไฟฟ้าที่ไม่เป็นเชิงเส้น ดังนั้นมันยังสามารถปรับปรุงโดยการปรับเปลี่ยนโครงสร้างของพวกมันที่เรียกว่ารอยต่อ p-n มันถูกนำไปใช้ประโยชน์ในงานที่มีวัตถุประสงค์พิเศษ นั่นทำให้ไดโอดมีรูปแบบการทำงานได้หลากหลายรูปแบบ ยกตัวอย่างเช่น ซีเนอร์ไดโอด เป็นไดโอดชนิดพิเศษที่ทำหน้าที่รักษาระดับแรงดันให้คงที่ วาริแอกไดโอดใช้ในการปรับแต่งสัญญาณในเครื่องรับวิทยุและโทรทัศน์ ไดโอดอุโมงค์หรือทันเนลไดโอดใช้ในการสร้างสัญญาณความถี่วิทยุ และไดโอดเปล่งแสงเป็นอุปกรณ์ที่สร้างแสงขึ้น ไดโอดอุโมงค์มีความน่าสนใจตรงที่มันจะมีค่าความต้านทานติดลบ ซึ่งเป็นประโยชน์มากเมื่อใช้ในวงจรบางประเภท ไดโอดตัวแรกเป็นอุปกรณ์หลอดสูญญากาศ โดยไดโอดแบบสารกึ่งตัวนำตัวแรกถูกค้นพบจากการทดสอบความสามารถในการเรียงกระแสของผลึกโดยคาร์ล เฟอร์ดินานด์ บรวน นักฟิสิกส์ชาวเยอรมัน ในปี..

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และไดโอด · ดูเพิ่มเติม »

เลเซอร์ไดโอด

ลเซอร์ไดโอด LD เป็นเลเซอร์ที่มีขนาดกลางที่เกิดขึ้นจากรอยต่อ p-n ของสารกึ่งตัวนำที่คล้ายกันกับที่พบในไดโอดเปล่งแสงที่มีใช้งานกันอยู่ เลเซอร์ไดโอดจะเกิดขึ้นได้จากการฉีดกระแสไฟฟ้าเข้าไป เลเซอร์ไดโอดควรจะแตกต่างจากเลเซอร์ไดโอดปั๊มออปติกส์ (optically pumped laser diodes), ซึ่งจะให้กำลังขับ (ปั๊ม) ด้วยลำแสงซึ่งมักจะกระตุ้นให้เกิดขึ้นได้โดยเลเซอร์ไดโอ.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และเลเซอร์ไดโอด · ดูเพิ่มเติม »

เทอร์มิสเตอร์

เทอร์มิสเตอร์ เทอร์มิสเตอร์ (thermistor) เป็นอุปกรณ์ตัวต้านทานชนิดหนึ่ง ที่ค่าความต้านทานเปลี่ยนแปลงตามอุณหภูมิได้มาก (มีสัมประสิทธิ์อุณหภูมิสูงกว่าตัวต้านทานทั่วไป), โดยคำว่า เทอร์มิสเตอร์ มาจากคำว่า เทอร์มอล (ความร้อน) รวมกับคำว่า รีซิสเตอร์ (ตัวต้านทาน) สัญลักษณ์ในวงจรไฟฟ้า เทอร์มิสเตอร์จะทำจากวัสดุเซรามิกหรือพอลิเมอร์ โดยสามารถนำมาใช้วัดอุณหภูมิได้ละเอียดแม่นยำ ในช่วงที่จำกัด (ประมาณ -90 ถึง 130 องศาเซลเซียส) จึงนิยมนำมาใช้เป็นตัววัดอุณภูมิ และจากคุณสมบัติความต้านทานที่เปลี่ยนแปลงตามอุณหภูมิ เทอร์มิสเตอร์ยังถูกใช้เป็นตัวจำกัดกระแสกระชาก, ตัวป้องกันกระแสเกิน และตัวให้ความร้อนแบบอุณหภูมิคงที่อีกด้วย หมวดหมู่:เทอร์มอมิเตอร์.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และเทอร์มิสเตอร์ · ดูเพิ่มเติม »

เครื่องกำเนิดไฟฟ้า

รื่องกำเนิดไฟฟ้าแบบกังหันไอน้ำที่ทันสมัยของสหรัฐฯ เครื่องกำเนิดไฟฟ้า หรือ เครื่องปั่นไฟ (electric generator) คืออุปกรณ์ที่แปลงพลังงานกลเป็นพลังงานไฟฟ้า อุปกรณ์ดังกล่าวจะบังคับกระแสไฟฟ้าให้ไหลผ่านวงจรภายนอก แหล่งที่มาของพลังงานกลอาจจะเป็นลูกสูบหรือเครื่องยนต์กังหันไอน้ำ หรือแรงน้ำตกผ่านกังหันน้ำหรือล้อน้ำ หรือเครื่องยนต์สันดาปภายใน หรือกังหันลม หรือข้อเหวี่ยงมือ หรืออากาศอัด หรือแหล่งพลังงานกลอื่นๆ โดยเครื่องกำเนิดไฟฟ้านั้นจะเป็นวิธีหลักที่ใช้ในการกำเนิดไฟฟ้าเพื่อจ่ายเข้าโครงข่ายพลังงานไฟฟ้าของประเทศ เครื่องกำเนิดไฟฟ้าของ Ganz รุ่นแรกๆใน Zwevegem, West Flanders, Belgium การแปลงย้อนกลับของพลังงานไฟฟ้ากลับไปเป็นพลังงานกลจะกระทำโดยมอเตอร์ไฟฟ้า มอเตอร์และเครื่องกำเนิดไฟฟ้าที่มีความคล้ายคลึงกันมาก มอเตอร์หลายตัวสามารถขับเคลื่อนเครื่องจักรเพื่อผลิตไฟฟ้าและบ่อยครั้งที่ได้รับการยอมรับให้เป็นเครื่องกำเนิดไฟฟ้า alternator ในช่วงต้นของศตวรรษที่ 20 ในห้องโถงของสถานีผลิตไฟฟ้ากำลังน้ำ ทำในบูดาเปสท์ประเทศฮังการี.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และเครื่องกำเนิดไฟฟ้า · ดูเพิ่มเติม »

เซลล์แสงอาทิตย์

ซลล์แสงอาทิตย์ หรือ โซลาร์เซลล์ (solar cell) หรือ เซลล์สุริยะ หรือ เซลล์โฟโตโวลตาอิก (Photovoltaic cell) เป็นอุปกรณ์ไฟฟ้าซึ่งทำหน้าที่แปลงพลังงานแสงหรือโฟตอนเป็นพลังงานไฟฟ้า โดยตรงโดยปรากฏการณ์โฟโตโวลตาอิก นั่นก็คือ คุณสมบัติของสารเช่น ค่าความต้านทาน แรงดัน และกระแส จะเปลี่ยนไปเมื่อมีแสงตกกระทบโดยไม่ต้องอาศัยแหล่งจ่ายไฟภายนอก และเมื่อต่อโหลดให้ จะทำให้เกิดกระแสไหลผ่านโหลดนั้นได้.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และเซลล์แสงอาทิตย์ · ดูเพิ่มเติม »

เซลล์เชื้อเพลิง

Toyota FCHV ใช้เซลล์เชื้อเพลิง proton-conducting fuel cell) เซลล์เชื้อเพลิง (fuel cell) เป็นอุปกรณ์ที่เปลี่ยนพลังงานเคมีจากเชื้อเพลิงชนิดหนึ่งให้เป็นกระแสไฟฟ้าผ่านทางปฏิกิริยาเคมีของไอออนของไฮโดรเจนประจุบวกกับอ๊อกซิเจนหรือตัวทำอ๊อกซิเดชันอื่น เซลล์เชื้อเพลิงแตกต่างจากแบตเตอรี่ที่ว่ามันต้องการแหล่งจ่ายเชื้อเพลิงและอ๊อกซิเจนหรืออากาศอย่างต่อเนื่องเพื่อความยั่งยืนของปฏิกิริยาเคมี ในขณะที่ในแบตเตอรี่สารเคมีภายในจะทำปฏิกิริยาต่อกันเพื่อผลิตแรงเคลื่อนไฟฟ้า (emf) เซลล์เชื้อเพลิงสามารถผลิตไฟฟ้าได้อย่างต่อเนื่องนานเท่าที่เชื้อเพลิงและอ๊อกซิเจนหรืออากาศยังคงถูกใส่เข้าไป ไม่เหมือนกับแบตเตอรี่ที่จะหยุดจ่ายกระแสไฟฟ้าถ้าสารเคมีหมดอายุการใช้งาน เซลล์เชื้อเพลิงครั้งแรกถูกคิดค้นในปี 1838 เซลล์เชื้อเพลิงเชิงพาณิชย์ครั้งแรกถูกใช้มากว่าหนึ่งศตวรรษต่อมาในโครงการอวกาศของ นาซ่า ที่จะผลิตพลังงานให้กับดาวเทียมและแคปซูลอวกาศ ตั้งแต่นั้นเป็นต้นมาเซลล์เชื้อเพลิงถูกนำมาใช้ในงานที่หลากหลายอื่น ๆ เซลล์เชื้อเพลิงถูกใช้สำหรับพลังงานหลักและพลังงานสำรองเพื่อการพาณิชย์ อุตสาหกรรมและอาคารที่อยู่อาศัยและในพื้นที่ห่างไกลและไม่สามารถเข้าถึงได้ พวกมันยังถูกใช้เพื่อให้พลังงานกับยานพาหนะเซลล์เชื้อเพลิง รวมทั้งรถยก, รถยนต์, รถโดยสาร, เรือ, รถจักรยานยนต์และเรือดำน้ำ เซลล์เชื้อเพลิงมีอยู่หลายชนิด ทุกชนิดประกอบด้วยแอโนด แคโทดและอิเล็กโทรไลต์ อิเล็กโทรไลต์จะยอมให้ไอออนไฮโดรเจนประจุบวก (หรือโปรตอน) สามารถเคลื่อนที่ได้จากแอโนดไปแคโทดของเซลล์เชื้อเพลิง แอโนดและแคโทดประกอบด้วยตัวเร่งปฏิกิริยาที่ทำให้เชื้อเพลิงเกิดปฏิกิริยาออกซิเดชั่นที่สร้างไอออนไฮโดรเจนประจุบวกและอิเล็กตรอน ไอออนไฮโดรเจนจะถูกดึงผ่านอิเล็กโทรไลต์หลังจากการเกิดปฏิกิริยาและเคลื่อนที่ไปยังแคโทด ในขณะเดียวกันอิเล็กตรอนที่เหลือจากอะตอมของไฮโดรเจนจะถูกดึงจากแอโนดไปยังแคโทดผ่านวงจรภายนอก ทำให้เกิดกระแสตรง ที่แคโทดไอออนไฮโดรเจน อิเล็กตรอนและออกซิเจนทำปฏิกิริยากันก่อตัวเป็นน้ำ เนื่องจากความแตกต่างหลักระหว่างเซลล์เชื้อเพลิงในแต่ละประเภทคืออิเล็กโทรไลต์ เซลล์เชื้อเพลิงจึงถูกแยกประเภทตามชนิดของอิเล็กโทรไลต์ที่พวกมันใช้ และแยกตามระยะเวลาเริ่มต้นตั้งแต่ 1 วินาทีสำหรับเซลล์เชื้อเพลิงเยื่อหุ้มแลกเปลี่ยนโปรตอน (solid oxide fuel cell (SOFC)) เซลล์เชื้อเพลิงเดี่ยว ๆ จะผลิตกระแสไฟฟ้าที่มีแรงดันขนาดค่อนข้างเล็ก ประมาณ 0.7 โวลต์ ดังนั้นเซลล์จึงต้องวาง "ซ้อน" กัน หรือถูกวางเรียงกันเป็นแถว เพื่อที่จะสร้างแรงดันเพียงพอที่จะตอบสนองความต้องการของการใช้งาน นอกเหนือไปจากกระแสไฟฟ้า เซลล์เชื้อเพลิงยังผลิตน้ำ ความร้อนและ(ขึ้นอยู่กับแหล่งเชื้อเพลิง)ปริมาณขนาดเล็กมากของก๊าซไนโตรเจนไดออกไซด์ และก๊าซอื่นๆ ประสิทธิภาพการใช้พลังงานของเซลล์เชื้อเพลิงโดยทั่วไปจะอยู่ระหว่าง 40-60% หรือสูงขึ้นถึง 85% ในการผลิตแบบความร้อนร่วม (cogeneration) ถ้าความร้อนที่เหลือทิ้งถูกนำกลับมาใช้งานอีก ตลาดของเซลล์เชื้อเพลิงกำลังเจริญเติบโตและบริษัท Pike Research ได้ประมาณการว่าตลาดเซลล์เชื้อเพลิงอยู่กับที่จะสูงถึง 50 GW ในปี 2020 สารตั้งต้นที่ใช้โดยทั่วไปในเซลล์เชื้อเพลิงได้แก่ ก๊าซไฮโดรเจนที่ด้านแอโนด และก๊าซออกซิเจนที่ด้านแคโทด (เซลล์ไฮโดรเจน) โดยปกติแล้วเมื่อมีสารตั้งต้นไหลเข้าสู่ระบบ สารผลิตภัณฑ์ที่เกิดขึ้นก็จะไหลออกจะระบบไปด้วย ดังนั้นการทำงานของเซลล์เชื้อเพลิงจึงดำเนินต่อไปได้เรื่อยๆ ตราบเท่าที่เราสามารถควบคุมการไหลได้ เซลล์เชื้อเพลิงมักจะถูกมองว่าเป็นตัวเลือกที่ดีสำหรับการใช้พลังงานที่มีประสิทธิภาพสูงและปราศจากมลพิษ เมื่อเปรียบเทียบกับเชื้อเพลิง เช่น มีเทนและก๊าซธรรมชาติ ซึ่งทำให้เกิดคาร์บอนไดออกไซด์ ผลิตภัณฑ์อย่างเดียวที่เกิดจากการทำงานของเซลล์เชื้อเพลิงคือน้ำ อย่างไรก็ตามยังมีความกังวลอยู่ในขั้นตอนการผลิตก๊าซไฮโดรเจนซึ่งใช้พลังงานมาก การผลิตไฮโดรเจนจำเป็นต้องใช้วัตถุดิบที่มีไฮโดรเจน เช่น น้ำ หรือ เชื้อเพลิงอื่นๆ นอกจากนั้นยังต้องใช้ไฟฟ้าซึ่งก็ก็ผลิตมาจากแหล่งพลังงานแบบดั้งเดิม ได้แก่ น้ำมัน ถ่านหิน หรือแม้แต่พลังงานนิวเคลียร์ ในขณะที่พลังงานทางเลือกเช่น ลมและพลังงานแสงอาทิตย์ ก็อาจสามารถใช้ได้ แต่ราคาก็ยังสูงมากในปัจจุบัน ดังนั้นเราจึงยังไม่อาจกล่าวได้ว่าเทคโนโลยีเซลล์เชื้อเพลิงเป็นอิสระจากเชื้อเพลิงซากดึกดำบรรพ์ จนกว่าเราจะสามารถหาวิธีการผลิตไฮโดรเจนปริมาณมากด้วยพลังงานทดแทนหรือพลังงานนิวเคลียร.

ใหม่!!: ชิ้นส่วนอิเล็กทรอนิกส์และเซลล์เชื้อเพลิง · ดูเพิ่มเติม »

ขาออกขาเข้า
Hey! เราอยู่ใน Facebook ตอนนี้! »